Volume 20, Issue 2 (12-2021)                   JIRSS 2021, 20(2): 103-116 | Back to browse issues page

XML Print

Department of statistics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran. , zkhodadadi@miau.ac.ir
Abstract:   (265 Views)

Various types of Coronaviruses are enveloped RNA viruses from the Corona-viridae family and part of the Coronavirinae subfamily. This family of viruses affects neurological, gastrointestinal, hepatic, and respiratory systems. Recently, a new memb-er of this family, named Covid-19, is moving around the world. The expansion of Covid-19 carries many risks, and its control requires strict planning and special policies. Iran is one of the countries in the world where the outbreak of the disease has been serious and the daily number of confirmed cases is increasing in some places. Prediction of future confirmed cases of the COVID-19 is planning with a certain policy to provide the clinical and medical supplementary. Time series models based on the statistical methodology are useful to model and forecast time-indexed data. In many situations in the real world, the ordinary classical time series models based on the symmetrical and light-tailed distributions cannot lead to a satisfactory result (or predicion). Thus, in our methodology, we consider the analysis of symmetrical/asymmetrical and light/heavy-tailed time series data based on the two-piece scale mixture of the normal (TP-SMN) distribution. The proposed model is useful for symmetrical and light-tailed time series data, and it can work well relative to the ordinary Gaussian and symmetry models (especially for COVID-19 datasets). In this study, we fit the proposed model to the historical COVID-19 datasets in Iran. We show that the proposed time series model is the best fitted model to each dataset. Finally, we predict the number of confirmed COVID-19 cases in Iran.

Full-Text [PDF 642 kb]   (312 Downloads)    
Type of Study: Review Article | Subject: 62Pxx: Applications
Received: 2020/11/16 | Accepted: 2021/06/18 | Published: 2022/04/12

1. Al-qaness, M. A. A., Ewees, A. A., Fan, H., and Abd El Aziz, M. (2020), Optimization Method for Forecasting Confirmed Cases of COVID-19 in China. Journal of Clinical Medicine, 9(2), 674. [DOI:10.3390/jcm9030674]
2. Barkhordar, Z., Maleki, M., Khodadadi, Z., and Wraith, D. (2020), A Bayesian approach on the two-piece scale mixtures of normal homoscedastic nonlinear regression models. Journal of Applied Statistics, [DOI:10.1080/ 02664763.2020.1854203]
3. Box, G., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis: Forecasting and Control}, (Third ed.), Prentice-Hall.
4. Brockwell, P. J., and Davis, R. A. Time Series: Theory and Methods} (2nd ed.), New York: Springer.
5. Cauchemez, S., Van Kerkhove, M., Riley, S., Donnelly, C., Fraser, C., and Ferguson, N. (2013), Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill, 18, 20503. [DOI:10.2807/ese.18.24.20503-en]
6. Chen, Y., Liu, Q. and Guo, D. (2020), Emerging coronaviruses: Genome structure, replication and pathogenesis. Journal of Medical Virology, 92, 418-423. [DOI:10.1002/jmv.25681]
7. Cheng, Z. J., and Shan, J. (2019), Novel Coronavirus: Where We are and What We Know. Infection}, doi://10.1007/s15010-020-01401-y.
8. DeFelice, N. B., Little, E., Campbell, S. R., and Shaman, J. (2017), Ensemble forecast of human West Nile virus cases and mosquito infection rates. Nature Communications, 8, 1-6. [DOI:10.1038/ncomms14592]
9. Firdos, K., Alia, S., and Shaukat, A. (2020), Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using Vector Autoregressive model in Pakistan. Chaos Solitons Fractals}, https://doi.org/10.1016/j.chaos.2020.110189 [DOI:10.1016/j.chaos.2020.110189.]
10. Ge, X. Y., Li, J. L., Yang, X. L., Chmura, A. A., Zhu G., Epstein, J. H., Mazet, J. K., Hu, B., Zhang, W., and Peng,C., et. al. (2013), Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503, 535-538. [DOI:10.1038/nature12711]
11. Ghasami, S., Khodadadi, Z., and Maleki, M. (2018), Autoregressive processes with generalized hyperbolic innovations. Communications in Statistics - Simulation and Computation}, https://doi.org/10.1080/03610918.2018.1535066 [DOI:10.1080/03610918.2018.1535066.]
12. Ghasami, S., Maleki, M., and Khodadadi, Z. (2020), Leptokurtic and Platykurtic class of Robust Symmetrical and Asymmetrical Time Series Models. Journal of Computational and Applied Mathematics, 376, https://doi.org/10.1016/j.cam.2020.112806 [DOI:10.1016/j.cam.2020.112806.]
13. Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q. He, J.X., Liu, L., Shan, H., Lei, C. L., and Hui, D.C., et al. (2020), Clinical characteristics of 2019 novel coronavirus infection in China, medRxiv, doi://10.1101/2020.02.06.20020974. [DOI:10.1056/NEJMoa2002032]
14. Haghbin, H. M., and Nematollahi, A. R. (2013), Likelihood-Based Inference in Autoregressive Models with Scaled t-Distributed Innovations by Means of EM-Based Algorithms. Communication in Statistics Simulation and Computation, 42, 2239-2252. [DOI:10.1080/03610918.2012.695848]
15. Hajrajabi, A., and Maleki, M. (2019), Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations. Journal of Applied Statistics, 46(11), 2010-2029. [DOI:10.1080/02664763.2019.1575953]
16. Hoseinzaseh, A., Maleki, M., Khodadadi, Z., and Contreras-Reyes, J. E. (2019), The Skew-Reflected-Gompertz distribution for analyzing symmetric and asymmetric data. Journal of Computational and Applied Mathematics, 349, 132-141. [DOI:10.1016/j.cam.2018.09.011]
17. Jung, S. M., Akhmetzhanov, A. R., Hayashi, K., Linton, N. M., Yang, Y., Yuan, B., Kobayashi, T., Kinoshita, R., and Nishiura, H. (2020), Real time estimation of the risk of death from novel coronavirus (2019-nCoV) infection: Inference using exported cases. Journal of Clinical Medicine, 9(2), 523. [DOI:10.3390/jcm9020523]
18. Kalantari, M. (2021), Forecasting COVID-19 pandemic using optimal singular spectrum analysis. Chaos Solitons Fractals. https://doi.org/10.1016/j.chaos.2020.110547 [DOI:10.1016/j.chaos.2020.110547.]
19. Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., and Zhu, N., et. al., (2020), Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor bindin. Lancet, 395, 565-574. [DOI:10.1016/S0140-6736(20)30251-8]
20. Mahmoudi, M. R., and Maleki, M. (2017,) A new method to detect periodically correlated structure. Computational Statistics, 32(4), 1569-1581. [DOI:10.1007/s00180-016-0705-z]
21. Maleki, M., and Arellano-Valle, R. B. (2017), Maximum a-posteriori estimation of autoregressive processes based on finite mixtures of scale-mixtures of skew-normal distributions. Journal of Statistical Computation and Simulation, 87, 1061-1083. [DOI:10.1080/00949655.2016.1245305]
22. Maleki, M., Arellano-Valle, R. B., Dey, D.,K., Mahmoudi, M. R., and Jalali, .M., (2018), A Bayesian approach to robust skewed Autoregressive process. Calcutta Statistical Association Bulltaine, 69, 165-182. [DOI:10.1177/0008068317732196]
23. Maleki, M., Barkhordar, Z., Khodadadi, Z., and Wraith, D. (2019), A robust class of homoscedastic nonlinear regression models. Journal of Statistical Computation and Simulation, 89(4), 2765-2781. [DOI:10.1080/00949655.2019.1635598]
24. Maleki, M., Mahmoudi, M. R., and Contreras-Reyes, J. E. (2019), Robust mixture modeling based on two-piece scale mixtures of normal family. Axioms, 8(2), 38. [DOI:10.3390/axioms8020038]
25. Maleki. M., and Nematollahi, A. R. (2017), Autoregressive Models with Mixture of Scale Mixtures of Gaussian innovations. Iranian Journal of Science and Technology, 41, 1099-1107. [DOI:10.1007/s40995-017-0237-6]
26. Maleki, M., and Nematollahi, A. R. (2017), Bayesian approach to epsilon-skew-normal family. Communication in Statistics Theory and Methods, 46, 7546-7561 [DOI:10.1080/03610926.2016.1157186]
27. Maleki, M., Wraith, D., Mahmoudi, M. R., and Contreras-Reyes, J.E. (2020), Asymmetric heavy-tailed vector auto-regressive processes with application to financial data}. Journal of Statistical Computation and Simulation, 90(2), 324-340. [DOI:10.1080/00949655.2019.1680675]
28. Manouchehri, T., and Nematollahi, A. R. (2019), On the estimation problem of periodic autoregressive time series: symmetric and asymmetric innovations. Journal of Statistics Computation and Simulation, 89, 71-97. [DOI:10.1080/00949655.2018.1535599]
29. Massad, E., Burattini, M. N., Lopez, L. F., and Coutinho, F. A. (2005), Forecasting versus projection models in epidemiology: The case of the SARS epidemics}. Medical Hypotheses ,$bf{65, 17-22. [DOI:10.1016/j.mehy.2004.09.029]
30. Masum, M., Shahriar, H., Haddad, H. M., and Alam, M. S. (2020), R-LSTM: Time Series Forecasting for COVID-19 Confirmed Cases with LSTMbased Framework. IEEE International Conference on Big Data (Big Data)}, 1374-1379. [DOI:10.1109/BigData50022.2020.9378276]
31. Mirniam, A. S., and Nematollahi, A. R. (2018), Maximum likelihood estimation in vector autoregressive models with multivariate scaled t-distributed innovations using EM-based algorithms. Communication in Statistics Simulation and Computation, 47, 890-904. [DOI:10.1080/03610918.2017.1295155]
32. Moravveji, M., Khodadadi, Z., and Maleki, M. (2019), A Bayesian Analysis of Two-Piece Distributions Based on the Scale Mixtures of Normal Family, Iranian Journal of Science and Technology, 43(3), 991-1001. [DOI:10.1007/s40995-018-0541-9]
33. Nah, K., Otsuki, S., Chowell, G., and Nishiura, H. (2016), Predicting the international spread of Middle East respiratory syndrome (MERS). BMC Infectious Diseases, 16, 356. [DOI:10.1186/s12879-016-1675-z]
34. Nishiura, H., Kobayashi, T., Yang, Y., Hayashi, K., Miyama, T., Kinoshita, R., Linton, N. M., Jung, S. M., Yuan, B., Suzuki, A., et al. (2020), The Rate of Underascertainment of Novel Coronavirus (2019-nCoV) Infection: Estimation Using Japanese Passengers Data on Evacuation Flights. Journal of Clinical Medicine, 9(2), 419. [DOI:10.3390/jcm9020419]
35. Ong, J. B. S., Mark, I., Chen, C., Cook, A. R., Lee, H. C., Lee, V.J., Lin, R. T. P., Tambyah, P. A., and Goh, L. G. (2010), Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PLOS ONE, 5, doi:10.1371/journal.pone.0010036. [DOI:10.1371/journal.pone.0010036]
36. Organization, W.H. (2020), Novel Coronavirus (2019-nCoV). Available online:https://www.who.int/ (accessed on 27 January 2020).
37. Rahimi, I., Chen, F., and Gandomi, A. H. (2021), review on COVID-19 forecasting models. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-05626-8 [DOI:10.1007/s00521-020-05626-8.]
38. Rahimi, I., Gandomi, A. H., Asteris, P. G., and Chen, F. (2021), Analysis and Prediction of COVID-19 Using SIR, SEIQR, and Machine Learning Models: Australia, Italy, and UK Cases. Information, 12, 109. [DOI:10.3390/info12030109]
39. Shaman, J., and Karspeck, A. (2012), Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences of the USA, 109, 20425-20430. [DOI:10.1073/pnas.1208772109]
40. Shaman, J., Karspeck, A., Yang, W., Tamerius, J., and Lipsitch, M. (2013), Real-time influenza forecasts during the 2012-2013 season. Nature Communications, 4, 1-10. [DOI:10.1038/ncomms3837]
41. Shaman, J., Yang, W. and Kandula, S. (2014), Inference and forecast of the current West African Ebola outbreak in Guinea, Sierra Leone and Liberia. PLOS Currents, 6, doi:10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6. [DOI:10.1371/currents.outbreaks.3408774290b1a0f2dd7cae877c8b8ff6]
42. Sharafi, M., Nematollahi, A. R. (2016), AR(1) model with skew-normal innovations. Metrika, 79, 1011-1029. https://doi.org/10.1007/s00184-016-0587-7 [DOI:10.1007/s00184-016-0587-7.]
43. Tang, B. Wang, X., Li, Q., Bragazzi, N. L., Tang, S., Xiao, Y., and Wu, J. (2020), Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. Journal of Clinical Medicine, 9(2), 462. [DOI:10.3390/jcm9020462]
44. Thompson, R. N. (2020), Novel Coronavirus Outbreak in Wuhan, China, 2020: Intense Surveillance Is Vital for Preventing Sustained Transmission in New Locations. Journal of Clinical Medicine, 9(2), 498. [DOI:10.3390/jcm9020498]
45. Ture, M., and Kurt, I. (2006), Comparison of four different time series methods to forecast hepatitis A virus infection. Expert Systems with Applications, 31, 41-46. [DOI:10.1016/j.eswa.2005.09.002]
46. Wang, L. F., Shi, Z., Zhang, S., Field, H., Daszak, P., and Eaton, B. (2006), Review of bats and SARS. Emerging Infectious Diseases, 12, 1834-1840. [DOI:10.3201/eid1212.060401]
47. Whittle, P. (1951), Hypothesis Testing in Time Series Analysis}, Almquist and Wicksell.
48. Zarrin, P., Maleki, M., Khodadadi, Z., and Arellano-Valle, R. B. (2018), Time series process based on the unrestricted skew normal process. Journal of Statistical Computation and Simulation, 89(1), 38-51. [DOI:10.1080/00949655.2018.1533962]
49. Zhao, S., Musa, S.S., Lin, Q., Ran, J., Yang, G., Wang, W., Lou, Y., Yang, L., Gao, D., and He, D., et al. (2020), Estimating the Unreported Number of Novel Coronavirus (2019-nCoV) Cases in China in the First Half of January 2020: A Data-Driven Modelling Analysis of the Early Outbreak. Journal of Clinical Medicine, 9(2), 388. [DOI:10.3390/jcm9020388]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.