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Abstract This article delineates the implementation of the product of spacings under
Progressive Hybrid Type-I censoring with binomial removals for the Generalized In-
verse Lindley distribution. Both point and interval estimates of the parameters have
been obtained under classical as well as Bayesian paradigms using the product of spac-
ings. The proposed estimators can be used in lieu of maximum likelihood as well as
usual Bayes estimator based on likelihood function which is corroborated by a compar-
ative simulation study. The Bayesian estimation is performed under the assumption of
squared error loss function. The implicit integrals involved in the process are evaluated
using Metropolis-Hastings algorithm within Gibbs sampler. We have also derived the
expected total time to test statistic for the specified censoring scheme. The applicability
of the proposed methodology is demonstrated by analyzing a real data set of active
repair times for an airborne communication transceiver.

Keywords: Maximum Product of Spacing, Progressive Hybrid Type-I Censoring with
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1 Introduction

In life testing experiments, observing failure times of all the items put to test is unworthy
in terms of cost and resource utilization. Accounting to these constraints or sometimes
as per need of an experimental set-up, it is terminated prior to observing the exact
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lifetime of all the units put to test, commonly referred to as censoring. The observations
recorded from such an experimental set-up consist of failure data related to two types
of units; i.e, units that fail before the termination of experiment and those units which
are removed from the experiment even though they are surviving at the time of their
removal. Broadly, censoring schemes are categorized as Type-I and Type-II censoring.
In the case of Type-I censoring scheme, the maximum time of the experiment is pre-
fixed (say T) which delivers a random number of observed failures (say d) whereas in
Type-II censoring scheme, we observe a fixed number of failures (say k < n) leading
to a random termination time. Here, T needs careful inquest since the parameters are
unknown and one might end up with no failure if the chosen T is too small with respect
to the mean life of the event of interest. These traditional schemes, even though, are
easy to implement, possess certain demerits like too few observations in the case of
Type-I scheme or exceptionally long waiting times to record the prefixed number of
failures for Type-II scheme. Thus, to ward off these flaws, a mixture of the two i.e.
hybrid censoring scheme was proposed by Epstein (1954; 1960), which adds flexibility
to the aforementioned schemes.

Further advancement and flexibility to a hybrid scheme may be brought about by
subsequently removing some surviving units in the intermediate stages. The items so
removed may be argued to be deliberately introduced in the testing process for reasons
like reducing the effective load on the experiment, using the removed units for some
other similar experiments, etc., or may occur randomly throughout the experiment
accredited to situations like loss to follow up, withdrawal, etc., as usually encountered
in any clinical trial.

A progressive censoring scheme extends greater flexibility at each stage of fail-
ure with the introduction of removals immediately followed by an observed failure,
thereafter by removing all the surviving units at the terminal point like a usual right
censoring scheme. This scheme was first discussed by Herd (1956), defining it as a
“multi-censored” sample. Later Chen and Su (2004) detailed the importance of these
schemes in life-testing experiments. The units to be removed at any particular stage
may be assumed to be fixed which is feasible in the case of a controlled experiment,
or random, as encountered in clinical studies (for further details see Wu et al. (2007);
Mousa and Jaheen (2002). The book by Balakrishnan and Cramer (2014) provides
an extensive description of all the cognate progressive censoring schemes and related
inferences for some important statistical distributions.

Childs et al. (2008) introduced two generalized progressive hybrid censoring
schemes and discussed exact conditional inferential procedures for the exponential
mean and Kundu and Joarder (2006) performed an asymptotic analysis of the same,
thereby drawing a comparison to the existing exact procedures. One of the proposed
generalized progressive hybrid scheme is the Progressive Hybrid Type-I censoring
(PHT-I), designed to terminate at τ0=min(Xk:n, τ) with Ri units being removed imme-

diately following a failure xi; i = 1, 2, · · · , k; provided Rk = n − k −
k−1∑
j=1

R j. Note that,
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based on a sample of size n, the total number of failures k, the maximum allowable
time τ and the number of removals R = (R1 = r1,R2 = r2, ....,Rk = rk) are all fixed prior
to experiment initiation.

Nevertheless, fixing the removals seems unreasonable in real situations and we
argue it to be random. The assumption of randomness in the number of removals in
any particular stage may be represented using a binomial distribution. Inferences on
different distributions for progressive Type-II censored samples with binomial removals
have been earlier explored by Hak-Keung and Siu (1996); Siu and Hak-Keung (1998);
Siu et al. (2000) and Wu et al. (2007) reviewed the application of uniform distribution
to the removals.

Thus, if n units are put to test and R1 surviving units are removed immediately
followed by the first failure, denoted as X1:k:n, then, it may be reasonably claimed that
R1 ∼ bin(n − k, p), where p denotes the probability of removal of an item at each stage.
Similarly, at the second failure X2:k:n, units are randomly removed from the test with
a probability of removal p, thereby allowing us to claim R2 ∼ bin(n − k − R1, p) . This
process is continued till either the time or failure constraints are achieved. Hence, if
Xk:k:n < τ, the experiment is aborted at the kth failure along with removal of all the
surviving units Rk = n − k −

∑k−1
i=1 Ri. Otherwise, if Xk:k:n > τ, it is terminated at τ,

yielding d < k observed failures Xd:k:n, with Rd [ 0 ≤ Rd ≤ n − k −
∑d−1

i=1 Ri] units
randomly removed at the dth failure and R∗d = n − k −

∑d
i=1 Ri removals at τ.

Here, Rk is assumed to be less than (n − k −
∑k−1

j=1 R j) in order to ensure k failures
at Xk:k:n without hindering the nature of the experiment and provide a statistically
feasible life-test for further inferential analysis for a PHT-I-CBR scheme. Undoubtedly,
the simple Progressive Type-I and Type-II scheme which was studied by Chen and
Su (2004); Cohen (1976); Cohen and Norgaard (1977); Childs et al. (2008) may be
obtained as special cases of a PHT-I scheme.

This article proposes the use of the product of spacings for the estimation of the
parameters of Generalized Inverse Lindley distribution GILD(α, θ) based on the data
obtained through Progressive hybrid Type-I censoring with binomial removals (PHT-
I-CBR). A GILD variate X may be derived from an ILD variate Y using power trans-
formation, i.e. X = Y

1
α or from a Lindley(θ) variate Z, i.e. X = Z−

1
α . Also, it can be

obtained as a result of a convex combination of two distributions, namely the inverse
Weibull (IW) distribution with shape parameter α and scale parameter θ and a special
case of the generalized inverse gamma distribution, say f2(x; η, k, λ, γ, α) with η = 2,
k = 0, λ = 0, γ = θ

1
α in the proportion φ = θ/(1 + θ) in favor of IW distribution (see

Sharma et al. (2016); Barco et al. (2016); Ghitany et al. (2008)). This generalization
may be referred to as an improvement over inverse Lindley distribution owing to the
flexibility in shape integrated by it.

The present study is dedicated to the development of an alternative technique to
the likelihood function (LF) approach which retains the graceful properties of LF and
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discards the demerits of it for heavy-tailed distributions. This technique is implemented
in the classical as well as Bayesian paradigm and is popularly known as the product
of spacings (PS) technique. Also, several authors like Anatolye and Kosenok (2005);
Cheng and Traylor (1995), among others, have elicited its efficiency and eminence,
especially for those cases where MLE fails to provide consistent estimates. Furthermore,
Cheng and Amin (1995); Ranneby (1984) validated possession of equivalent statistical
properties of PS (referred to by them as the maximum product of spacings (MPS))
estimators and ML estimators and thus proposed the method of estimation based on
PS as a suitable alternative to MLE especially when the MLEs fails to exists.

The use of the PS under Bayesian paradigm was first attempted by Coolen and
Newby (1990) where they derived an approximate posterior density of observed spac-
ings which is analogous to the usual posterior distribution by virtue of its asymptotic
equivalence to the likelihood function. Later on Singh et al. (2016) applied the propo-
sition of Coolen and Newby (1990) to PHT-II censored data from a generalized inverted
exponential distribution. Basu et al. (2017) scrutinized the behavior of PS estimator
using the partitions induced in the support of the random variable for Type-I censored
data in the classical interface and compared it to ML method. Further, Basu et al. (2018)
elaborated the PS estimator in classical and Bayesian paradigms for PHT-I censored
data for ILD(θ). We extend the same principle for PHT-I-CBR and formulate the PS
estimator in the classical and Bayesian paradigms and assess the computational intrica-
cies in developing the MPS estimator for distributions with more than one parameter.

This article is organized into eight sections where Sec.2 is devoted to the expla-
nation of the chosen censoring scheme and its corresponding likelihood function for
GILD(α, θ). Sec.3 discusses the classical inference based on PHT-I-CBR through max-
imum likelihood and PS function. Bayes estimates and their corresponding credible
and HPD intervals are derived in Sec.4. We have obtained the expected total time to test
statistic for the concerned censoring scheme in Sec.5. A simulation study is reported
in Sec.6 which elucidates the performance of the proposed estimator. Further, in Sec.7,
the applicability of the proposed methodologies is illustrated on active repair times
data for an airborne communication transceiver. Sec.8 furnishes a conclusion about the
proposed work.

2 Model and Censoring Scheme

The cumulative distribution function (CDF) and probability density function (PDF)
of GILD(α, θ), with α as the shape parameter and θ as the scale parameter may be
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expressed as:

HF(x;α, θ) =


[
1 + θ

(1+θ)
1
xα

]
e−

θ
xα ; x, θ, α > 0,

0 ; otherwise.
(1)

f (x;α, θ) =


αθ2

1 + θ

(1 + xα

x2α+1

)
e−

θ
xα ; x, θ, α > 0,

0 ; otherwise.
(2)

Suppose that n items whose lifetimes follow the density function given in Eq.((2))
are put to test. Furthermore, the experiment is terminated at the earliest of the pre-
specified time (say, τ) or the pre-determined number of failures (say k) is observed, i.e.
the termination is specified as τ0 = min (Xk:k:n, τ). Now, at each failure Xi:k:n, a random
number of surviving units Ri is randomly removed from the experiment using the
binomial law explained earlier. The probability information of each of these removals
is P(X > xi:k:n)=F(xi:k:n;α, θ)), owing to the identically independent nature of Xi’s.

Hence, the observed ordered failures (x1:k:n < x2:k:n < · · · < xk:k:n) and subsequent
removals may be obtained as:

Case-I: (x1:k:n,R1), (x2:k:n,R2)..., (xk:k:n,Rk); if xk:k:n < τ; 0 < k ≤ n;
k∑

i=1
Ri + k = n.

Case-II: (x1:k:n,R1), (x2:k:n,R2)..., (xd:k:n,Rd); if xd:k:n < τ; 0 < d < k;
d∑

i=1
Ri + R∗d + d = n.

For notational simplicity, let us denote Xi:k:n,F(x;α, θ),F(x;α, θ) and f (x;α, θ) as
Xi,F(x),F(x) and f (x) respectively. Following Chen and Su (2004); Balakrishnan and
Cramer (2014), the conditional likelihood function of PHT-I-CBR for a fixed set of
removal R = (R1 = r1,R2 = r2, · · · ,Rω = rω,R∗ω = r∗ω) may be written as

L
(
α, θ, x

∼
|R = r

)
= C∗

ω∏
i=1

{
f (xi)[1 − F (xi)]ri

}
[1 − F (τ0)]r∗ω ; ω ≥ 1, (3)

where

ω =

k ; xk < τ,

d ; xd < τ < xd+1; d < k,

r∗ω =


0 ; ω = k,

n − d −
d∑

j=1
r j ; ω = d,

C∗ =


n(n − r1 − 1)(n −

2∑
j=1

r j − 2) · · · (n −
k−1∑
j=1

[r j + 1]) ; τ0 = xk,

n(n − r1 − 1)(n −
2∑

j=1
r j − 2) · · · (n −

d−1∑
j=1

[r j + 1])(n −
d∑

j=1
[r j + 1]) ; τ0 = τ,

∀ ri, such that 0 ≤ ri ≤ (n − k −
i−1∑
j=1

r j),∀ i = 1, 2, · · · , ω.
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Thus, the termination of the experiment at Xk results in k failures with Ri random

removals, where Ri ∼ bin(n − k −
i−1∑
j=1

r j, p), i = 1, 2, · · · , k − 1 and likewise, when the

experiment is aborted at τ, d failures are observed with Ri random removals, where

Ri ∼ bin(n − k −
i−1∑
j=1

r j, p), i = 1, 2, · · · , d. Here,

P (R1 = r1) =
(
n − k

r1

)
pr1

(
1 − p

)n−k−r1 ; r1 = 0, 1, 2, · · · ,n − k, (4)

and for i = 2, 3, · · · , ω − 1,

P (Ri = ri|Ri−1 = ri−1, · · · ,R1 = r1) =
(n − k −

i−1∑
j=1

r j

ri

)
pri

(
1 − p

)n−k−
i∑

j=1
r j

;

∀ ri = 0, 1, · · · ,n − k −
i−1∑
j=1

r j,

P (Rd = rd|Rd−1 = rd−1, · · · ,R1 = r1) =
(n − k −

d−1∑
j=1

r j

rd

)
prd

(
1 − p

)n−k−
d∑

i=1
r j

;

0 ≤ rd ≤ n − k −
d−1∑
j=1

r j.

(5)

Evidently, the assumption of independence of Xis and R′i s does not infringe statistical
analysis and thus, we can rewrite the joint likelihood as

L(x
∼
;α, θ,R, p) = L[x

∼
;α, θ|R, p] × P[R = r; p], (6)

where, P[R = r; p] is the joint probability of the removals. Thus,

P[R = r; p] =



(n − k)! p

k−1∑
j=1

r j

(1 − p)
(k−1)(n−k)−

k−1∑
j=1

(k− j)r j

(n − k −
k−1∑
j=1

r j)!
k−1∏
j=0

r j!
; τ0 = xk,

(n − k)! p

d∑
j=1

r j

(1 − p)
d(n−k)−

d∑
j=1

(d− j+1)r j

(n − k −
d∑

j=1
r j)!

d∏
j=0

r j!
; τ0 = τ.

(7)

Also, in accordance to the censoring scheme, P[Rk = rk|Rk−1,Rk−2, · · · ,R1] = 1 = P[R∗d =
r∗d|Rd,Rd−1, · · · ,R1]. Therefore, using Eq.(3), Eq.(6) and Eq.(7), the joint likelihood func-
tion may be expressed as

L(α, θ, p, x
∼
, r) = A × L1(α, θ|x

∼
, r) × L2(p), (8)
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where A is a constant devoid of θ, α or p and

L1(α, θ|x
∼
, r) =

ω∏
i=1


 αθ2

1 + θ

1 + xαi
x2α+1

i

 e
−
θ

xαi

 × [
F(xi)

]ri

 {
F(τ0)

}r∗ω
. (9)

L2(p) =


p

k−1∑
j=1

r j

(1 − p)
(k−1)(n−k)−

k−1∑
j=1

(k− j)r j

; τ0 = xk,

p

d∑
j=1

r j

(1 − p)
d(n−k)−

d∑
j=1

(d− j+1)r j

; τ0 = τ,

(10)

3 Classical Inference

3.1 Maximum Likelihood Estimation

In this section, we derive the maximum likelihood estimators (MLE) ofα, θ and p for the
considered censoring scheme. Evidently, L1(α, θ|x

∼
, r) is devoid of p as demonstrated

in Eq.(9) and likewise L2(p) is independent of α and θ (see Eq.(10)). Owing to this
independence, the respective MLE’s may be evaluated by individually maximizing the
specific likelihood equations. We calculate the partial derivatives of the logarithm of
the likelihood function in Eq.(9) and equate it to 0 to obtain the estimates.

∂
∂θ

LogL1 = 0 =
∂
∂α

LogL1,

⇒
2ω
θ
−
ω

1 + θ
−

ω∑
i=1

1
xαi
+

r∗ω
[(

2τα0 + 1
)
+ θ

(
τα0 + 1

)]
θe
−
θ
τα0

τ2α
0 (1 + θ)2

[
1 − e

θ
τα0

(
1 + θ

τα0 (1+θ)

)]
+

ω∑
i=1

ri

[(
2xαi + 1

)
+ θ

(
xαi + 1

)]
θe
−
θ

xαi

x2α
i (1 + θ)2

[
1 − e

−
θ

xαi

(
1 + θ

xαi (1+θ)

)] = 0, (11)

⇒
ω
α
−

r∗ωθ2
(
τα0 + 1

)
e
−
θ
τα0 logτ0

(θ + 1) τ2α
0

[
1 − e

−
θ
τα0

(
1 + θ

τα0 (1+θ)

)] − ω∑
i=1

riθ2
(
xαi + 1

)
e
−
θ

xαi logxi

(θ + 1) x2α
i

[
1 − e

−
θ

xαi

(
1 + θ

xαi (1+θ)

)]
+

ω∑
i=1

logxi

(
xi
α

1 + xαi
−
θ
xαi
− 2

)
= 0. (12)

Here, the MLE of α and θ is obtained by numerical optimization on account of its
implicit nature. The initial value for the algorithm was chosen by graphical inspection
of the contour plot of negative log-likelihood (−LogL1) sketched with respect to α, θ.

All the numerical computations in this article have been performed in R.
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The MLE of p is explicitly evaluated in Eq.(13) by maximizing the logarithm of Eq.(10).

p̂ =



k−1∑
j=1

r j

(k − 1)(n − k) −
k−1∑
j=1

(k − j − 1)r j

; τ0 = xk,

d∑
j=1

r j

d(n − k) −
d∑

j=1
(d − j)r j

; τ0 = τ.

(13)

3.2 Maximum Product of Spacings

The maximum product of spacings estimation procedure was proposed by Cheng
and Amin (1995) as an alternative to ML estimation, for distributions with unknown
scale and location. The proposition by Cheng and Amin (1995) lacked mathematical
credibility which was re-established through an independent study by Ranneby (1984),
where the MPS technique was developed as an approximation to the Kullback-Leibler
(KL) information.

GILD is a mixture of IW and generalized inverse Gamma distribution with heavy
tails which is inapt to be estimated by ML technique (see Anatolye and Kosenok
(2005)). MPS estimators exhibit similar asymptotic properties to ML estimators under
more liberal conditions (see Cheng and Iles (1987); Cheng and Traylor (1995)). Another
favorable property of MLE is the invariance principle which is also possessed by MPS
estimators (see Coolen and Newby (1990)). MPS estimators exhibit efficient small
sample behavior in contrary to MLE as discussed by Anatolye and Kosenok (2005)
which confers it suitable in reliability studies yielding small samples.

The spacings estimator is derived with the assumption that the density function
f (x) is strictly positive in any interval (a, b) ⊂ R and 0 elsewhere. In the present study, X
is defined on (0,∞) with a = 0 and b ≡ ∞, F(x) = 0 = f (x); ∀ x < a and F(x) = 1; f (x) = 0;
∀ x > b. Based on an ordered sample of n units, 0 < x1 < x2 < · · · < xn < ∞, the
associated partitions and the spacings are defined as (0, x1], (x1, x2],· · · , (xn,∞) and
Di = F(xi) − F(xi−1), ∀ i = 1, 2, · · · ,n + 1 respectively, with F(x0) = 0, F(xn+1) = 1 such
that

∑
Di = 1. Thus, for a completely observed experiment, the product of spacings

function is the geometric mean of the spacings defined above.

A continuous variate might result in tied observation due to round-off errors and un-
der such circumstances, using the geometric mean of the spacings becomes irrelevant.
Shao and Hahn (1999) and Cheng and Stephens (1989) suggested a modification in the
spacing function to incorporate the tied information without altering the total informa-
tion content of a sample. Analogically, the spacing function can be modified to accom-
modate the changes brought about by the considered censoring scheme. The partitions
of the support of the random variable due to PHT-I censoring scheme is either (0, x1],
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(x1, x2],· · · , (xk,∞) or (0, x1], (x1, x2],· · · , (xd, τ], (τ,∞). Furthermore, information of sub-
sequent removals may be introduced in terms of the survival function (F(xi)), censored
at xi, thereby assigning equal probabilities to each unit in Ri = ri, ∀ i = 1, 2, · · ·ω (see
Cheng and Traylor (1995); Basu et al. (2018)). Therefore, the revised spacings coupled

with information on censored units are Di = {F(xi) − F(xi−1)}
{
F(xi))/ri

}ri
{
F(τ0))/r∗ω

}r∗ω ,
∀ i = 1, 2, · · ·ω.

However, the PS function requires further modification when the experiment is
terminated at τ0 = τ with r∗d removals. In this case, the terminal partition (xd, τ] leads
to spacing Dξ = {F(τ) − F(xd)}. Now, as τ −→ xd; for a given ϵ > 0, if |τ − xd| < ϵ, Dξ
may be approximated by f (τ).Thus, the conditional spacings function for PHT-I-CBR
against the given removals R is

S
(
α, θ, x

∼
|R = r

)
∝



ω∏
i=1

Di ; τ0 = xk,

Dξ ·
ω∏

i=1
Di ; τ0 = τ; |τ − xd| > ϵ,

f (τ) ·
ω∏

i=1
Di ; τ0 = τ; |τ − xd| < ϵ.

(14)

Our considered scheme demonstrates removal patterns governed by binomial law
and since Xi and Ri are independently distributed, then, likewise, the joint spacings
function may be evaluated as S(α, θ; R; x

∼
) ∝ S(α, θ; x

∼
|R) × L2(p). The estimate of α and

θ may be computed by maximizing the logarithm of S(α, θ; x
∼
|R = r) since Eq.(14) is

devoid of p. Hence, the normal equations are:

0 =
∂
∂θ

log S
(
α, θ|x

∼

)

=



ω∑
i=1

{
F′θ (xi) − F′θ (xi−1)

F (xi) − F (xi−1)
−

riF′θ (xi)

1 − F (xi)

}
; τ0 = xk,

ω∑
i=1

{
F′θ (xi) − F′θ (xi−1)

F (xi) − F (xi−1)
−

riF′θ (xi)

1 − F (xi)

}
−

r∗ωF′θ (τ)

1 − F (τ)
+

F′θ (τ) − F′θ (xd)

F (τ) − F (xd)
;

τ0 = τ; |τ − xd| > ϵ,
ω∑

i=1

{
F′θ (xi) − F′θ (xi−1)

F (xi) − F (xi−1)
−

riF′θ (xi)

1 − F (xi)

}
−

r∗ωF′θ (τ)

1 − F (τ)
+

f ′θ (τ)

f (τ)
; τ0 = τ; |τ − xd| < ϵ.

(15)

and

0 =
∂
∂α

log S
(
α, θ|x

∼

)

=



ω∑
i=1

{
F′α (xi) − F′α (xi−1)
F (xi) − F (xi−1)

+
riF′α (xi)

1 − F (xi)

}
; τ0 = xk,

ω∑
i=1

{
F′α (xi) − F′α (xi−1)
F (xi) − F (xi−1)

+
riF′α (xi)

1 − F (xi)

}
−

r∗ωF′α (τ)
1 − F (τ)

+
F′α (τ) − F′α (xd)
F (τ) − F (xd)

;

τ0 = τ; |τ − xd| > ϵ,
ω∑

i=1

{
F′α (xi) − F′α (xi−1)
F (xi) − F (xi−1)

+
riF′α (xi)

1 − F (xi)

}
−

r∗ωF′α (τ)
1 − F (τ)

+
f ′α (τ)
f (τ)

; τ0 = τ; |τ − xd| < ϵ.

(16)
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The above equations have been solved numerically to obtain estimates of θ and αwith
θ̂ML, α̂ML as the initial guess values. The partial derivatives involved in Eq.(15) and (16)
are elaborated in the Appendix.

3.3 Asymptotic Confidence Interval

The estimators proposed above, owing to their implicit form, impedes the derivation
of their exact sampling distributions and thus, we resort to large sample theory to
construct interval estimates of the parameters. The likelihood function is continuous
over the support of X and substantiates the existence of regularity conditions for
consistency and asymptotic normality of the ML estimators (see Anatolye and Kosenok
(2005); Ghosh and Jammalamadaka (2001)). Under such conditions, the two estimators
are asymptotically equivalent, i.e. θ̂PS = θ̂ML + 0p(n−

1
2 ) with variance evaluated from

the observed Fisher’s information matrix. The observed Fisher information matrix can
be obtained by using Eq.(9) as:

I(α̃, θ̃) = −

 ∂2logL
∂α2

∂2logL
∂α∂θ

∂2logL
∂θ∂α

∂2logL
∂θ2


θ=θ̃;α=α̃

; θ̃ = (θ̂ML, θ̂PS); α̃ = (α̂ML, α̂PS). (17)

The second order partial derivatives with respect to the parameters α and θ are given
below:

∂2logL
∂α2 =

ω∑
i=1

(logxi)2

(
1
xαi
+

xαi
(xαi + 1)2

)
−
ω

α2 +

{
r∗ω ×

∂2

∂α2 log [1 − F(τ0)]
}
+

+

ω∑
i=1

ri ×
∂2

∂α2 log [1 − F(xi)] .

∂2logL
∂α∂θ

=
∂2logL
∂θ∂α

=

ω∑
i=1

logxi

xαi


ri ×

(
xαi + 1

)
θ
((
θ2 +

(
1 − xαi

)
θ − 2xαi

)
e
−
θ

xαi +
(
xαi + 1

)
θ + 2xαi

)
((

xαi θ + xαi
)

e
−
θ

xαi −

(
xαi + 1

)
θ − xαi

)2 − 1


+ r∗ω

(
τα0 + 1

)
θ
((
θ2 +

(
1 − τα0

)
θ − 2τα0

)
e
−
θ
τα0 +

(
τα0 + 1

)
θ + 2τα0

)
logτ0

τα0

((
τα0θ + τ

α
0

)
e
−
θ
τα0 −

(
τα0 + 1

)
θ − τα0

)2

∂2logL
∂θ2 =

ω

(1 + θ)2 −
2ω
θ2 +

ω∑
i=1

ri ×
∂2

∂θ2 log [1 − F(xi)] + r∗ω ×
∂2

∂θ2 log [1 − F(τ0)] .

Using the observed Fisher information matrix, a two-sided 100(1 − β)% asymptotic
confidence interval for α and θ using both ML and PS may be constructed as α̃ ∓
Z1−β/2

√
var(α̃) and θ̃ ∓ Z1−β/2

√
var(θ̃) respectively; where Zβ/2 denotes the upper β/2

percentile of the standard normal distribution and var(α̃), var(θ̃) may be obtained from
the diagonal elements of I−1(α̃, θ̃).
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4 Bayesian Inference

In this section, we propose a Bayes estimator for α and θ under the considered cen-
soring scheme. Here, we consider independent gamma prior for α and θ owing to its
flexibility in reflecting prior beliefs. Now, α and θmay be assumed to be independently
distributed and thus, the joint prior density may be written asπ(α, θ) = π(θ)π(α) where;

π(θ) ∝ e−aθθb−1; a > 0, b > 0, θ > 0. (18)

π(α) ∝ e−cααs−1; c > 0, s > 0, α > 0. (19)

Using the prior densities, the joint posterior density is obtained as:

π(α, θ|x
∼
, r) =

π(θ)π(α) · L(α, θ|x
∼
, r)∫

θ

∫
α
π(θ)π(α) · L(α, θ|x

∼
, r)dαdθ

. (20)

We also propose and discuss an alternative posterior density obtained as a result of
replacing the likelihood function (LF) in the Bayes theorem with the PS function due to
their asymptotic equivalence (refer Coolen and Newby (1990, 1994)). This proposed
technique does not hinder the estimation even in the presence of censored cases, even
though the posterior which is obtained by this method is quite different from any usual
posterior density.

Let x
∼
= (x1, x2, · · · , xn) be a random sample from Eq.(2). The joint posterior density

of (α, θ) with the usual LF, expressed up to proportionality, is obtained as:

π1(α, θ|x
∼
, r) ∝

αω+s−1
· θ2ω+b−1

(1 + θ)ω
e
−(
ω∑

i=1

θ
xαi
+θa+cα) [

F(τ0)
]r∗ω
×

ω∏
i=1


1 + xαi

x2α+1
i

 [F(xi)
]ri

 ; (21)

The posterior density using PS function, expressed up to proportionality is:

π2(α, θ|x
∼
, r) ∝



π(θ)π(α) ·
ω∏

i=1
Di ; τ0 = xk,

π(θ)π(α) ·Dξ ·
ω∏

i=1
Di; τ0 = τ; |τ − xd| > ϵ,

π(θ)π(α) · f (τ) ·
ω∏

i=1
Di ; τ0 = τ; |τ − xd| < ϵ.

(22)

We conduct this study under the assumption of a squared error loss function for both
the parameters. Consequently, the Bayes estimator of α and θ for the considered loss
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are their respective posterior means. Thus, the usual Bayes estimators are:

θ̂LF = K−1
1

∫
θ

αω+s−1θ2ω+b

(1 + θ)ω
e
−(
ω∑

i=1

θ
xαi
+θa+cα) [

F(τ0)
]r∗ω

ω∏
i=1


1 + xαi

x2α+1
i

 [F (xi)
]ri

 dθ. (23)

α̂LF = K−1
2

∫
α

αω+sθ2ω+b−1

(1 + θ)ω
e
−(
ω∑

i=1

θ
xαi
+θa+cα) [

F(τ0)
]r∗ω

ω∏
i=1


1 + xαi

x2α+1
i

 [F (xi)
]ri

 dα. (24)

Also, the Bayes estimators using PS function are:

θ̂BPS =



K−1
3

∫
θ

θbαs−1e−aθ−cα
·

ω∏
i=1

Di dθ; τ0 = xk,

K−1
4

∫
θ

θbαs−1e−aθ−cα
·Dξ ·

ω∏
i=1

Di dθ; τ0 = τ; |τ − xd| > ϵ,

K−1
5

∫
θ

θbαs−1e−aθ−cα
· f (τ) ·

ω∏
i=1

Di dθ; τ0 = τ; |τ − xd| < ϵ.

(25)

α̂BPS =



K−1
6

∫
α

θb−1αse−aθ−cα
·

ω∏
i=1

Di dα; τ0 = xk,

K−1
7

∫
α

θb−1αse−aθ−cα
·Dξ ·

ω∏
i=1

Di dα; τ0 = τ; |τ − xd| > ϵ,

K−1
8

∫
α

θb−1αse−aθ−cα
· f (τ) ·

ω∏
i=1

Di dα; τ0 = τ; |τ − xd| < ϵ.

(26)

Apparently, Eqs.(23),(24),(25) and (26) are not mathematically tractable and to solve
these implicit integrals, we use Markov chain Monte-Carlo method with Gibbs sam-
pler technique via Metropolis-Hatings (M-H) algorithm to generate samples from the
desired posterior densities. The marginalizing constants in the Eqs.(23),(24),(25) and
(26) have been expressed in Appendix.

Once a sample is generated from the posteriors obtained in Eq.(21) and (22), the
sample means will provide us with an estimate of the concerned parameters for the
considered loss function. However, to proceed with Gibbs sampler via M-H algorithm,
we re-write the joint posterior in terms of full conditionals and then use an arbitrary
proposal density to generate samples from these full conditionals. A detailed layout of
this technique may be found in Roberts and Smith (1994); Chib and Greenberg (1995);
Gelfand and Smith (1990). The required full conditional posteriors based on the LF
are:

πα1 (α|θ, x
∼
, r) ∝ αω+s−1

· e
−(cα+

ω∑
i=1

θ
xαi

) {
F(τ0)

}r∗ω
ω∏

i=1


1 + xαi

x2α+1
i

 {
F(xi)

}ri

 . (27)

πθ1 (θ|α, x
∼
, r) ∝

θ2ω+b−1

(1 + θ)ω
· e
−(aθ+

ω∑
i=1

θ
xαi

) {
F(τ0)

}r∗ω
ω∏

i=1

{
F(xi)

}ri
. (28)

Subsequently, the full conditional posteriors based on PS are:
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πα2 (α|θ, x
∼
, r) ∝



π(α) ·
ω∏

i=1
Di ; τ0 = xk,

π(α) ·Dξ ·
ω∏

i=1
Di ; τ0 = τ; |τ − xd| > ϵ,

π(α) · f (τ) ·
ω∏

i=1
Di ; τ0 = τ; |τ − xd| < ϵ.

(29)

πθ2 (θ|α, x
∼
, r) ∝



π(θ) ·
ω∏

i=1
Di; τ0 = xk,

π(θ) ·Dξ ·
ω∏

i=1
Di ; τ0 = τ; |τ − xd| > ϵ,

π(θ) · f (τ) ·
ω∏

i=1
Di ; τ0 = τ; |τ − xd| < ϵ.

(30)

10, 000 samples from each of the aforementioned full conditionals were generated
by the M-H algorithm, by considering the asymptotic normal distributions of their clas-
sical counterparts as their proposal densities and thence, Bayes point estimates along
with their 95% highest posterior density (HPD) intervals of α and θ were evaluated
respectively.

Note that, N0 = 1500 generated units from every simulation were discarded to
ensure that each chain attained its corresponding stationary distribution. The HPD
intervals for the underlying parameters are obtained through the technique suggested
by Chen and Shao (1999) with

(
α( j), θ( j)

)
;∀ j = 1, 2, ...,N∗ ordered MCMC samples from

the desired posterior densities. For each simulation, 100(1 − β)% credible interval of
(α, θ) are computed as

(
α( j), α( j+[(1−β)N∗])

)
and

(
θ( j), θ( j+[(1−β)N∗])

)
. Consequently, the HPD

interval for θ is
(
θ( j∗), θ( j∗+[(1−β)N∗])

)
where j∗ is chosen so that it yields the interval of

minimum length amongst all the credible intervals. Likewise, the HPD interval for α
may be obtained.

5 Expected Total Time to Test

In practical situations, cognizance of the duration of a life test is quite desirable, since
the cost of an experiment is directly proportional to the total time to test (TTT). Under
progressive Type-II censoring with a fixed number of removals, this may be derived
according to the suggestion by Kamps and Cramer (2001). In the case of PHT-I-CBR,
the expected TTT consists of both τ and k with d (< k) failures in the former case and
k failures in the latter case. Without loss of generality, the conditional expectation of
total time for a given R is:

E(τ∗|R) = τP (Xk > τ) + XkP (Xk < τ) . (31)
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Thus, to obtain the expected TTT, the unconditional expectation of Eq.(31) may be
obtained as:

E(τ∗) = ER [E(τ∗|R)]
= τ × ER {P (Xk > τ) |R} + ER {Xk · P (Xk < τ) |R} . (32)

A detailed note of the expected TTT may be found in Basu et al. (2018) and owing to
its implicitness, we use a simulation technique to obtain an estimate of the expected
total time to test; i.e. Ê (τ∗) = [N1 · τ + (N −N1) · xk] /N; where, N denotes the total
number of simulations, N1 is the number of times the experiment terminates at τ out
of N simulations.

6 Simulation Study

In this section, we investigate the performance of the proposed estimators through a
simulation study. A detailed simulation study is carried out for p = 0.50 and combi-
nations of k and τ for a sample of size 30, 40 and 50, reported in Tabs.3-5. Evidently,
this specific choice of k ensures 60% and 40% censoring in the absence of time con-
straints and similarly, the chosen τ’s furnishes around 40% and 20% censored data in
the absence of failure constraints respectively, in connection to the true distribution.

The first two moment equations (i.e. θ = b/a and v1 = b/a2; α = s/c and v2 = s/c2)
were used simultaneously to determine the hyperparameters by considering the prior
mean as the true value of α and θ respectively. The hyperparameters are chosen to
reflect our belief on the true mean with variance ranging from small to large, yielding
to an informative prior for small variance and a non-informative prior corresponding
to a large variance. We have documented average point estimates (denoted as Θ̂) of all
the methods with their respective simulated risks (denoted as R(Θ̂) ) and bias (denoted
as b(Θ̂)) along-with their average lengths of 95% confidence and HPD intervals, in
addition to the coverage probabilities based on M = 1000 simulations in Tabs.3- 8 for
varying p and n, for a hypothetical choice of the parameters.

This extensive simulation study indicates consistency of the proposed estimators
(see Tabs.3-5), in addition to an insight into the performance of the Bayes procedure for
both LF and PS approach transcending their classical counterparts in terms of simulated
risks and length of HPD intervals.

Undoubtedly, as the prior variance of both parameters increases (denoted by σ2),
the Bayes estimators and classical estimators behave alike which is justified, since a flat
prior emphasizes strongly on the observed data just like the likelihood function. Thus,
an informative prior generates HPD intervals shorter than the asymptotic intervals and
a non-informative prior provides intervals of more or less equal width to the classical
intervals, which is quite apparent in Tabs.6-8. Evidently, the performances of the Bayes
PS estimator are the best followed by Bayes LF estimator, MPS estimator and ML
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estimator.

The expected total time to test shows an increasing trend with increasing sample size
and increasing p respectively for a given censoring scheme (see Tab.1). Heuristically,
it may be reasoned through the interpretation of p which determines the number of
removals at a particular stage. Thus, a small p (say 0.2) designs the experiment to
remove less number of units at the initial stages and a large volume of units is retained
till the final termination point with k failures, if in fact, realized Xk is much less than τ
for the considered distribution and censoring scheme. However, with an increase in p
(say p = 0.8), the bulk of experimental units are removed at the initial stages leading to
the termination at τ (iff τ < Xk).

We have also assessed the behavior of the proposed estimators for varying proba-
bilities of removal. The simulated risks of all the estimators increase as p increases for a
particular choice of censoring scheme (see Tab.2). Also, a similar behavior is depicted
by the interval estimates presented in Tabs.6 - 8, wherein the lengths of confidence
and HPD intervals increase with an increase in p for a given (τ, k). It may be noted
that, expectedly, the coverage probabilities also increase for such cases. Apparently, PS
estimators in both the classical and Bayesian approaches are consistent.

It must be noted that the average point estimates, simulated risks, bias and confi-
dence intervals of all the estimators in the classical paradigm are independent of the role
of prior variance and yet they are reported in Tabs.3-8 only for comparative purposes
(the different values against varying σ2 can be accredited to sampling fluctuations).

Table 1: Effect of removal probability on Ê(τ) for α = 2;θ = 3
n τ k p = 0.2 p = 0.5 p = 0.8

30
2.5 12 2.375 2.493 2.495

18 2.499 2.500 2.500

4 12 3.034 3.790 3.858
18 3.850 3.947 3.959

40
2.5 16 2.478 2.498 2.500

24 2.500 2.500 2.500

4 16 3.537 3.924 3.934
24 3.980 3.983 3.988

50
2.5 20 2.497 2.500 2.500

30 2.500 2.500 2.500

4 20 3.809 3.968 3.968
30 3.995 3.995 3.995
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Table 2: Effect of removal probability on risks of estimators for n = 30, α = 2, θ = 3 &
v1 = v2 = 0.5

p τ k θ α

ML PS BLF BPS ML PS BLF BPS

0.2
2.5 12 0.6004 0.3796 0.1331 0.1298 0.3173 0.2214 0.1181 0.1044

18 0.5382 0.3426 0.1366 0.1260 0.2307 0.1757 0.1118 0.1015

4 12 0.4938 0.3250 0.1313 0.1236 0.3079 0.2426 0.1224 0.1130
18 0.5641 0.3440 0.1452 0.1265 0.2185 0.1676 0.1089 0.0985

0.8
2.5 12 0.6494 0.3876 0.1418 0.1275 0.4082 0.2999 0.1358 0.1158

18 0.5911 0.3654 0.1480 0.1348 0.2651 0.2014 0.1254 0.1137

4 12 0.5272 0.3600 0.1400 0.1307 0.3199 0.2447 0.1391 0.1191
18 0.5974 0.3849 0.1442 0.1340 0.2410 0.1895 0.1252 0.1129
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Table 3: Average point estimates, simulated risks and bias for p = 0.5 & α = 2;θ = 3,
with highly informative prior (σ2 = 1)

n τ k θ α

θ̂ML θ̂PS θ̂LF θ̂BPS α̂ML α̂PS α̂LF α̂BPS

30

2.5

12
Θ̂ 3.2551 2.9632 3.0913 2.8880 2.2593 2.0454 2.1640 1.9893

R(Θ̂) 0.6782 0.4307 0.2470 0.2459 0.4044 0.2915 0.2282 0.1858
b(Θ̂) 0.2551 -0.0368 0.0913 -0.1120 0.2593 0.0454 0.1640 -0.0107

18
Θ̂ 3.2406 2.9632 3.1094 2.9042 2.1536 1.9766 2.1076 1.9510

R(Θ̂) 0.5711 0.3493 0.2284 0.2002 0.2505 0.1900 0.1854 0.1572
b(Θ̂) 0.2406 -0.0368 0.1094 -0.0958 0.1536 -0.0234 0.1076 -0.0490

4

12
Θ̂ 3.1881 2.9029 3.0685 2.8537 2.2197 2.0273 2.1482 1.9757

R(Θ̂) 0.5009 0.3365 0.2162 0.2062 0.3577 0.3132 0.2257 0.2049
b(Θ̂) 0.1881 -0.0971 0.0685 -0.1463 0.2197 0.0273 0.1482 -0.0243

18
Θ̂ 3.1649 2.8998 3.0589 2.8544 2.1221 1.9449 2.0901 1.9270

R(Θ̂) 0.4875 0.3312 0.2215 0.2132 0.1929 0.1589 0.1504 0.1361
b(Θ̂) 0.1649 -0.1002 0.0589 -0.1456 0.1221 -0.0551 0.0901 -0.0730

40

2.5

16
Θ̂ 3.1464 2.9238 3.0759 2.8937 2.1490 1.9747 2.1074 1.9517

R(Θ̂) 0.3705 0.2578 0.2288 0.1912 0.2595 0.1964 0.1947 0.1628
b(Θ̂) 0.1464 -0.0762 0.0759 -0.1063 0.1490 -0.0253 0.1074 -0.0483

24
Θ̂ 3.0766 2.8692 3.0241 2.8469 2.1069 1.9629 2.0870 1.9517

R(Θ̂) 0.3082 0.2404 0.2036 0.1907 0.1668 0.1361 0.1446 0.1245
b(Θ̂) 0.0766 -0.1308 0.0241 -0.1531 0.1069 -0.0371 0.0870 -0.0483

4

16
Θ̂ 3.1121 2.8897 3.0479 2.8643 2.1030 1.9332 2.0748 1.9157

R(Θ̂) 0.3347 0.2405 0.1951 0.1816 0.2096 0.1869 0.1692 0.1608
b(Θ̂) 0.1121 -0.1103 0.0479 -0.1357 0.1030 -0.0668 0.0748 -0.0843

24
Θ̂ 3.1426 2.9267 3.0834 2.9001 2.1270 1.9773 2.1110 1.9679

R(Θ̂) 0.3298 0.2378 0.2070 0.1815 0.1492 0.1174 0.1318 0.1082
b(Θ̂) 0.1426 -0.0733 0.0834 -0.0999 0.1270 -0.0227 0.1110 -0.0321

50

2.5

20
Θ̂ 3.1584 2.9626 3.0980 2.9334 2.1262 1.9772 2.1008 1.9621

R(Θ̂) 0.3443 0.2382 0.1941 0.1727 0.2017 0.1607 0.1689 0.1423
b(Θ̂) 0.1584 -0.0374 0.0980 -0.0666 0.1262 -0.0228 0.1008 -0.0379

30
Θ̂ 3.1119 2.9269 3.0742 2.9088 2.0706 1.9469 2.0596 1.9406

R(Θ̂) 0.2630 0.1976 0.1894 0.1632 0.1124 0.0984 0.1029 0.0935
b(Θ̂) 0.1119 -0.0731 0.0742 -0.0912 -0.9294 -1.0531 -0.9404 -1.0594

4

20
Θ̂ 3.1052 2.9153 3.0615 2.8966 2.1185 1.9638 2.1014 1.9540

R(Θ̂) 0.2750 0.2048 0.1867 0.1654 0.1501 0.1219 0.1315 0.1118
b(Θ̂) 0.1052 -0.0847 0.0615 -0.1034 0.1185 -0.0362 0.1014 -0.0460

30
Θ̂ 3.0808 2.8999 3.0447 2.8830 2.0886 1.9586 2.0802 1.9537

R(Θ̂) 0.2808 0.2199 0.2070 0.1803 0.1130 0.0933 0.1052 0.0893
b(Θ̂) 0.0808 -0.1001 0.0447 -0.1170 0.0886 -0.0414 0.0802 -0.0463
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Table 4: Average point estimates, simulated risks and bias for p = 0.5 & α = 2;θ = 3,
with highly informative prior (σ2 = 5)

n τ k θ α

θ̂ML θ̂PS θ̂LF θ̂BPS α̂ML α̂PS α̂LF α̂BPS

30

2.5

12
Θ̂ 3.1459 2.8797 3.0969 2.8526 2.2462 2.0337 2.2036 2.0039

R(Θ̂) 0.6717 0.3968 0.5241 0.3451 0.3998 0.2733 0.3475 0.2493
b(Θ̂) 0.1459 -0.1203 0.0969 -0.1474 0.2462 0.0337 0.2036 0.0039

18
Θ̂ 3.1834 2.9157 3.1447 2.8924 2.1434 1.9683 2.1236 1.9526

R(Θ̂) 0.5622 0.3672 0.4604 0.3283 0.2290 0.1765 0.2113 0.1690
b(Θ̂) 0.1834 -0.0843 0.1447 -0.1076 0.1434 -0.0317 0.1236 -0.0474

4

12
Θ̂ 3.1785 2.8928 3.1371 2.8666 2.2129 2.0212 2.1845 1.9974

R(Θ̂) 0.5938 0.3971 0.4798 0.3470 0.3512 0.3056 0.3089 0.2736
b(Θ̂) 0.1785 -0.1072 0.1371 -0.1334 0.2129 0.0212 0.1845 -0.0026

18
Θ̂ 3.1472 2.8829 3.1167 2.8637 2.1425 1.9642 2.1282 1.9530

R(Θ̂) 0.4277 0.2956 0.3743 0.2770 0.2026 0.1622 0.1906 0.1569
b(Θ̂) 0.1472 -0.1171 0.1167 -0.1363 0.1425 -0.0358 0.1282 -0.0470

40

2.5

16
Θ̂ 3.1834 2.9534 3.0994 2.9161 2.1500 1.9764 2.1088 1.9532

R(Θ̂) 0.4059 0.2684 0.2266 0.1919 0.2454 0.1875 0.1868 0.1569
b(Θ̂) 0.1834 -0.0466 0.0994 -0.0839 0.1500 -0.0236 0.1088 -0.0468

24
Θ̂ 3.1347 2.9208 3.1154 2.9081 2.1245 1.9795 2.1137 1.9707

R(Θ̂) 0.3192 0.2309 0.2911 0.2205 0.1576 0.1247 0.1509 0.1300
b(Θ̂) 0.1347 -0.0792 0.1154 -0.0919 0.1245 -0.0205 0.1137 -0.0293

4

16
Θ̂ 3.1551 2.9269 3.1297 2.9110 2.1710 1.9972 2.1561 1.9849

R(Θ̂) 0.3347 0.2405 0.4043 0.2939 0.2334 0.1884 0.2191 0.1802
b(Θ̂) 0.1551 -0.0731 0.1297 -0.0890 0.1710 -0.0028 0.1561 -0.0151

24
Θ̂ 3.1914 2.9681 3.1695 2.9539 2.1249 1.9752 2.1167 1.9685

R(Θ̂) 0.4019 0.2689 0.3580 0.2511 0.1533 0.1240 0.1473 0.1210
b(Θ̂) 0.1914 -0.0319 0.1695 -0.0461 0.1249 -0.0248 0.1167 -0.0315

50

2.5

20
Θ̂ 3.1055 2.9159 3.0902 2.9056 2.1355 1.9836 2.1237 1.9738

R(Θ̂) 0.2824 0.2072 0.2590 0.1976 0.2003 0.1559 0.1909 0.1516
b(Θ̂) 0.1055 -0.0841 0.0902 -0.0944 0.1355 -0.0164 0.1237 -0.0262

30
Θ̂ 3.1203 2.9346 3.1068 2.9252 2.1104 1.9839 2.1034 1.9781

R(Θ̂) 0.2553 0.1914 0.2395 0.1846 0.1475 0.1208 0.1431 0.1189
b(Θ̂) 0.1203 -0.0654 0.1068 -0.0748 0.1104 -0.0161 0.1034 -0.0219

4

20
Θ̂ 3.0773 2.8908 3.0632 2.8812 2.1213 1.9666 2.1125 1.9593

R(Θ̂) 0.2469 0.1933 0.2326 0.1881 0.1746 0.1421 0.1681 0.1388
b(Θ̂) 0.0773 -0.1092 0.0632 -0.1188 0.1213 -0.0334 0.1125 -0.0407

30
Θ̂ 3.1124 2.9311 3.1006 2.9225 2.0778 1.9492 2.0729 1.9453

R(Θ̂) 0.2335 0.1774 0.2211 0.1723 0.1076 0.0910 0.1053 0.0902
b(Θ̂) 0.1124 -0.0689 0.1006 -0.0775 0.0778 -0.0508 0.0729 -0.0547
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Table 5: Average point estimates, simulated risks and bias for p = 0.5 & α = 2;θ = 3,
with highly informative prior (σ2 = 50)

n τ k θ α

θ̂ML θ̂PS θ̂LF θ̂BPS α̂ML α̂PS α̂LF α̂BPS

30

2.5

12
Θ̂ 3.2526 2.9650 3.2287 2.9458 2.2959 2.0796 2.2672 2.0549

R(Θ̂) 0.6930 0.4200 0.6653 0.4090 0.4886 0.3399 0.4581 0.3241
b(Θ̂) 0.2526 -0.0350 0.2287 -0.0542 0.2959 0.0796 0.2672 0.0549

18
Θ̂ 3.2300 2.9555 3.2043 2.9362 2.2001 2.0204 2.1820 2.0050

R(Θ̂) 0.6191 0.3911 0.5732 0.3743 0.2667 0.1920 0.2519 0.1860
b(Θ̂) 0.2300 -0.0445 0.2043 -0.0638 0.2001 0.0204 0.1820 0.0050

4

12
Θ̂ 3.1431 2.8659 3.1185 2.8477 2.1989 2.0075 2.1768 1.9882

R(Θ̂) 0.4804 0.3338 0.4515 0.3259 0.3214 0.2832 0.3000 0.2705
b(Θ̂) 0.1431 -0.1341 0.1185 -0.1523 0.1989 0.0075 0.1768 -0.0118

18
Θ̂ 3.2353 2.9539 3.2119 2.9364 2.1494 1.9712 2.1368 1.9603

R(Θ̂) 0.6081 0.3702 0.5715 0.3552 0.2330 0.1837 0.2231 0.1790
b(Θ̂) 0.2353 -0.0461 0.2119 -0.0636 0.1494 -0.0288 0.1368 -0.0397

40

2.5

16
Θ̂ 3.1539 2.9281 3.1378 2.9154 2.1617 1.9861 2.1460 1.9728

R(Θ̂) 0.4114 0.2816 0.3964 0.2762 0.2407 0.1772 0.2306 0.1737
b(Θ̂) 0.1539 -0.0719 0.1378 -0.0846 0.1617 -0.0139 0.1460 -0.0272

24
Θ̂ 3.1451 2.9263 3.1303 2.9148 2.1187 1.9725 2.1094 1.9646

R(Θ̂) 0.3618 0.2584 0.3462 0.2515 0.1746 0.1397 0.1693 0.1378
b(Θ̂) 0.1451 -0.0737 0.1303 -0.0852 0.1187 -0.0275 0.1094 -0.0354

4

16
Θ̂ 3.1312 2.9065 3.1151 2.8939 2.1315 1.9549 2.1193 1.9443

R(Θ̂) 0.3893 0.2752 0.3728 0.2688 0.2157 0.1792 0.2069 0.1756
b(Θ̂) 0.1312 -0.0935 0.1151 -0.1061 0.1315 -0.0451 0.1193 -0.0557

24
Θ̂ 3.1494 2.9310 3.1351 2.9200 2.0997 1.9505 2.0926 1.9447

R(Θ̂) 0.3698 0.2583 0.3550 0.2531 0.1413 0.1169 0.1377 0.1158
b(Θ̂) 0.1494 -0.0690 0.1351 -0.0800 0.0997 -0.0495 0.0926 -0.0553

50

2.5

20
Θ̂ 3.1104 2.9192 3.0992 2.9106 2.1161 1.9657 2.1058 1.9569

R(Θ̂) 0.2716 0.1999 0.2644 0.1982 0.1796 0.1432 0.1747 0.1415
b(Θ̂) 0.1104 -0.0808 0.0992 -0.0894 0.1161 -0.0343 0.1058 -0.0431

30
Θ̂ 3.1065 2.9226 3.0962 2.9149 2.0924 1.9665 2.0863 1.9611

R(Θ̂) 0.2511 0.1922 0.2428 0.1892 0.1199 0.1001 0.1175 0.0993
b(Θ̂) 0.1065 -0.0774 0.0962 -0.0851 0.0924 -0.0335 0.0863 -0.0389

4

20
Θ̂ 3.1099 2.9196 3.0977 2.9103 2.1380 1.9827 2.1300 1.9760

R(Θ̂) 0.2784 0.2068 0.2685 0.2037 0.1778 0.1402 0.1726 0.1378
b(Θ̂) 0.1099 -0.0804 0.0977 -0.0897 0.1380 -0.0173 0.1300 -0.0240

30
Θ̂ 3.0686 2.8901 3.0595 2.8832 2.0566 1.9286 2.0523 1.9251

R(Θ̂) 0.2250 0.1816 0.2188 0.1799 0.0919 0.0818 0.0905 0.0817
b(Θ̂) 0.0686 -0.1099 0.0595 -0.1168 0.0566 -0.0714 0.0523 -0.0749
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Table 6: Average length of Confidence Intervals (Coverage probabilities in 2nd row of
each (τ, k)) for n = 40, α = 2;θ = 3 and σ2 = 1 against varying p

σ2 p (τ, k) θ α

LθML LθPS LθLF LθBPS LαML LαPS LαLF LαBPS

1

0.2

2.5, 16 2.018 1.828 1.534 1.455 1.708 1.604 1.279 1.243
0.932 0.908 0.922 0.884 0.950 0.940 0.920 0.888

2.5, 24 1.973 1.796 1.497 1.428 1.485 1.404 1.079 1.068
0.954 0.904 0.906 0.890 0.952 0.942 0.890 0.872

4, 16 2.014 1.822 1.536 1.452 1.629 1.563 1.207 1.207
0.950 0.912 0.920 0.894 0.958 0.934 0.912 0.882

4, 24 1.947 1.775 1.486 1.414 1.360 1.286 0.967 0.959
0.962 0.950 0.946 0.916 0.958 0.934 0.884 0.850

0.5

2.5, 16 2.058 1.843 1.585 1.487 1.755 1.639 1.328 1.283
0.956 0.900 0.930 0.894 0.956 0.936 0.916 0.892

2.5, 24 2.026 1.829 1.546 1.455 1.484 1.403 1.082 1.071
0.958 0.916 0.936 0.892 0.956 0.922 0.882 0.862

4, 16 2.115 1.893 1.623 1.522 1.633 1.540 1.222 1.192
0.948 0.910 0.934 0.902 0.950 0.924 0.900 0.862

4, 24 2.040 1.844 1.556 1.471 1.363 1.285 0.973 0.962
0.964 0.928 0.928 0.910 0.954 0.932 0.888 0.842

0.8

2.5, 16 2.214 1.954 1.682 1.564 1.750 1.638 1.322 1.283
0.952 0.890 0.926 0.878 0.958 0.930 0.910 0.890

2.5, 24 2.071 1.856 1.582 1.486 1.476 1.395 1.077 1.062
0.972 0.930 0.948 0.912 0.964 0.930 0.890 0.856

4, 16 2.232 1.970 1.688 1.575 1.607 1.509 1.198 1.169
0.956 0.910 0.936 0.908 0.960 0.938 0.924 0.880

4, 24 2.039 1.833 1.555 1.462 1.345 1.268 0.955 0.946
0.938 0.886 0.912 0.862 0.966 0.942 0.864 0.840
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Table 7: Average length of Confidence Intervals (Coverage probabilities in 2nd row of
each (τ, k)) n = 40, α = 2;θ = 3 and σ2 = 5 against varying p

σ2 p (τ, k) θ α

LθML LθPS LθLF LθBPS LαML LαPS LαLF LαBPS

5

0.2

2.5, 16 2.048 1.852 1.706 1.593 1.705 1.605 1.350 1.317
0.958 0.930 0.908 0.894 0.958 0.962 0.920 0.896

2.5, 24 1.937 1.767 1.606 1.513 1.481 1.401 1.123 1.110
0.982 0.940 0.932 0.882 0.960 0.956 0.894 0.870

4, 16 2.032 1.836 1.695 1.583 1.614 1.550 1.257 1.261
0.940 0.896 0.876 0.842 0.952 0.944 0.890 0.856

4, 24 1.948 1.776 1.617 1.519 1.369 1.296 1.009 1.002
0.948 0.936 0.916 0.898 0.950 0.924 0.846 0.840

0.5

2.5, 16 2.153 1.922 1.815 1.673 1.759 1.645 1.410 1.361
0.958 0.916 0.918 0.886 0.940 0.932 0.890 0.862

2.5, 24 2.048 1.848 1.705 1.589 1.497 1.416 1.139 1.128
0.972 0.922 0.922 0.882 0.974 0.966 0.884 0.874

4, 16 2.146 1.918 1.811 1.669 1.636 1.534 1.283 1.251
0.958 0.926 0.926 0.890 0.948 0.916 0.878 0.844

4, 24 1.998 1.809 1.663 1.558 1.349 1.272 0.991 0.980
0.964 0.932 0.918 0.898 0.942 0.906 0.860 0.830

0.8

2.5, 16 2.261 1.992 1.913 1.738 1.766 1.653 1.419 1.376
0.962 0.934 0.940 0.912 0.952 0.952 0.898 0.892

2.5, 24 2.062 1.849 1.714 1.591 1.476 1.396 1.120 1.109
0.970 0.928 0.928 0.890 0.968 0.946 0.884 0.870

4, 16 2.232 1.969 1.880 1.713 1.608 1.511 1.258 1.229
0.976 0.928 0.946 0.900 0.952 0.916 0.884 0.846

4, 24 2.059 1.849 1.713 1.588 1.351 1.274 0.994 0.983
0.954 0.920 0.902 0.870 0.942 0.922 0.846 0.846



42 S. Basu et al.

Table 8: Average length of Confidence Intervals (Coverage probabilities in 2nd row of
each (τ, k)) n = 40, α = 2;θ = 3 and σ2 = 50 against varying p

σ2 p (τ, k) θ α

LθML LθPS LθLF LθBPS LαML LαPS LαLF LαBPS

50

0.2

2.5, 16 1.982 1.798 1.701 1.584 1.697 1.596 1.363 1.327
0.974 0.934 0.928 0.900 0.952 0.952 0.898 0.880

2.5, 24 1.978 1.802 1.678 1.576 1.484 1.404 1.137 1.124
0.966 0.932 0.904 0.892 0.958 0.938 0.864 0.856

4, 16 2.022 1.827 1.734 1.609 1.601 1.540 1.262 1.269
0.958 0.918 0.904 0.880 0.946 0.936 0.874 0.846

4, 24 1.905 1.740 1.609 1.517 1.380 1.303 1.029 1.022
0.944 0.918 0.892 0.848 0.944 0.946 0.846 0.834

0.5

2.5, 16 2.166 1.931 1.884 1.722 1.766 1.653 1.435 1.392
0.956 0.940 0.928 0.920 0.950 0.940 0.894 0.876

2.5, 24 1.994 1.802 1.698 1.580 1.482 1.401 1.137 1.126
0.964 0.926 0.920 0.868 0.940 0.930 0.866 0.856

4, 16 2.158 1.924 1.876 1.711 1.776 1.660 1.448 1.400
0.946 0.924 0.900 0.896 0.940 0.934 0.900 0.874

4, 24 1.960 1.778 1.668 1.557 1.351 1.275 0.999 0.991
0.962 0.920 0.912 0.882 0.956 0.946 0.884 0.870

0.8

2.5, 16 2.247 1.980 1.960 1.770 1.725 1.617 1.398 1.356
0.950 0.924 0.928 0.888 0.930 0.918 0.874 0.856

2.5, 24 2.095 1.878 1.794 1.658 1.486 1.406 1.142 1.131
0.980 0.940 0.920 0.900 0.960 0.958 0.882 0.876

4, 16 2.162 1.914 1.881 1.709 1.612 1.516 1.278 1.248
0.942 0.892 0.912 0.860 0.932 0.910 0.850 0.828

4, 24 2.070 1.860 1.769 1.635 1.341 1.266 0.989 0.983
0.954 0.920 0.908 0.878 0.960 0.944 0.860 0.854

7 Real Data Analysis

This section demonstrates the applicability of the proposed methodologies to suitable
data. Sharma et al. (2016) verified the applicability of GILD(α, θ) for modified bath-
tub shaped hazard data and demonstrated it on maximum flood level (in millions of
cubic feet per second) for the Susquehanna river at Harrisburg, Pennsylvania over 20
four-year periods from 1890 to 1969 and observed GILD to be the model of best fit
among several competing models. We illustrate the proposed methodology on the
data of active repair times (in hours) for an airborne communication transceiver, which
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was initially reported and analyzed by Alven and William (1964) using log-normal
distribution by virtue of its modified bath-tub hazard function. In our study, we
observed, GILD(α, θ) is also suitable to analyze this data set which is graphically quite
evident from Figure 1 and also from the K-S distance D = 0.0799 (tabulated value at
5% level of significance is Dn,β ≈ 0.2002).
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Figure 1: Fitting of GILD(α, θ) on the data of active repair times (in hours) for an
airborne communication transceiver

However, we do not emphasize unearthing the model of best fit, instead, we proceed
to the analysis of this data through GILD for some hypothetical censoring schemes and
obtain the parameter estimates. Here, we resort to the estimates obtained for the
complete sample, i.e. (α̂ML, θ̂ML = 0.938, 1.602) and (α̂PS, θ̂PS = 0.869, 1.572) as an initial
guess for the optimization of the likelihood and PS function for a particular censoring
scheme.

The Bayesian analysis is performed with the assumption of vague prior and con-
vergence of the chains were validated for varying initial chain values. The generated
sequences of α andθ from the corresponding posterior densities are presented in Figure
2. These generated sequences reveal a slightly positively skewed well-mixed sample.
The MLE, MPS and Bayes estimate using both the LF and PS functions along with
their asymptotic and HPD intervals are given in Tab.9. The interval estimates for the
real data analysis cognate with the simulation study and thus, we observe the shortest
lengths for Bayes PS estimators followed by Bayes LF, classical PS and lastly MLE.
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Table 9: Estimates and length of confidence intervals of α, θ based on real data

τ k θ α
Ê(τ)

θ̂ML θ̂PS θ̂LF θ̂BPS α̂ML α̂PS α̂LF α̂BPS

3
15 1.6026 1.5893 1.6236 1.6098 0.8133 0.7413 0.8021 0.7287 31.1986 1.1421 1.0744 1.0013 0.6694 0.6225 0.5643 0.4999

30 1.8136 1.7626 1.8296 1.7652 0.6991 0.6535 0.6920 0.6475 31.0068 0.9631 0.9000 0.8651 0.4768 0.4519 0.3562 0.3341

10
15 1.4304 1.4504 1.4546 1.4828 0.9284 0.8341 0.9168 0.8246 101.0511 1.0186 0.9246 0.8841 0.6656 0.6121 0.5328 0.5026

30 1.5873 1.5511 1.5797 1.5521 0.9219 0.8581 0.9163 0.8524 100.8759 0.8426 0.7853 0.7448 0.4774 0.4517 0.3622 0.3372

25
15 1.6545 1.6392 1.6628 1.6538 0.8285 0.7512 0.8209 0.7493 91.1785 1.1175 1.0779 1.0560 0.5584 0.5168 0.4380 0.4036

30 1.5426 1.5195 1.5333 1.5137 0.9226 0.8532 0.9189 0.8495 220.8474 0.8206 0.7338 0.7175 0.4818 0.4528 0.3695 0.3331
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Figure 2: Real data posterior and trace plot of θ and α
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8 Conclusion

In this article, we have considered the classical and Bayesian inference for generalized
inverse Lindley distribution with PHT-I-CBR. The simulation study successfully deliv-
ers a palpable justification that the PS estimators in both paradigms surpass the other
estimators in terms of simulated risks and length of confidence intervals. Although,
the classical and Bayesian estimators under the non-informative scenario exhibit an
analogous nature, yet, the Bayes PS estimators outshine their classical counterparts as
well as the other estimators in the presence of suitable prior information.
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