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Abstract This article delineates the implementation of the product of spacings under
Progressive Hybrid Type-I censoring with binomial removals for the Generalized In-
verse Lindley distribution. Both point and interval estimates of the parameters have
been obtained under classical as well as Bayesian paradigms using the product of spac-
ings. The proposed estimators can be used in lieu of maximum likelihood as well as
usual Bayes estimator based on likelihood function which is corroborated by a compar-
ative simulation study. The Bayesian estimation is performed under the assumption of
squared error loss function. The implicit integrals involved in the process are evaluated
using Metropolis-Hastings algorithm within Gibbs sampler. We have also derived the
expected total time to test statistic for the specified censoring scheme. The applicability
of the proposed methodology is demonstrated by analyzing a real data set of active
repair times for an airborne communication transceiver.

Keywords: Maximum Product of Spacing, Progressive Hybrid Type-I Censoring with
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1 Introduction

In life testing experiments, observing failure times of all the items put to testis unworthy
in terms of cost and resource utilization. Accounting to these constraints or sometimes
as per need of an experimental set-up, it is terminated prior to observing the exact
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lifetime of all the units put to test, commonly referred to as censoring. The observations
recorded from such an experimental set-up consist of failure data related to two types
of units; i.e, units that fail before the termination of experiment and those units which
are removed from the experiment even though they are surviving at the time of their
removal. Broadly, censoring schemes are categorized as Type-I and Type-II censoring.
In the case of Type-I censoring scheme, the maximum time of the experiment is pre-
fixed (say T) which delivers a random number of observed failures (say d) whereas in
Type-II censoring scheme, we observe a fixed number of failures (say k < n) leading
to a random termination time. Here, T needs careful inquest since the parameters are
unknown and one might end up with no failure if the chosen T is too small with respect
to the mean life of the event of interest. These traditional schemes, even though, are
easy to implement, possess certain demerits like too few observations in the case of
Type-I scheme or exceptionally long waiting times to record the prefixed number of
failures for Type-II scheme. Thus, to ward off these flaws, a mixture of the two i.e.
hybrid censoring scheme was proposed by Epstein (1954; 1960), which adds flexibility
to the aforementioned schemes.

Further advancement and flexibility to a hybrid scheme may be brought about by
subsequently removing some surviving units in the intermediate stages. The items so
removed may be argued to be deliberately introduced in the testing process for reasons
like reducing the effective load on the experiment, using the removed units for some
other similar experiments, etc., or may occur randomly throughout the experiment
accredited to situations like loss to follow up, withdrawal, etc., as usually encountered
in any clinical trial.

A progressive censoring scheme extends greater flexibility at each stage of fail-
ure with the introduction of removals immediately followed by an observed failure,
thereafter by removing all the surviving units at the terminal point like a usual right
censoring scheme. This scheme was first discussed by Herd (1956), defining it as a
“multi-censored” sample. Later Chen and Su (2004) detailed the importance of these
schemes in life-testing experiments. The units to be removed at any particular stage
may be assumed to be fixed which is feasible in the case of a controlled experiment,
or random, as encountered in clinical studies (for further details see Wu et al. (2007);
Mousa and Jaheen (2002). The book by Balakrishnan and Cramer (2014) provides
an extensive description of all the cognate progressive censoring schemes and related
inferences for some important statistical distributions.

Childs et al.  (2008) introduced two generalized progressive hybrid censoring
schemes and discussed exact conditional inferential procedures for the exponential
mean and Kundu and Joarder (2006) performed an asymptotic analysis of the same,
thereby drawing a comparison to the existing exact procedures. One of the proposed
generalized progressive hybrid scheme is the Progressive Hybrid Type-I censoring
(PHT-I), designed to terminate at To=min(Xy.,, 7) with R; units being removed imme-

k=1
diately following a failure x;; i = 1,2,--- ,k; provided Ry = n —k — ). R;. Note that,
Jj=1
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based on a sample of size n, the total number of failures k, the maximum allowable
time 7 and the number of removals R = (Ry = r1,Ry = 1y, ....,, Ry = r¢) are all fixed prior
to experiment initiation.

Nevertheless, fixing the removals seems unreasonable in real situations and we
argue it to be random. The assumption of randomness in the number of removals in
any particular stage may be represented using a binomial distribution. Inferences on
different distributions for progressive Type-II censored samples with binomial removals
have been earlier explored by Hak-Keung and Siu (1996); Siu and Hak-Keung (1998);
Siuetal. (2000) and Wu et al. (2007) reviewed the application of uniform distribution
to the removals.

Thus, if n units are put to test and R; surviving units are removed immediately
followed by the first failure, denoted as X .,, then, it may be reasonably claimed that
Ry ~ bin(n -k, p), where p denotes the probability of removal of an item at each stage.
Similarly, at the second failure X,..,, units are randomly removed from the test with
a probability of removal p, thereby allowing us to claim Ry ~ bin(n — k — Ry, p) . This
process is continued till either the time or failure constraints are achieved. Hence, if
Xikn < T, the experiment is aborted at the k" failure along with removal of all the
surviving units Ry = n — k — i:ll R;. Otherwise, if X, > 7T, it is terminated at T,
yielding d < k observed failures X;.,, with R; [0 < Ry < n -k~ Zf-lz_ll R;] units
randomly removed at the d" failure and Riy=n-k- Z?Zl R; removals at 7.

Here, Ry is assumed to be less than (n — k — Zl]:% R;) in order to ensure k failures
at Xyx,, without hindering the nature of the experiment and provide a statistically
feasible life-test for further inferential analysis for a PHT-I-CBR scheme. Undoubtedly,
the simple Progressive Type-I and Type-II scheme which was studied by Chen and
Su (2004); Cohen (1976); Cohen and Norgaard (1977); Childs et al. (2008) may be
obtained as special cases of a PHT-I scheme.

This article proposes the use of the product of spacings for the estimation of the
parameters of Generalized Inverse Lindley distribution GILD(«, 0) based on the data
obtained through Progressive hybrid Type-I censoring with binomial removals (PHT-
I-CBR). A GILD variate X may be derived from an ILD variate Y using power trans-
formation, i.e. X = Yz or from a Lindley(0) variate Z, i.e. X = Z %, Also, it can be
obtained as a result of a convex combination of two distributions, namely the inverse
Weibull (IW) distribution with shape parameter o and scale parameter 6 and a special
case of the generalized inverse gamma distribution, say fo(x;n,k, A, y,a) with n = 2,
k=0,A=0,y= 6+ in the proportion ¢ = 0/(1 + 0) in favor of IW distribution (see
Sharma et al. (2016); Barco et al. (2016); Ghitany et al. (2008)). This generalization
may be referred to as an improvement over inverse Lindley distribution owing to the
flexibility in shape integrated by it.

The present study is dedicated to the development of an alternative technique to
the likelihood function (LF) approach which retains the graceful properties of LF and
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discards the demerits of it for heavy-tailed distributions. This technique is implemented
in the classical as well as Bayesian paradigm and is popularly known as the product
of spacings (PS) technique. Also, several authors like Anatolye and Kosenok (2005);
Cheng and Traylor (1995), among others, have elicited its efficiency and eminence,
especially for those cases where MLE fails to provide consistent estimates. Furthermore,
Cheng and Amin (1995); Ranneby (1984) validated possession of equivalent statistical
properties of PS (referred to by them as the maximum product of spacings (MPS))
estimators and ML estimators and thus proposed the method of estimation based on
PS as a suitable alternative to MLE especially when the MLE:s fails to exists.

The use of the PS under Bayesian paradigm was first attempted by Coolen and
Newby (1990) where they derived an approximate posterior density of observed spac-
ings which is analogous to the usual posterior distribution by virtue of its asymptotic
equivalence to the likelihood function. Later on Singh et al. (2016) applied the propo-
sition of Coolen and Newby (1990) to PHT-II censored data from a generalized inverted
exponential distribution. Basu et al. (2017) scrutinized the behavior of PS estimator
using the partitions induced in the support of the random variable for Type-I censored
data in the classical interface and compared it to ML method. Further, Basu etal. (2018)
elaborated the PS estimator in classical and Bayesian paradigms for PHT-I censored
data for ILD(0). We extend the same principle for PHT-I-CBR and formulate the PS
estimator in the classical and Bayesian paradigms and assess the computational intrica-
cies in developing the MPS estimator for distributions with more than one parameter.

This article is organized into eight sections where Sec.2 is devoted to the expla-
nation of the chosen censoring scheme and its corresponding likelihood function for
GILD(a, 0). Sec.3 discusses the classical inference based on PHT-I-CBR through max-
imum likelihood and PS function. Bayes estimates and their corresponding credible
and HPD intervals are derived in Sec.4. We have obtained the expected total time to test
statistic for the concerned censoring scheme in Sec.5. A simulation study is reported
in Sec.6 which elucidates the performance of the proposed estimator. Further, in Sec.7,
the applicability of the proposed methodologies is illustrated on active repair times
data for an airborne communication transceiver. Sec.8 furnishes a conclusion about the
proposed work.

2 Model and Censoring Scheme

The cumulative distribution function (CDF) and probability density function (PDF)
of GILD(a, 0), with a as the shape parameter and 0 as the scale parameter may be
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expressed as:

o 1],-% .
HF(x,‘()(,G): [1+mg]€ EL X,Q,O(>0, (1)
0; otherwise.

a6? (1+x“) _o 0 a0
fa,00=11+0 v B

0; otherwise.

x2a+1

()

Suppose that n items whose lifetimes follow the density function given in Eq.((2))
are put to test. Furthermore, the experiment is terminated at the earliest of the pre-
specified time (say, 7) or the pre-determined number of failures (say k) is observed, i.e.
the termination is specified as 19 = min (Xyx.,, T). Now, at each failure Xjy.,, a random
number of surviving units R; is randomly removed from the experiment using the
binomial law explained earlier. The probability information of each of these removals
is P(X > Xijen)=F (Xiser; @, 0)), owing to the identically independent nature of X;’s.

Hence, the observed ordered failures (X1, < X2 < - < Xjky) and subsequent
removals may be obtained as:

Case-I: (X1.4:1, R1), (X240, R2) oo, (Xicteon, Rie); if Xt < 7,0 < k < 1 Zk: Ri+k=n.
i=1
Case-II: (X144, R1), (X2, R2) e, (X, Ra); if Xggen < T, 0 < d < k; fiRi +R,+d=n.
iz

For notational simplicity, let us denote Xj.,, F(x;a, 6),1?(x; a,0) and f(x;a,0) as
X;, F(x),F(x) and f(x) respectively. Following Chen and Su (2004); Balakrishnan and
Cramer (2014), the conditional likelihood function of PHT-I-CBR for a fixed set of
removal R=(Ry =r1,Ry =13, ,R, = 14,R}, =1})) may be written as

w
L(a,6,1R = ) = C [T HfG[1 = FGI'} [1 - F o)l w21, ©)
i=1
where
k; X < T,
w =
d; X3 <T<X401; A<k,
0; w =k,
r= d
@ n—d-Y r;; w=d,
j=1
2 k=1
nn—r—-mn-Yr=2)n-Ylr+1]); To = Xg,
C = j=1 j=1

- d
nn—r—1)(n- il rj=2)--(n- Z;[r]- +1)(n - Zl[rj +1]); T=T1,
j= j= j=

i-1
Vr,suchthat0<r,<(n—-k-1Y rj),Vi: 1,2, ,w.
j=1
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Thus, the termination of the experiment at X} results in k failures with R; random
i-1 -
removals, where R; ~ bin(n — k — }, r]-,p), i=1,2,---,k—1 and likewise, when the
=1
experiment is aborted at 7, d failures are observed with R; random removals, where

i—1
R; ~bin(n —k— Y. rj,p),i=1,2,--- ,d. Here,
j=1

P(Ri=n)= (n7_1 k)pr1 A-p)™ ", =012 ,n-k (4)

andfori=2,3,--- ,w—-1,

i-1

n—k— Z Tj n—k—i rj
PR =r1iRi-1 =1iz1,-++ ,R1 =11) = ( =1 )P” 1-p =
i
i1
V=01, ,n-k=) r,
=1
i )
n—k- Tj n—k—Zd: rj
PRy =r14Rj-1 =141, , Ry =11) = ( j=1 )Prd 1-p =
T4
d-1
0<ry<n—-k- rj
=1

Evidently, the assumption of independence of X;s and R!s does not infringe statistical
analysis and thus, we can rewrite the joint likelihood as

L(x;a, 0,R,p) = L[x; o, OIR, p] X P[R = 1;p], (6)
where, P[R = r;p] is the joint probability of the removals. Thus,

k-1

(1! L r,(l )(k—l)(n—k)—ki;(k—j)rj
n—k)! p- -p =

; To = Xk,
k-1 k-1
(n—k- ;1 r)! [ ril
P[R = T’;P] = d h = d )
Xt d(n—k)— Y. (d-j+1)r;
(n=k)!'p~ (1-p) -
; To=1T

d d
(n—k—=Y r)
=1 = j=0

r3IR4, Rg-1,- -+ , R1]. Therefore, using Eq.(3), Eq.(6) and Eq.(7), the joint likelihood func-
tion may be expressed as

Also, in accordance to the censoring scheme, P[Ry = 7¢|Ri-1, Rg—2,-+- ,R1] =1 =P[R}, =

L(a,0,p,x,1) = AX Li(a, Olx, 1) X La(p), 8)
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where A is a constant devoid of 0, a or p and

Li(a, Olx, 1) = H {[% (;—er;]e_*?] X [f(xi)]rl} {f(fo)}fﬁ . )

i=1

k_iirj(l )(k—l)(n—k)—ki“l(k—j)rj
= - - ; To = Xk,
L=, "7 (10)
Y1 d(n—k)— Z(d j+r;
pj:1 (1 - P) = ; To=1

3 C(Classical Inference

3.1 Maximum Likelihood Estimation

In this section, we derive the maximum likelihood estimators (MLE) of &, 6 and p for the
considered censoring scheme. Evidently, Li(«, O|x,r) is devoid of p as demonstrated

in Eq.(9) and likewise Ly(p) is independent of a and O (see Eq.(10)). Owing to this
independence, the respective MLE’s may be evaluated by individually maximizing the
specific likelihood equations. We calculate the partial derivatives of the logarithm of
the likelihood function in Eq.(9) and equate it to 0 to obtain the estimates.

Jd d
a(C)Long 0= B_LOng'

_o
o

7, [(273 +1) + 0(15 + 1)] O

=1
:__1+9 Zx_“ %( )]
o1+

i=1 i za(1+9)[ (+6)

-5
oy @y el enlee T o

_0
=1 7% (1 + 0)* [1 —e N (1 + x‘;'(16+9> )]

_0
w @ ;62 (x;Y + 1) e ' logx;
=3 o Z )
1 | O+ D2 [1-¢ 7 (14 )|

+ Z logx; (ﬁ—xa - x% - 2) = 0. 12)

Here, the MLE of a and 0 is obtained by numerical optimization on account of its
implicit nature. The initial value for the algorithm was chosen by graphical inspection
of the contour plot of negative log-likelihood (—LogL) sketched with respect to a, 0.

All the numerical computations in this article have been performed in R.
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The MLE of p is explicitly evaluated in Eq.(13) by maximizing the logarithm of Eq.(10).

k-1
L 7j
j=1

1 ; To = Xk,
k—1D(n-k) - Z(k—j—l)r]-
= (13)

=
1l

d
L7j
j=1

d
dn—K) - ¥.(d - j)r;
j=1

; To = T.

3.2 Maximum Product of Spacings

The maximum product of spacings estimation procedure was proposed by Cheng
and Amin (1995) as an alternative to ML estimation, for distributions with unknown
scale and location. The proposition by Cheng and Amin (1995) lacked mathematical
credibility which was re-established through an independent study by Ranneby (1984),
where the MPS technique was developed as an approximation to the Kullback-Leibler
(KL) information.

GILD is a mixture of IW and generalized inverse Gamma distribution with heavy
tails which is inapt to be estimated by ML technique (see Anatolye and Kosenok
(2005)). MPS estimators exhibit similar asymptotic properties to ML estimators under
more liberal conditions (see Cheng and Iles (1987); Cheng and Traylor (1995)). Another
favorable property of MLE is the invariance principle which is also possessed by MPS
estimators (see Coolen and Newby (1990)). MPS estimators exhibit efficient small
sample behavior in contrary to MLE as discussed by Anatolye and Kosenok (2005)
which confers it suitable in reliability studies yielding small samples.

The spacings estimator is derived with the assumption that the density function
f(x)is strictly positive in any interval (2, b) C R and 0 elsewhere. In the present study, X
is defined on (0, o) witha =0and b = oo, F(x) =0 = f(x); Vx <aand F(x) = 1; f(x) = 0;
¥ x > b. Based on an ordered sample of n units, 0 < x; < xp < -+ < x, < 0o, the
associated partitions and the spacings are defined as (0,x1], (x1,x2],-+, (x5, 00) and
D; = F(x;) — F(xj-1),Yi=1,2,--- ,n + 1 respectively, with F(xg) = 0, F(x,+1) = 1 such
that ), D; = 1. Thus, for a completely observed experiment, the product of spacings
function is the geometric mean of the spacings defined above.

A continuous variate might result in tied observation due to round-off errors and un-
der such circumstances, using the geometric mean of the spacings becomes irrelevant.
Shao and Hahn (1999) and Cheng and Stephens (1989) suggested a modification in the
spacing function to incorporate the tied information without altering the total informa-
tion content of a sample. Analogically, the spacing function can be modified to accom-
modate the changes brought about by the considered censoring scheme. The partitions
of the support of the random variable due to PHT-I censoring scheme is either (0, x1],
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(x1,x2], -+, (xg, ) or (0,x1], (x1,x2],- - -, (x4, 7], (T, 00). Furthermore, information of sub-
sequent removals may be introduced in terms of the survival function (F(x;)), censored
at x;, thereby assigning equal probabilities to each unitin R; = r;, Vi =1,2,---w (see
Cheng and Traylor (1995); Basu et al. (2018)). Therefore, the revised spacings coupled

with information on censored units are D; = {F(x;) — F(x;_1)} {F(xl)) / rl} {F(To))/ r } ,
Vi=1,2,---w

However, the PS function requires further modification when the experiment is
terminated at 79 = 7 with r; removals. In this case, the terminal partition (x;, 7] leads
to spacing D¢ = {F(7) — F(x4)}. Now, as T — xy; for a given € > 0, if [T — x4| < €, D¢
may be approximated by f(7).Thus, the conditional spacings function for PHT-I-CBR
against the given removals R is

HDi; To = Xk,
S(a@xIR—r)oc Dr-HDz, To = T;|T — x4] > €, (14)
i=1
[
f(T)'HlDi; To = T; T — x4] < €.
i

Our considered scheme demonstrates removal patterns governed by binomial law
and since X; and R; are independently distributed, then, likewise, the joint spacings
function may be evaluated as S(a, 0; R; x) o S(a, 0; x|R) X Lo(p). The estimate of o and

0 may be computed by maximizing the logarithm of S(a, 0; x|R = r) since Eq.(14) is

devoid of p. Hence, the normal equations are:

d
0= T log S (a, 9|JNC)

@ {Fﬁ) (i) = Fy (xiea) — miFf ()

it | FOg)=F(xim1)  1-F(x)

o [Fy () = Fy (i) riFy () er;, (1) N Fpy (1) = Fjy (xa)
F(x)-F(x-) 1-F()f 1-F(1) F(0)-F(x)’

To = Xk,

To =1T;|T — x4 > €,

To =T;|T — x4 <e€.

{ Fy (xi) = Fy (xi-1) rfF;,(xf)} 1, Fp (T) +f5(T)'
| F)=F(xiq) 1-F()f 1-F() f(n)’

(15)

and

0= ailogS(a, 9|x)
© [F,(x)=F,(xii1)  niF, (x)

a

( .
] EX) Feoo)  1-FGx)]’
(

To = Xk,

xi) — Fy (i) riFl, (%) roFe(m) | Fa (D) —F, (xa)

¥ —F(ia) 1-F@)| 1-F()  F)-F(x)
To =TT — x4l > €,

To =T;|T — x4 <e€.

g {F’ (i) = Fy (1) - riffg () }_ roFa (™) Ja (D)
F(x)-F(xi) 1-F()) 1-F(r) f(®’
(16)
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The above equations have been solved numerically to obtain estimates of 6 and a with
Omr, dmr as the initial guess values. The partial derivatives involved in Eq.(15) and (16)
are elaborated in the Appendix.

3.3 Asymptotic Confidence Interval

The estimators proposed above, owing to their implicit form, impedes the derivation
of their exact sampling distributions and thus, we resort to large sample theory to
construct interval estimates of the parameters. The likelihood function is continuous
over the support of X and substantiates the existence of regularity conditions for
consistency and asymptotic normality of the ML estimators (see Anatolye and Kosenok
(2005); Ghosh and Jammalamadaka (2001)). Under such conditions, the two estimators

are asymptotically equivalent, i.e. Ops = Oz + Op(n‘%) with variance evaluated from
the observed Fisher’s information matrix. The observed Fisher information matrix can
be obtained by using Eq.(9) as:

~ 8210§L JlogL ~ . A
1@ 0)=—| S g ;0= (Owmr, Ops); & = (G, aps)- (17)
000 202 10=0;a=a

The second order partial derivatives with respect to the parameters « and 0 are given

below:
Plogl (1 x w
aaz - Z(logxi) (E + —(x? " 1)2) — z

w 82
+ Z‘ ri % 2log [1~F(x)].

P
+ {r; X =—log[1 - P(To)]} +

oa?

_ d’logL
0add  90da

rix (x +1)0 ((92 +(1-x%)

[

L

i=1 i

logx; 0 - fo‘) e+ (x? + l) 0+ 2xg)

((xf@ + xf) e i

(ra+1)6 ((92 +(1-15)0- 2rg)e‘%

- (x? + 1)9 —xf‘)Z

+ (Tg + 1) 0+ ZTg)logTO

+7, 5 3
7 ((Tge +13)e T — (13 +1)0- Tg)
d*logL w 20 9? .’
o s # ; ri X 5l0g [1= F(i)] + 7, X 5e5log [1 = F(xo)].

Using the observed Fisher information matrix, a two-sided 100(1 — )% asymptotic
confidence interval for & and 6 using both ML and PS may be constructed as a ¥
Z1—gj2 \Jvar(@) and O F Zy_g/» \/var(0) respectively; where Zﬁ/g denotes the upper /2
percentile of the standard normal distribution and var(&), var(6) may be obtained from
the diagonal elements of I1(a, 6).
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4 Bayesian Inference

In this section, we propose a Bayes estimator for a and 0 under the considered cen-
soring scheme. Here, we consider independent gamma prior for @ and 6 owing to its
flexibility in reflecting prior beliefs. Now, @ and 0 may be assumed to be independently
distributed and thus, the joint prior density may be written as rt(a, 0) = 1(0)n(ar) where;

n(0) oc e=09b"1; a>0,b>0,0>0. (18)

() oc e a1 c>0,s>0,a>0. (19)

Using the prior densities, the joint posterior density is obtained as:

m(O)(a) - L(a, 8|3~c, 7)

n(a, Olx, ) = (20)

[ [ 1(O)m(@) - L(a, Ok, Ndad6
0 a

We also propose and discuss an alternative posterior density obtained as a result of
replacing the likelihood function (LF) in the Bayes theorem with the PS function due to
their asymptotic equivalence (refer Coolen and Newby (1990, 1994)). This proposed
technique does not hinder the estimation even in the presence of censored cases, even
though the posterior which is obtained by this method is quite different from any usual
posterior density.

Let x = (x1,x2,- -, x,) be a random sample from Eq.(2). The joint posterior density

of (o, 0) with the usual LFE, expressed up to proportionality, is obtained as:

Qetsl. Qotb-1 (v 9 +0n+ca) = R 1+x%)— i
(e, Ox, r) o —asor ¢ [F(To)] X H mel [F(Xi)] ; (21)
iz \\ X

The posterior density using PS function, expressed up to proportionality is:

@

(O)r(e) - [1Di; T0 = Xg,
i=1
(e, Olx, ) oc  T(O)1i(@) - D - [1 Dy T0=1; |T—x| > ¢ (22)
~ i=1
n(O)(a)- f(7)- 11 D;i; To=1T; |T— x4 <e€.
i=1

We conduct this study under the assumption of a squared error loss function for both
the parameters. Consequently, the Bayes estimator of @ and O for the considered loss



32 S. Basu et al.

are their respective posterior means. Thus, the usual Bayes estimators are:

[

. B aw+s—1 92m+b (): 1 +0a+ca) r
b= 15" [ S Fao)|" T {( — ][F ()] }d@. (23)
0 1

| {[ o ][F(x )]} a. (24)

. » a)+$92m+b 1 —(Z & +¢9a+ca) r
arr =Ky | ———o—e = To)

i=1
(1+0) ]

1

Also, the Bayes estimators using PS function are:

K1f6b51 —a0—ca HDdG To = Xk,
Ogps = K3 Gfebas lema0=ca. D, . EDi do; To = T;|T = x4] > €, (25)
K:! f@bas’le’“"’”‘ - f(7)- ﬁlD,- de; To=T;|T— x4 <e.
0 i=
K;! f@b‘lase‘”e‘m . 'ﬁ1Di da; To = Xk,
o 1=
apps = 1K1 [0 Lasem0ca . D - iﬁlDi da; To =TT - x4l > €, (26)
e -
Kg! f@b‘lase‘“g‘ca - f(7) - ﬁDi da; To=1;|T — x4 <e€.
a =

Apparently, Eqs.(23),(24),(25) and (26) are not mathematically tractable and to solve
these implicit integrals, we use Markov chain Monte-Carlo method with Gibbs sam-
pler technique via Metropolis-Hatings (M-H) algorithm to generate samples from the
desired posterior densities. The marginalizing constants in the Eqs.(23),(24),(25) and
(26) have been expressed in Appendix.

Once a sample is generated from the posteriors obtained in Eq.(21) and (22), the
sample means will provide us with an estimate of the concerned parameters for the
considered loss function. However, to proceed with Gibbs sampler via M-H algorithm,
we re-write the joint posterior in terms of full conditionals and then use an arbitrary
proposal density to generate samples from these full conditionals. A detailed layout of
this technique may be found in Roberts and Smith (1994); Chib and Greenberg (1995);
Gelfand and Smith (1990). The required full conditional posteriors based on the LF
are:

e f% ra,w T+x%) =
(el x,r) ot ee AT {F(rg)) H[{XTJ}{FW} } 27)
i=1 ]
20+b-1 g0+ Z & ) r; w
nf(@la,ic,r)oc(l_'_e)w e =7 {Fp) H (). (28)

i=

Subsequently, the full conditional posteriors based on PS are:
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m(a) - l:ﬁl D;; T0 = X,

1 (al0, x, 1) o { Tt(@) - Dy - 1'1:_)[1 D;; To =TT — x4l > €, (29)
n(@)- f(@)-11D;; to= Tl - xl <e.
n(0) - i=ﬁ1Di; To = Xk,

7'526(9|0€,3~C, r) oc {7(6) - Dy - izﬁlDi; T0=T;|T — x40 > €, (30)
”(9)‘f(T)'i=1a_)[lDi) To=1T;|T— x4 < €.

10,000 samples from each of the aforementioned full conditionals were generated
by the M-H algorithm, by considering the asymptotic normal distributions of their clas-
sical counterparts as their proposal densities and thence, Bayes point estimates along
with their 95% highest posterior density (HPD) intervals of a and 6 were evaluated
respectively.

Note that, Np = 1500 generated units from every simulation were discarded to
ensure that each chain attained its corresponding stationary distribution. The HPD
intervals for the underlying parameters are obtained through the technique suggested
by Chen and Shao (1999) with (a(j), G(f)) ;¥Vi=1,2,...,N" ordered MCMC samples from
the desired posterior densities. For each simulation, 100(1 — )% credible interval of
(o, 0) are computed as (a(f), aU+HA-pN *])) and (G(j), 9(j+[(1‘ﬁ)N*])). Consequently, the HPD

interval for 0 is (6(]'*), 9<j*+[(1‘5)N*D) where j* is chosen so that it yields the interval of
minimum length amongst all the credible intervals. Likewise, the HPD interval for a
may be obtained.

5 Expected Total Time to Test

In practical situations, cognizance of the duration of a life test is quite desirable, since
the cost of an experiment is directly proportional to the total time to test (TTT). Under
progressive Type-II censoring with a fixed number of removals, this may be derived
according to the suggestion by Kamps and Cramer (2001). In the case of PHT-I-CBR,
the expected TTT consists of both 7 and k with d (< k) failures in the former case and
k failures in the latter case. Without loss of generality, the conditional expectation of
total time for a given R is:

E(T*|R) =1P (Xk > ’L’) + Xy P (Xk < T) . (31)
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Thus, to obtain the expected TTT, the unconditional expectation of Eq.(31) may be
obtained as:

E(7") = ER [E(T'|R)]
:’CXER{P(Xk>T)|R}+ER{Xk'P(Xk<’C)IR}. (32)

A detailed note of the expected TTT may be found in Basu et al. (2018) and owing to
its implicitness, we use a simulation technique to obtain an estimate of the expected
total time to test; i.e. E/(T\*) = [N1 -7+ (N —=Nj)-x¢]/N; where, N denotes the total
number of simulations, Nj is the number of times the experiment terminates at 7 out
of N simulations.

6 Simulation Study

In this section, we investigate the performance of the proposed estimators through a
simulation study. A detailed simulation study is carried out for p = 0.50 and combi-
nations of k and 7 for a sample of size 30,40 and 50, reported in Tabs.3-5. Evidently,
this specific choice of k ensures 60% and 40% censoring in the absence of time con-
straints and similarly, the chosen 7’s furnishes around 40% and 20% censored data in
the absence of failure constraints respectively, in connection to the true distribution.

The first two moment equations (i.e. 6 = b/a and v; = b/a%; a = s/c and vy = s/c?)
were used simultaneously to determine the hyperparameters by considering the prior
mean as the true value of @ and 0 respectively. The hyperparameters are chosen to
reflect our belief on the true mean with variance ranging from small to large, yielding
to an informative prior for small variance and a non-informative prior corresponding
to a large variance. We have documented average point estimates (denoted as ©) of all
the methods with their respective simulated risks (denoted as R(@) ) and bias (denoted
as b(©)) along-with their average lengths of 95% confidence and HPD intervals, in

addition to the coverage probabilities based on M = 1000 simulations in Tabs.3- 8 for
varying p and n, for a hypothetical choice of the parameters.

This extensive simulation study indicates consistency of the proposed estimators
(see Tabs.3-5), in addition to an insight into the performance of the Bayes procedure for
both LF and PS approach transcending their classical counterparts in terms of simulated
risks and length of HPD intervals.

Undoubtedly, as the prior variance of both parameters increases (denoted by ¢?2),
the Bayes estimators and classical estimators behave alike which is justified, since a flat
prior emphasizes strongly on the observed data just like the likelihood function. Thus,
an informative prior generates HPD intervals shorter than the asymptotic intervals and
a non-informative prior provides intervals of more or less equal width to the classical
intervals, which is quite apparent in Tabs.6-8. Evidently, the performances of the Bayes
PS estimator are the best followed by Bayes LF estimator, MPS estimator and ML



Inference on GILD under PHT-I-CBR 35

estimator.

The expected total time to test shows an increasing trend with increasing sample size
and increasing p respectively for a given censoring scheme (see Tab.1). Heuristically,
it may be reasoned through the interpretation of p which determines the number of
removals at a particular stage. Thus, a small p (say 0.2) designs the experiment to
remove less number of units at the initial stages and a large volume of units is retained
till the final termination point with k failures, if in fact, realized Xj is much less than t
for the considered distribution and censoring scheme. However, with an increase in p
(say p = 0.8), the bulk of experimental units are removed at the initial stages leading to
the termination at 7 (iff T < Xj).

We have also assessed the behavior of the proposed estimators for varying proba-
bilities of removal. The simulated risks of all the estimators increase as p increases for a
particular choice of censoring scheme (see Tab.2). Also, a similar behavior is depicted
by the interval estimates presented in Tabs.6 - 8, wherein the lengths of confidence
and HPD intervals increase with an increase in p for a given (t,k). It may be noted
that, expectedly, the coverage probabilities also increase for such cases. Apparently, PS
estimators in both the classical and Bayesian approaches are consistent.

It must be noted that the average point estimates, simulated risks, bias and confi-
dence intervals of all the estimators in the classical paradigm are independent of the role
of prior variance and yet they are reported in Tabs.3-8 only for comparative purposes
(the different values against varying o can be accredited to sampling fluctuations).

Table 1: Effect of removal probability on E/(;) fora =2;0=3
n T k p=02 p=05 p=08

25 12 2375 2.493 2.495
’ 18 2.499 2.500 2.500

30
4 12 3.034 3.790 3.858
18  3.850 3.947 3.959
25 16 2478 2.498 2.500
40 ) 24 2.500 2.500 2.500
4 16  3.537 3.924 3.934
24 3.980 3.983 3.988
25 20 2497 2.500 2.500
50 ’ 30  2.500 2.500 2.500

20  3.809 3.968 3.968

4 30 3.995 3.995 3.995
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Table 2: Effect of removal probability on risks of estimators forn =30, a =2,0 =3 &

01 =02 = 0.5

T k

P ML PS BLF BPS ML PS BLF BPS
95 12 0.6004 03796 0.1331 0.1298 0.3173 0.2214 0.1181 0.1044
02 ’ 18 05382 03426 0.1366 0.1260 0.2307 0.1757 0.1118 0.1015
4 12 04938 03250 0.1313 0.1236 0.3079 0.2426 0.1224 0.1130
18 05641 0.3440 0.1452 0.1265 0.2185 0.1676  0.1089  0.0985
25 12 0.6494 03876 0.1418 0.1275 0.4082 0.2999 0.1358 0.1158
038 ’ 18 05911 03654 0.1480 0.1348 0.2651 0.2014 0.1254 0.1137
4 12 05272 03600 0.1400 0.1307 0.3199 0.2447 0.1391 0.1191
18 05974 0.3849 0.1442 0.1340 0.2410 0.1895 0.1252 0.1129




Inference on GILD under PHT-I-CBR 37

Table 3: Average point estimates, simulated risks and bias forp = 0.5 & a = 2;0 = 3,
with highly informative prior (62 = 1)
0 o

n T k

OmL Ops OLr Ops amL aps are apps

(C) 32551 29632 3.0913 2.8880 22593  2.0454  2.1640 1.9893
12 R@©) 06782 04307 02470 02459 04044  0.2915 0.2282  0.1858
25 b(®) 0.2551 -0.0368 0.0913 -0.1120 0.2593  0.0454  0.1640  -0.0107

© 32406 29632 31094 29042 21536 19766 21076  1.9510
18  R@©) 05711 03493 02284 02002 02505 01900 0.1854  0.1572

30 =
b(©) 02406 -0.0368 0.1094 -0.0958 0.1536 -0.0234 0.1076  -0.0490

© 31881 29029 3.0685 2.8537 22197 20273 21482 19757

12 R@©) 05009 03365 02162 02062 03577 03132 02257  0.2049

4 b©) 01881 -0.0971 0.0685 -0.1463 02197  0.0273  0.1482  -0.0243

© 31649 28998 3.0589 2.8544 21221  1.9449 20901  1.9270

18 R©) 04875 03312 02215 02132 01929 01589 0.1504  0.1361

b@©) 01649 -0.1002 0.0589 -0.1456 0.1221  -0.0551  0.0901  -0.0730

© 31464 29238 3.0759 2.8937 21490 19747  2.1074  1.9517

16 R@©) 03705 02578 02288 0.1912 02595 0.1964 0.1947  0.1628

25 b@©) 01464 -0.0762 0.0759 -0.1063 0.1490 -0.0253 0.1074  -0.0483

© 30766 2.8692 3.0241 2.8469 21069  1.9629  2.0870  1.9517

0 24 R@) 03082 02404 02036 01907 01668 0.1361  0.1446  0.1245
b@©) 00766 -0.1308 0.0241 -0.1531 0.1069 -0.0371 0.0870  -0.0483

© 31121 28897 3.0479 28643 21030 1.9332 2.0748 19157

16 R@©) 03347 02405 01951 0.1816 02096 0.1869  0.1692  0.1608

4 b@©) 01121 -0.1103 0.0479 -0.1357 0.1030 -0.0668 0.0748  -0.0843

© 31426 29267 3.0834 29001 21270 19773 21110  1.9679

24 R@O) 03298 02378 02070 01815 0.1492 0.1174 0.1318  0.1082

b(©) 01426 -0.0733 0.0834 -0.0999 01270 -0.0227 0.1110  -0.0321

© 31584 29626 3.0980 29334 21262 19772 21008  1.9621

20 R©) 03443 02382 01941 01727 02017 0.1607 0.1689  0.1423

25 b(@©) 01584 -0.0374 0.0980 -0.0666 01262  -0.0228 0.1008  -0.0379

© 31119 29269 3.0742 29088  2.0706 19469 2.0596  1.9406

50 30 R®) 02630 01976 0.1894 01632 0.1124 0.0984  0.1029  0.0935

b(@) 0.1119 -0.0731 0.0742 -0.0912 -0.9294 -1.0531 -0.9404 -1.0594

(C) 3.1052 29153  3.0615 2.8966  2.1185 1.9638 2.1014 1.9540
200 R@®) 02750 02048 0.1867 0.1654  0.1501 0.1219 0.1315 0.1118
4 b(®) 0.1052 -0.0847 0.0615 -0.1034 0.1185 -0.0362 0.1014  -0.0460

(C) 3.0808 2.8999  3.0447 28830 2.0886 19586  2.0802  1.9537
30 R@®) 02808 02199 02070 0.1803  0.1130  0.0933  0.1052  0.0893
b(©®) 0.0808 -0.1001 0.0447 -0.1170 0.0886  -0.0414 0.0802 -0.0463
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Table 4: Average point estimates, simulated risks and bias forp = 0.5 & a = 2;0 = 3,
with highly informative prior (6% = 5)
0 a

n T k

Omr Ops OLr OBps apL aps arp apps

(C) 3.1459  2.8797  3.0969 2.8526 22462 2.0337 22036  2.0039
12 R@) 06717 03968 05241 03451 03998 02733 0.3475  0.2493
25 b(®) 01459 -0.1203 0.0969 -0.1474 0.2462 0.0337 0.2036  0.0039

) 3.1834 29157 3.1447 28924 21434 19683 21236 1.9526
18 R@) 05622 03672 04604 03283 02290 0.1765 02113  0.1690

30
b(©) 01834 -0.0843 0.1447 -0.1076 0.1434 -0.0317 0.1236 -0.0474

© 31785 28928 31371 28666 22129 20212 21845 1.9974

12 R®©) 05938 03971 04798 03470 03512 03056 0.3089  0.2736

4 b@©) 01785 -0.1072 0.1371 -0.1334 02129 0.0212 0.1845 -0.0026

© 31472 28829 31167 28637 21425 19642 21282  1.9530

18  R@®) 04277 02956 03743 02770 02026 0.1622 0.1906  0.1569

b@®) 01472 -0.1171 0.1167 -0.1363 0.1425 -0.0358 0.1282 -0.0470

© 31834 29534 3.0994 29161 21500 19764 2.1088  1.9532

16 R@©) 04059 02684 02266 01919 02454 0.1875 0.1868  0.1569

25 b(©) 01834 -0.0466 0.0994 -0.0839 0.1500 -0.0236 0.1088 -0.0468

© 31347 29208 31154 29081 21245 19795 21137 19707

40 24 R@®©) 03192 02309 02911 02205 0.1576 0.1247 0.1509  0.1300
b@®) 0.1347 -0.0792 0.1154 -0.0919 0.1245 -0.0205 0.1137 -0.0293

©® 31551 29269 3.1297 29110 21710 19972 2.1561  1.9849

16 R@©) 03347 02405 04043 02939 02334 0.1884 02191  0.1802

4 b@©) 01551 -0.0731 01297 -0.0890 0.1710 -0.0028 0.1561 -0.0151

© 31914 29681 31695 29539 21249 19752 21167  1.9685

24 R®©) 04019 02689 03580 02511 01533 01240 0.1473  0.1210

b@©) 01914 -0.0319 0.1695 -0.0461 0.1249 -0.0248 0.1167 -0.0315

©® 31055 29159 3.0902 29056 2.1355 19836 21237 19738

20 R@®) 02824 02072 02590 0.1976 0.2003 0.1559 0.1909 0.1516

2.5 b(@©) 01055 -0.0841 0.0902 -0.0944 0.1355 -0.0164 0.1237 -0.0262

© 31203 29346 31068 29252 21104 19839 21034 1.9781

50 30 R@®) 02553 01914 02395 0.1846 0.1475 01208 0.1431  0.1189

b(®) 01203 -0.0654 0.1068 -0.0748 0.1104 -0.0161 0.1034 -0.0219

(C) 3.0773  2.8908 3.0632 2.8812 21213 19666 21125 1.9593
20 R@©) 02469 0.1933 02326 0.1881 01746 0.1421 0.1681  0.1388
4 b@®) 0.0773 -0.1092 0.0632 -0.1188 0.1213 -0.0334 0.1125 -0.0407

C) 3.1124 29311 31006 29225 20778 19492 20729 19453
30 R®) 02335 01774 02211 01723 01076 0.0910 0.1053  0.0902
b(©) 01124 -0.0689 0.1006 -0.0775 0.0778 -0.0508 0.0729  -0.0547
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Table 5: Average point estimates, simulated risks and bias forp = 0.5 & o = 2;0 = 3,
with highly informative prior (6% = 50)
0 o

n T k

Omr Ops OLr OBps amr aps arp agps

C) 32526 29650 3.2287 29458 22959  2.0796 22672  2.0549
12 R@©) 06930 04200 0.6653 0.4090 0.4886 0.3399 04581  0.3241
25 b(@®) 02526 -0.0350 0.2287 -0.0542 0.2959 0.0796  0.2672  0.0549

C) 32300 29555  3.2043 29362 22001 2.0204 21820  2.0050
18 R@®) 06191 03911 05732 03743 02667 0.1920 0.2519  0.1860

30 g
b(®) 02300 -0.0445 0.2043 -0.0638 0.2001 0.0204 0.1820  0.0050
o) 3.1431  2.8659  3.1185  2.8477 21989  2.0075 21768  1.9882
12 R@©) 04804 03338 04515 03259 03214 02832 03000 0.2705
4 b(®) 01431 -0.1341 0.1185 -0.1523 0.1989 0.0075 0.1768 -0.0118
S 32353 29539 32119 29364 21494 19712 21368 1.9603
18 R@®) 06081 03702 05715 03552 02330 0.1837 0.2231  0.1790
b(®) 02353 -0.0461 0.2119 -0.0636 0.1494 -0.0288 0.1368 -0.0397
o) 3.1539 29281 31378 29154 21617 19861 21460 1.9728
16 R@©) 04114 02816 03964 02762 02407 0.1772 02306 0.1737
25 b(©®) 01539 -0.0719 0.1378 -0.0846 0.1617 -0.0139 0.1460 -0.0272
S 3.1451 29263 31303 29148 21187 19725 21094 1.9646
40 24 R@©) 03618 02584 03462 02515 01746 0.1397 0.1693  0.1378
b(®) 0.1451 -0.0737 0.1303 -0.0852 0.1187 -0.0275 0.1094 -0.0354
2 3.1312 29065 3.1151 2.8939 21315 19549 21193  1.9443
16 R®©) 03893 02752 03728 02688 02157 0.1792 02069 0.1756
4 b(®) 01312 -0.0935 0.1151 -0.1061 0.1315 -0.0451 0.1193 -0.0557
) 3.1494 29310 3.1351 29200 2.0997 19505 2.0926  1.9447
24 R@©) 03698 02583 0.3550 0.2531 01413 0.1169 0.1377  0.1158
b(@®) 0.1494 -0.0690 0.1351 -0.0800 0.0997 -0.0495 0.0926 -0.0553
2 3.1104 29192  3.0992 29106 21161 1.9657 21058  1.9569
20 R@®) 02716 0.1999 02644 0.1982 01796 0.1432  0.1747  0.1415
25 b(®) 01104 -0.0808 0.0992 -0.0894 0.1161 -0.0343 0.1058 -0.0431
o) 31065 29226  3.0962 29149 2.0924 19665 2.0863  1.9611
50 30 R®©) 02511 01922 02428 0.1892 01199 0.1001 0.1175  0.0993

b(@) 0.1065 -0.0774 0.0962 -0.0851 0.0924 -0.0335 0.0863 -0.0389

C) 3.1099 29196 3.0977 29103 21380 1.9827 21300 1.9760
20 R©) 02784 02068 02685 02037 01778 0.1402 0.1726  0.1378
4 b@®) 0.1099 -0.0804 0.0977 -0.0897 0.1380 -0.0173 0.1300 -0.0240

C) 3.0686 2.8901 3.0595 2.8832 2.0566 1.9286 2.0523 1.9251
30 R®) 02250 0.1816 02188 0.1799 0.0919 0.0818  0.0905  0.0817
b(©®) 0.0686 -0.1099 0.0595 -0.1168 0.0566 -0.0714 0.0523 -0.0749
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Table 6: Average length of Confidence Intervals (Coverage probabilities in 2" row of
each (1,k)) for n = 40, a = 2;0 = 3 and 02 = 1 against varying p

2 p (k) 0 ¢

o
Loy, L9ps Lo, LGBPS Loy Laps Loy Lagps

2018 1.828 1534 1455 1.708 1.604 1279 1.243

2.5,16 0932 0908 0922 0.884 0950 0940 0920 0.888

25 24 1973 179 1497 1428 1485 1404 1.079 1.068

0.2 " 0954 0904 0906 0.890 0952 0942 0.890 0.872
416 2014 1822 1536 1452 1.629 1563 1207 1.207

’ 0950 0912 0920 0.894 0958 0934 0912 0.882

424 1947 1775 1486 1414 1360 1.286 0967 0.959

’ 0962 0950 0946 0916 0958 0934 0.884 0.850

25 16 2058 1.843 1585 1487 1755 1.639 1.328 1.283

Y 0956 0900 0930 0.894 095 0936 0916 0.892

25 24 2026 1829 1546 1455 1484 1403 1.082 1.071

1 05 Y 0958 0916 0936 0.892 0956 0922 0.882 0.862
416 2115 1.893 1.623 1522 1.633 1540 1.222 1.192

! 0948 0910 0934 0902 0950 0924 0900 0.862

424 2040 1844 155 1471 1363 1285 0973 0.962

’ 0964 0928 0928 0910 0954 0932 0.888 0.842

25 16 2214 1954 1682 1564 1750 1.638 1.322 1.283

- 0952 0890 0926 0.878 0958 0.930 0.910 0.890

25 24 2071 1856 1582 1486 1476 1.395 1.077 1.062

0.8 " 0972 0930 0948 0912 0964 0930 0.890 0.856
416 2232 1970 1.688 1575 1.607 1509 1.198 1.169

¢ 0956 0910 0936 0908 0960 0938 0924 0.880

4 04 2039 1.833 1555 1462 1345 1.268 0.955 0.946

0938 0886 0912 0862 0966 0942 0.864 0.840
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Table 7: Average length of Confidence Intervals (Coverage probabilities in 2" row of
each (7,k)) n = 40, a = 2;0 = 3 and ¢ = 5 against varying p

2 p Lk 0 a

o
Loy, L9p5 Lo, LGBPS Loy Laps Loy Lagps

2048 1852 1706 1593 1705 1.605 1.350 1.317

2.5,16 0958 0930 0908 0.894 0958 0962 0920 0.896

25 24 1937 1767 1.606 1513 1481 1401 1.123 1.110

0.2 ” 0982 0940 0932 0.882 0960 095 0.894 0.870
416 2032 1836 1.695 1583 1.614 1550 1257 1.261

’ 0940 0.89 0876 0.842 0952 0944 0.890 0.856

404 1948 1776 1.617 1519 1369 1.296 1.009 1.002

’ 0948 0936 0916 0.898 0950 0924 0.846 0.840

25 16 2153 1922 1815 1673 1759 1.645 1410 1.361

Y 0958 0916 0918 0.886 0940 0932 0.890 0.862

25 24 2048 1.848 1705 1589 1497 1416 1.139 1.128

5 0.5 " 0972 0922 0922 0.882 0974 0966 0.884 0.874
416 2146 1918 1811 1.669 1.636 1534 1283 1.251

’ 0958 0926 0926 0.890 0.948 0916 0.878 0.844

404 1998 1.809 1.663 1558 1.349 1272 0991 0.980

! 0964 0932 0918 0.898 0.942 0906 0.860 0.830

25 16 2261 1992 1913 1738 1766 1.653 1419 1.376

Y 0962 0934 0940 0912 0952 0952 0.898 0.892

25 24 2062 1849 1714 1591 1476 1396 1.120 1.109

0.8 " 0970 0928 0928 0.890 0968 0946 0.884 0.870
416 2232 1969 1880 1.713 1.608 1511 1.258 1.229

! 0976 0928 0946 0900 0952 0916 0.884 0.846

4 04 2059 1849 1713 1588 1.351 1.274 0.994 0.983

0954 0920 0902 0870 0942 0922 0.846 0.846
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Table 8: Average length of Confidence Intervals (Coverage probabilities in 2" row of
each (7,k)) n = 40, a = 2;0 = 3 and 02 = 50 against varying p

2 p (k) 0 a

o
Loy, L9ps Lo, LGBPS Loy Laps Loy Lagps

1982 1798 1.701 1584 1.697 159 1363 1.327

25,16 0974 0934 0928 0900 0952 0952 0.898 0.880

25 24 1978 1.802 1.678 1576 1484 1404 1137 1.124

0.2 " 0966 0932 0904 0.892 0958 0938 0.864 0.856
416 2.022 1827 1734 1609 1.601 1540 1.262 1.269

§ 0958 0918 0904 0.880 0946 0936 0.874 0.846

4 24 1905 1740 1.609 1517 1380 1.303 1.029 1.022

! 0944 0918 0.892 0.848 0944 0946 0846 0.834

25 16 2166 1931 1884 1722 1766 1.653 1435 1.392

" 0956 0940 0928 0920 0950 0940 0.894 0.876

25 24 1994 1802 1.698 1580 1482 1401 1.137 1.126

50 05 " 0964 0926 0920 0.868 0940 0930 0.866 0.856
416 2158 1924 1876 1711 1776 1.660 1.448 1.400

! 0946 0924 0900 0.89 0940 0934 0900 0.874

424 1960 1778 1.668 1557 1351 1275 0999 0991

§ 0962 0920 0912 0.882 0956 0946 0.884 0.870

25 16 2247 1980 1960 1.770 1.725 1.617 1.398 1.356

" 0950 0924 0928 0.888 0930 0918 0.874 0.856

25 24 2095 1878 1.794 1.658 1486 1.406 1.142 1.131

0.8 " 0980 0940 0920 0900 0960 0958 0.882 0.876
416 2162 1914 1881 1709 1.612 1516 1278 1.248

§ 0942 0892 0912 0860 0932 0910 0.850 0.828

4 24 2070 1860 1.769 1.635 1341 1.266 0989 0.983

0954 0920 0908 0.878 0960 0944 0.860 0.854

7 Real Data Analysis

This section demonstrates the applicability of the proposed methodologies to suitable
data. Sharma et al. (2016) verified the applicability of GILD(«, 0) for modified bath-
tub shaped hazard data and demonstrated it on maximum flood level (in millions of
cubic feet per second) for the Susquehanna river at Harrisburg, Pennsylvania over 20
four-year periods from 1890 to 1969 and observed GILD to be the model of best fit
among several competing models. We illustrate the proposed methodology on the
data of active repair times (in hours) for an airborne communication transceiver, which
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was initially reported and analyzed by Alven and William (1964) using log-normal
distribution by virtue of its modified bath-tub hazard function. In our study, we
observed, GILD(a, 0) is also suitable to analyze this data set which is graphically quite
evident from Figure 1 and also from the K-S distance D = 0.0799 (tabulated value at
5% level of significance is Dy, g ~ 0.2002).

i - e--9-
OO o= A
® _ #=
o
) _
3
RS X
L o
| - - ECDH
o -= GILD
2

Figure 1: Fitting of GILD(x, 0) on the data of active repair times (in hours) for an
airborne communication transceiver

However, we do not emphasize unearthing the model of best fit, instead, we proceed
to the analysis of this data through GILD for some hypothetical censoring schemes and
obtain the parameter estimates. Here, we resort to the estimates obtained for the
complete sample, i.e. (&nr, Omr = 0.938,1.602) and (aps, Ops = 0.869,1.572) as an initial
guess for the optimization of the likelihood and PS function for a particular censoring
scheme.

The Bayesian analysis is performed with the assumption of vague prior and con-
vergence of the chains were validated for varying initial chain values. The generated
sequences of @ and O from the corresponding posterior densities are presented in Figure
2. These generated sequences reveal a slightly positively skewed well-mixed sample.
The MLE, MPS and Bayes estimate using both the LF and PS functions along with
their asymptotic and HPD intervals are given in Tab.9. The interval estimates for the
real data analysis cognate with the simulation study and thus, we observe the shortest
lengths for Bayes PS estimators followed by Bayes LF, classical PS and lastly MLE.
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Table 9: Estimates and length of confidence intervals of a, 0 based on real data

T

0 a

k E(D)

oML Ops OLr Osps amL aps arr Apps

15 1.6026 15893 1.6236 1.6098 0.8133 0.7413 0.8021  0.7287 3
1.1986 1.1421 1.0744 1.0013 0.6694 0.6225 0.5643  0.4999

30 1.8136 1.7626 1.8296 1.7652 0.6991 0.6535 0.6920 0.6475 3
1.0068 09631 0.9000 0.8651 0.4768 0.4519 0.3562 0.3341

10

15 14304 14504 14546 14828 09284 0.8341 09168 0.8246 10
1.0511 1.0186 09246 0.8841 0.6656 0.6121 0.5328 0.5026

30 1.5873 1.5511 15797 1.5521 0.9219 0.8581 09163 0.8524 10
0.8759 0.8426 0.7853 0.7448 0.4774 04517 0.3622 0.3372

25

15 1.6545 1.6392 1.6628 1.6538 0.8285 0.7512 0.8209  0.7493 9
1.1785 1.1175 1.0779 1.0560 0.5584 0.5168 0.4380 0.4036

30 1.5426 15195 1.5333 1.5137 09226 0.8532 0.9189 0.8495 2
0.8474 0.8206 0.7338 0.7175 0.4818 0.4528 0.3695 0.3331

1.0 2.0

L1 1
0.0 1.5
111

1.4

[
0.0 2.0
L1111

0.6

1.8

0.8

1.4

0.6

[
0.0 20
NN

a) Posterior plot using Likelihood function
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b) Posterior plot using PS function
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Figure 2: Real data posterior and trace plot of 6 and «
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8 Conclusion

In this article, we have considered the classical and Bayesian inference for generalized
inverse Lindley distribution with PHT-I-CBR. The simulation study successfully deliv-
ers a palpable justification that the PS estimators in both paradigms surpass the other
estimators in terms of simulated risks and length of confidence intervals. Although,
the classical and Bayesian estimators under the non-informative scenario exhibit an
analogous nature, yet, the Bayes PS estimators outshine their classical counterparts as
well as the other estimators in the presence of suitable prior information.
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