1. Al-qaness, M. A. A., Ewees, A. A., Fan, H., and Abd El Aziz, M. (2020), Optimization Method for Forecasting Confirmed Cases of COVID-19 in China. Journal of Clinical Medicine, 9(2), 674. [
DOI:10.3390/jcm9030674]
2. Barkhordar, Z., Maleki, M., Khodadadi, Z., and Wraith, D. (2020), A Bayesian approach on the two-piece scale mixtures of normal homoscedastic nonlinear regression models. Journal of Applied Statistics, [
DOI:10.1080/ 02664763.2020.1854203]
3. Box, G., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis: Forecasting and Control}, (Third ed.), Prentice-Hall.
4. Brockwell, P. J., and Davis, R. A. Time Series: Theory and Methods} (2nd ed.), New York: Springer.
5. Cauchemez, S., Van Kerkhove, M., Riley, S., Donnelly, C., Fraser, C., and Ferguson, N. (2013), Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill, 18, 20503. [
DOI:10.2807/ese.18.24.20503-en]
6. Chen, Y., Liu, Q. and Guo, D. (2020), Emerging coronaviruses: Genome structure, replication and pathogenesis. Journal of Medical Virology, 92, 418-423. [
DOI:10.1002/jmv.25681]
7. Cheng, Z. J., and Shan, J. (2019), Novel Coronavirus: Where We are and What We Know. Infection}, doi://10.1007/s15010-020-01401-y.
8. DeFelice, N. B., Little, E., Campbell, S. R., and Shaman, J. (2017), Ensemble forecast of human West Nile virus cases and mosquito infection rates. Nature Communications, 8, 1-6. [
DOI:10.1038/ncomms14592]
9. Firdos, K., Alia, S., and Shaukat, A. (2020), Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using Vector Autoregressive model in Pakistan. Chaos Solitons Fractals},
https://doi.org/10.1016/j.chaos.2020.110189 [
DOI:10.1016/j.chaos.2020.110189.]
10. Ge, X. Y., Li, J. L., Yang, X. L., Chmura, A. A., Zhu G., Epstein, J. H., Mazet, J. K., Hu, B., Zhang, W., and Peng,C., et. al. (2013), Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503, 535-538. [
DOI:10.1038/nature12711]
11. Ghasami, S., Khodadadi, Z., and Maleki, M. (2018), Autoregressive processes with generalized hyperbolic innovations. Communications in Statistics - Simulation and Computation},
https://doi.org/10.1080/03610918.2018.1535066 [
DOI:10.1080/03610918.2018.1535066.]
12. Ghasami, S., Maleki, M., and Khodadadi, Z. (2020), Leptokurtic and Platykurtic class of Robust Symmetrical and Asymmetrical Time Series Models. Journal of Computational and Applied Mathematics, 376,
https://doi.org/10.1016/j.cam.2020.112806 [
DOI:10.1016/j.cam.2020.112806.]
13. Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q. He, J.X., Liu, L., Shan, H., Lei, C. L., and Hui, D.C., et al. (2020), Clinical characteristics of 2019 novel coronavirus infection in China, medRxiv, doi://10.1101/2020.02.06.20020974. [
DOI:10.1056/NEJMoa2002032]
14. Haghbin, H. M., and Nematollahi, A. R. (2013), Likelihood-Based Inference in Autoregressive Models with Scaled t-Distributed Innovations by Means of EM-Based Algorithms. Communication in Statistics Simulation and Computation, 42, 2239-2252. [
DOI:10.1080/03610918.2012.695848]
15. Hajrajabi, A., and Maleki, M. (2019), Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations. Journal of Applied Statistics, 46(11), 2010-2029. [
DOI:10.1080/02664763.2019.1575953]
16. Hoseinzaseh, A., Maleki, M., Khodadadi, Z., and Contreras-Reyes, J. E. (2019), The Skew-Reflected-Gompertz distribution for analyzing symmetric and asymmetric data. Journal of Computational and Applied Mathematics, 349, 132-141. [
DOI:10.1016/j.cam.2018.09.011]
17. Jung, S. M., Akhmetzhanov, A. R., Hayashi, K., Linton, N. M., Yang, Y., Yuan, B., Kobayashi, T., Kinoshita, R., and Nishiura, H. (2020), Real time estimation of the risk of death from novel coronavirus (2019-nCoV) infection: Inference using exported cases. Journal of Clinical Medicine, 9(2), 523. [
DOI:10.3390/jcm9020523]
18. Kalantari, M. (2021), Forecasting COVID-19 pandemic using optimal singular spectrum analysis. Chaos Solitons Fractals.
https://doi.org/10.1016/j.chaos.2020.110547 [
DOI:10.1016/j.chaos.2020.110547.]
19. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., and Zhu, N., et. al., (2020), Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor bindin. Lancet, 395, 565-574. [
DOI:10.1016/S0140-6736(20)30251-8]
20. Mahmoudi, M. R., and Maleki, M. (2017,) A new method to detect periodically correlated structure. Computational Statistics, 32(4), 1569-1581. [
DOI:10.1007/s00180-016-0705-z]
21. Maleki, M., and Arellano-Valle, R. B. (2017), Maximum a-posteriori estimation of autoregressive processes based on finite mixtures of scale-mixtures of skew-normal distributions. Journal of Statistical Computation and Simulation, 87, 1061-1083. [
DOI:10.1080/00949655.2016.1245305]
22. Maleki, M., Arellano-Valle, R. B., Dey, D.,K., Mahmoudi, M. R., and Jalali, .M., (2018), A Bayesian approach to robust skewed Autoregressive process. Calcutta Statistical Association Bulltaine, 69, 165-182. [
DOI:10.1177/0008068317732196]
23. Maleki, M., Barkhordar, Z., Khodadadi, Z., and Wraith, D. (2019), A robust class of homoscedastic nonlinear regression models. Journal of Statistical Computation and Simulation, 89(4), 2765-2781. [
DOI:10.1080/00949655.2019.1635598]
24. Maleki, M., Mahmoudi, M. R., and Contreras-Reyes, J. E. (2019), Robust mixture modeling based on two-piece scale mixtures of normal family. Axioms, 8(2), 38. [
DOI:10.3390/axioms8020038]
25. Maleki. M., and Nematollahi, A. R. (2017), Autoregressive Models with Mixture of Scale Mixtures of Gaussian innovations. Iranian Journal of Science and Technology, 41, 1099-1107. [
DOI:10.1007/s40995-017-0237-6]
26. Maleki, M., and Nematollahi, A. R. (2017), Bayesian approach to epsilon-skew-normal family. Communication in Statistics Theory and Methods, 46, 7546-7561 [
DOI:10.1080/03610926.2016.1157186]
27. Maleki, M., Wraith, D., Mahmoudi, M. R., and Contreras-Reyes, J.E. (2020), Asymmetric heavy-tailed vector auto-regressive processes with application to financial data}. Journal of Statistical Computation and Simulation, 90(2), 324-340. [
DOI:10.1080/00949655.2019.1680675]
28. Manouchehri, T., and Nematollahi, A. R. (2019), On the estimation problem of periodic autoregressive time series: symmetric and asymmetric innovations. Journal of Statistics Computation and Simulation, 89, 71-97. [
DOI:10.1080/00949655.2018.1535599]
29. Massad, E., Burattini, M. N., Lopez, L. F., and Coutinho, F. A. (2005), Forecasting versus projection models in epidemiology: The case of the SARS epidemics}. Medical Hypotheses ,$bf{65, 17-22. [
DOI:10.1016/j.mehy.2004.09.029]
30. Masum, M., Shahriar, H., Haddad, H. M., and Alam, M. S. (2020), R-LSTM: Time Series Forecasting for COVID-19 Confirmed Cases with LSTMbased Framework. IEEE International Conference on Big Data (Big Data)}, 1374-1379. [
DOI:10.1109/BigData50022.2020.9378276]
31. Mirniam, A. S., and Nematollahi, A. R. (2018), Maximum likelihood estimation in vector autoregressive models with multivariate scaled t-distributed innovations using EM-based algorithms. Communication in Statistics Simulation and Computation, 47, 890-904. [
DOI:10.1080/03610918.2017.1295155]
32. Moravveji, M., Khodadadi, Z., and Maleki, M. (2019), A Bayesian Analysis of Two-Piece Distributions Based on the Scale Mixtures of Normal Family, Iranian Journal of Science and Technology, 43(3), 991-1001. [
DOI:10.1007/s40995-018-0541-9]
33. Nah, K., Otsuki, S., Chowell, G., and Nishiura, H. (2016), Predicting the international spread of Middle East respiratory syndrome (MERS). BMC Infectious Diseases, 16, 356. [
DOI:10.1186/s12879-016-1675-z]
34. Nishiura, H., Kobayashi, T., Yang, Y., Hayashi, K., Miyama, T., Kinoshita, R., Linton, N. M., Jung, S. M., Yuan, B., Suzuki, A., et al. (2020), The Rate of Underascertainment of Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights. Journal of Clinical Medicine, 9(2), 419. [
DOI:10.3390/jcm9020419]
35. Ong, J. B. S., Mark, I., Chen, C., Cook, A. R., Lee, H. C., Lee, V.J., Lin, R. T. P., Tambyah, P. A., and Goh, L. G. (2010), Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PLOS ONE, 5, doi:10.1371/journal.pone.0010036. [
DOI:10.1371/journal.pone.0010036]
36. Organization, W.H. (2020), Novel Coronavirus (2019-nCoV). Available online:https://www.who.int/ (accessed on 27 January 2020).
37. Rahimi, I., Chen, F., and Gandomi, A. H. (2021), review on COVID-19 forecasting models. Neural Computing and Applications.
https://doi.org/10.1007/s00521-020-05626-8 [
DOI:10.1007/s00521-020-05626-8.]
38. Rahimi, I., Gandomi, A. H., Asteris, P. G., and Chen, F. (2021), Analysis and Prediction of COVID-19 Using SIR, SEIQR, and Machine Learning Models: Australia, Italy, and UK Cases. Information, 12, 109. [
DOI:10.3390/info12030109]
39. Shaman, J., and Karspeck, A. (2012), Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences of the USA, 109, 20425-20430. [
DOI:10.1073/pnas.1208772109]
40. Shaman, J., Karspeck, A., Yang, W., Tamerius, J., and Lipsitch, M. (2013), Real-time influenza forecasts during the 2012-2013 season. Nature Communications, 4, 1-10. [
DOI:10.1038/ncomms3837]
41. Shaman, J., Yang, W. and Kandula, S. (2014), Inference and forecast of the current West African Ebola outbreak in Guinea, Sierra Leone and Liberia. PLOS Currents, 6, doi:10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6. [
DOI:10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6]
42. Sharafi, M., Nematollahi, A. R. (2016), AR(1) model with skew-normal innovations. Metrika, 79, 1011-1029.
https://doi.org/10.1007/s00184-016-0587-7 [
DOI:10.1007/s00184-016-0587-7.]
43. Tang, B. Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., and Wu, J. (2020), Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. Journal of Clinical Medicine, 9(2), 462. [
DOI:10.3390/jcm9020462]
44. Thompson, R. N. (2020), Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations. Journal of Clinical Medicine, 9(2), 498. [
DOI:10.3390/jcm9020498]
45. Ture, M., and Kurt, I. (2006), Comparison of four different time series methods to forecast hepatitis A virus infection. Expert Systems with Applications, 31, 41-46. [
DOI:10.1016/j.eswa.2005.09.002]
46. Wang, L. F., Shi, Z., Zhang, S., Field, H., Daszak, P., and Eaton, B. (2006), Review of bats and SARS. Emerging Infectious Diseases, 12, 1834-1840. [
DOI:10.3201/eid1212.060401]
47. Whittle, P. (1951), Hypothesis Testing in Time Series Analysis}, Almquist and Wicksell.
48. Zarrin, P., Maleki, M., Khodadadi, Z., and Arellano-Valle, R. B. (2018), Time series process based on the unrestricted skew normal process. Journal of Statistical Computation and Simulation, 89(1), 38-51. [
DOI:10.1080/00949655.2018.1533962]
49. Zhao, S., Musa, S.S., Lin, Q., Ran, J., Yang, G., Wang, W., Lou, Y., Yang, L., Gao, D., and He, D., et al. (2020), Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak. Journal of Clinical Medicine, 9(2), 388. [
DOI:10.3390/jcm9020388]