جلد 20، شماره 2 - ( 9-1400 )                   جلد 20 شماره 2 صفحات 63-43 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sayyareh A. Testing Several Rival Models Using the Extension of Vuong's Test and Quasi Clustering. JIRSS 2021; 20 (2) :43-63
URL: http://jirss.irstat.ir/article-1-602-fa.html
سیاره عبدالرضا. Testing Several Rival Models Using the Extension of Vuong's Test and Quasi Clustering. پژوهشنامه انجمن آمار ایران. 1400; 20 (2) :43-63

URL: http://jirss.irstat.ir/article-1-602-fa.html


دانشگاه خواجه نصیر گروه علوم کامپیوتر و آمار ، asayyareh@kntu.ac.ir
چکیده:   (839 مشاهده)

The two main goals in model selection are firstly introducing an approach to test homogeneity of several rival models and secondly selecting a set of reasonable models or estimating the best rival model to the true one. In this paper we extend Vuong's method for several models to cluster them. Based on the working paper of Katayama $(2008)$, we propose an approach to test whether rival models have expected relations. The multivariate extension of Vuong's test gives the opportunity to examine some hypotheses about the rival models and their relations with respect to the unknown true model. On the other hand, the standard method of model selection provides an implementation of Occam's razor, in which parsimony or simplicity is balanced against goodness of fit. Therefore, we are interested in clustering the rival models based on their divergence from the true model to select a suitable set of rival models. In this paper we have introduced two approaches to select suitable sets of rival models based on the multivariate extension of Vuong's test and quasi clustering approach.

متن کامل [PDF 176 kb]   (1303 دریافت)    
نوع مطالعه: Original Paper | موضوع مقاله: 62Fxx: Parametric inference
دریافت: 1398/4/20 | پذیرش: 1400/11/20 | انتشار: 1401/1/23

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشنامه انجمن آمار ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2023 CC BY-NC 4.0 | Journal of The Iranian Statistical Society

Designed & Developed by : Yektaweb