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Abstract. Fishing industry has always been an economic motor in many countries
around the world, but the fisheries production faces a lot of uncertainty and instability
due to the complex factors involved in its operations. In this article, we consider the
problem of modeling Chile fishing data using environmental exogenous variables with
generalized autoregressive conditional heteroskedasticity (GARCH-X) type models.
We carried out this by proposing an ARMA type model for the mean with GARCH-X
noise. First, the ARMA, GARCH and GARCH-X models are briefly introduced and the
data is described. The exogenous variables are selected from a group of environmental
and climatic indicators by correlational analysis. Then, ARMA GARCH and ARMA
GARCH-X models with exogenous variables are fitted and compared by information
criteria and classical error measures, and stability of its parameters are checked. The
statistical tests and comparisons evidenced that a model with inclusion of external
variables in mean and variance with the ARMA GARCH-X specification performed
better and adjusted the observed values more rigorously. Finally, some conclusions
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and possible refinations of the applied techniques are given.

Keywords. Environmental Modeling, Exogenous Variables, Fishing Data, GARCH-X,
Time Series.
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1 Introduction

The fishing activity in the northern region of Chile had always been an important source
of pelagic resources, based mostly on sardine (Sardinops sagax) and anchovy (Engraulis
rigens). Official data presented by the Chilean National Fisheries and Aquaculture Ser-
vice (SERNAPESCA, 2021) show a cyclical alternance trend between the total landings
of both species, that also is described with information from about 250 years (Valdés
et al., 2008). Moreover, the oceanic ecosystem that supports the anchovy-sardine fish-
eries activity is very complex, due to environmental changes in different spatial and
temporal scales (e.g. El Niño events, cold-warm regime shifts, climate change, among
others) that could drive behaviour changes in migratory, reproductive and food web
patterns, thus affecting the volume of captures of the aforementioned species (Yáñez
et al., 2016).

Given the uncertainty, stochastic nature, and delicate relationships that describe
the phenomena involved in the marine environment, the modelling of the industrial
fishing activity constitutes a challenge that has been faced through different approaches
worldwide. Traditionally, the most common approach considers the implementation of
the Box-Jenkins methodology and its many variants. In that regard, these models were
used in Mediterranean waters (Stergiou, 1989) and showed advantages in both fitting
past data and predicting future data, compared to other techniques (Stergiou, 1991).
Although methodological developments allow an increase in complexity when dealing
with the main problem, autoregressive models keep being the basis for numerous
studies on fishery resources modelling (Koutroumanidis et al., 2006; Tsitsika et al.,
2007; Park and Yoon, 1996; Lai et al., 2005). Furthermore, if studies in the same country
are considered, recent works have been oriented more towards the use of artificial
neural networks (Yáñez et al., 2010, 2016) and wavelet-type transfer functions (Vivas
et al., 2019), having all confirmed the usefulness of a hollistic approach by including
environmental, climatic and oceanographic variables.

The present study applies a model of the ARMA family with conditional heterosked-
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asticity (ARMA-GARCH) to the landings of sardine off northern Chile (1821’S - 24S)
from 1963 to 2007. The model also considers the introduction of exogenous variables in
both the mean and variance equations, selected from a set of local and global climatic
and environmental variables. The performance of some variants of this approach is
evaluated by means of classical error measures. Possible extensions and corrections of
the applied techniques are also discussed.

The rest of the manuscript is organized as follows: in Section 2 we introduce the
ARMA, GARCH and GARCH-X models, and based on these we propose a specification
to adjust the data to be analyzed. Section 3 presents the estimation of the variants of
the main model, and the parameters, indicators and tests performed on each model,
with a discussion of the results. Finally, Section 4 shows our conclussions and possible
new applications and improvements of the model.

2 Materials and Methods

2.1 Model

2.1.1 ARMA Model

ARMA (Autoregressive Moving Average) models (Box and Jenkins, 1976) are a special
case of a general class, called ARIMA (Autoregressive Integrated Moving Average)
models. These models imply that a time series can be adjusted as a linear combination
of its past values and past and present values of a random error term. Let Y1, . . . ,YT
be a time series, and εt be a white noise with mean 0 and variance σ2. The model
ARMA(p, q) is defined as follows:

Yt −

p∑
i=1

φiYt−i = εt +

q∑
j=1

θ jεt− j, (2.1)

for 1 ≤ t ≤ T. If we define the backward operator B by

Bn (Xt) = Xt−n, n ≥ 1,

then (2.1) can be written as1 − p∑
i=1

φiBi

Yt =

1 +

q∑
j=1

θ jB j

 εt, (2.2)
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and Φ(B) = 1 −
∑p

i=1 φiBi and Θ(B) = 1 +
∑q

j=1 θ jB j are known as the AR and MA
polinomials, respectively.

It is important to state that ARMA models are applied to stationary series, and if it
is not the case, techniques like seasonal and non seasonal differencing, and logarithmic
and power transformations can handle non stationarity on most occasions. Determin-
ing the adequate values for p and q is also essential. And it comes from the careful
inspection of the autocorrelation (ACF) and partial autocorrelation (PACF) functions
of the time series.

2.1.2 GARCH and GARCH-X Model

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) models (Bollers-
lev, 1986) were developed to deal with volatility in time series. This behavior is common
in financial and economic series, where values with high or low volatility are usually
clustered. GARCH models assume that dynamic changes in the conditional variance
of a time series are influenced by its past values and also the past values of its variance.
Further developments of this model were theorized, and among them, the GARCH-X
model (Brenner et al., 1996), introduces the possibility of using external convenient
variables to explain the heteroskedasticity of a time series.

The GARCH-X model is defined by the following equations, for 1 ≤ t ≤ T:

εt|Ft−1 ∼ N(0, σ2
t ), (2.3)

σ2
t = ω +

q∑
j=1

α jε
2
t− j +

p∑
k=1

βkσ
2
t−k +

s∑
l=1

γlXlt, (2.4)

where Ft−1 is the information at time t − 1, εt is the error term and X1, · · · ,Xs are the
external variables. This equations represent also the GARCH model by discarding the
last summation in (2.4).

In order to preserve the positiveness of the variance at all times, it is necessary to
define certain restrictions on the coefficients, i.e.,ω > 0, α j ≥ 0, βk ≥ 0,∀ j, k and

∑q
j=1 α j +∑p

k=1 βk < 1. Regarding the external variables, they must comply thatω+
∑s

l=1 γlXlt > 0.
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2.1.3 Model Definition

The model that we propose in this paper can be described by the following equations:

Φ(B)(Yt − µt) = Θ(B)εt, (2.5)

µt = µ +

r∑
i=1

δiXit + λσ2
t , (2.6)

εt|Ft−1 ∼ N(0, σ2
t ), (2.7)

σ2
t = ω +

q∑
j=1

α jε
2
t− j +

p∑
k=1

βkσ
2
t−k +

s∑
l=1

γlZlt, (2.8)

where Y1, . . . ,YT are the observations of the time series, B is the backward operator
previously defined, Φ and Θ are the AR and MA polinomials respectively, X and Z are
sets of exogenous variables that are used to explain the mean and the variance. As
before, regarding the external variables, they must comply that ω +

∑s
l=1 γlZlt > 0.

It is easy to notice that (2.5) defines an ARMA model for the main time series,
where (2.6) describes the use of exogenous variables in the conditional mean of the
observations and also the inclusion of an ARCH effect in the mean. Equations (2.7) and
(2.8) define a GARCH model that also allows external factors (GARCH-X) which may
not be necessarily the same as the ones used in the mean model. A particularly useful
specification is using lagged exogenous variables in the mean and variance equations.
In this study, we use one time lag for the exogenous variables in both parts of the
model, and discard the estimation of the ARCH-in-mean effect (λ = 0). Our objective
is to compare four diferent models that are particular cases of the main definition:

• without exogenous variables (δi = γl = 0,∀i, l),

• with exogenous variables in the mean (γl = 0,∀l),

• with exogenous variables in the variance (δi = 0,∀i),

• with exogenous variables both in mean and variance.

2.1.4 Model Identification

Similar to the ARMA model, the problem of model identification is the optimal election
of the values of p and q in the GARCH model. (Tsay, 1987) suggests that GARCH(1,1)
performs better than higher specifications of the GARCH model considering goodness
of fit of the volatility of a time series; thus, we will use that specification in our work.
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2.1.5 Model Estimation

The parameters of our model are estimated by Quasi-Maximum Likelihood techniques.
We define the parameter vector ϑ = (φ,ψ) where φ = (µ, φ, θ, δ) are the parameters for
the ARMA model and ψ = (ω, α, β, γ) are the parameters for the GARCH-X model,
which belong to the parameter space (Φ,Ψ). With some convenient initial values that
allows us to define

ε̃t = Φ(B)(Yt − µt) −
q∑

j=1

θ jεt− j,

σ̃t
2 = ω +

q∑
j=1

α jε̃
2
t− j +

p∑
k=1

βkσ̃
2
t−k +

s∑
l=1

γlZlt,

the QML estimators are the solution to

ϑ̂ = arg max
ϑ∈(Φ,Ψ)

L̃T(ϑ) =
1
T

T∑
t=1

− log σ̃t
2(ψ) −

ε̃2
t (φ)

σ̃t
2(ψ)

 .
Under mild conditions, QML estimators are consistent and asymptotically normal
(Ling and McAleer, 2003).

2.2 Data

The total monthly landings of sardine of northern Chile are available in the Statistical
Fishery Yearbooks in the webpage1 of SERNAPESCA to public access. In order to get a
better performance, we run a logarithmic transformation of the landings (LSAR) to get
the time series to be adjusted. The external environmental variables were registered
at the Antofagasta station (2326’S) and its monthly averages were calculated. The
variables analyzed were sea surface temperature (SST) of the station, the turbulence
index (TI), Pacific decenal oscillation index (PDO), the Southern Oscillation index (SOI),
the Cold Tongue index (CTI), and the sea surface temperature in El Niño region 1 and
2 (N12) and in El Niño region 3 and 4 (N34). These regions are respectively located in
0S - 10S and 90W - 80W, and in 5N - 5S and 170W - 120W. Every analysis performed on
this data is computed using the open source R software (Ghalanos, 2020).

1http://www.sernapesca.cl/informes/estadisticas.
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3 Results and Discussion

3.1 Variables Selection

In order to select the variables better suited as exogenous for the model, the Pearson
correlation coefficients between the variables and LSAR were calculated and analyzed,
as well as Granger causality tests with 1 temporal lag. Based on the results shown in
Table 1, we select two exogenous variables: SST and TI, which are the ones that are
statistically significant base on both tests. Table 2 shows descriptive statistics of the
three variables in the model.

Table 1: Results of Pearson correlation and Granger causality tests between the captures
of sardine and the environmental variables.

Variable Correlation with LSAR p-value (t distribution) Granger test statistic p-value (F distribution)
SST 0.12 0.0052 12.62 < 0.001
TI 0.40 < 0.001 8.04 0.0048

PDO 0.32 < 0.001 2.27 0.1326
SOI -0.07 0.0883 0.26 0.6083
CTI 0.06 0.1887 0.41 0.5242
N12 0.07 0.1196 3.98 0.0466
N34 0.02 0.7105 0.67 0.4137

Table 2: Descriptive statistics of the variables.

LSAR TI SST (C)
Mean 8.54 423.5 17.48

Median 8.59 385.0 17.30
Variance 7.08 31908.67 4.19

Std. Deviation 2.66 178.63 2.04

3.2 ARCH Effect Test

Before starting parameter estimation, we run an ARCH-LM test to statistically assure
the presence of volatility in the series. Table 3 shows the results of the test with lags
from 1 to 4, which proves the relevance of a GARCH model to fit the observations of
LSAR.
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Table 3: ARCH-LM test results (lags 1 to 4).

Lag Test statistic p-value
1 459.98 < 0.001
2 464.53 < 0.001
3 464.01 < 0.001
4 466.65 < 0.001

3.3 Model Fitting

Once we have completed the preliminary steps, we proceed with the estimation of the
parameters of the models.Figure 1 presents the ACF and PACF of LSAR in order to
define the ARMA part of the model. It shows that a good specification to this part comes
from an AR(2) model, and the exogenous variables will handle the evident seasonality
of the series shown in the ACF since they share the same behavior.

(a) ACF

(b) PACF

Figure 1: ACF and PACF of the variable LSAR.
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In the GARCH section, first we fit the classic GARCH model with no exogenous
variables, and then compare it with the GARCH-X variant with exogenous variables
in the mean, variance, as well as in both components. From now on, we call this four
possible variations Model 1 to 4, respectively. By comparing the coefficients, shown
in Table 4, we find some interesting results. First, ARMA coefficients are significant
and almost constant across all models, proving that a GARCH model is not enough
to explain the time series and the inclusion of the autorregressive equation is useful.
Also, in Table 4, we report the robust standard errors of the estimators. According to
Bollerslev and Wooldridge (1992), the QML estimators are consistent even when the
conditional distribution of the residuals is not normal.

Table 4: Estimated parameters of the ARMA GARCH models.

Model AR1 AR2 µ TI SST ω α β TI SST
(mean) (mean) (var) (var)

Model 1: ARMA GARCH 0.6749 *** 0.2728 *** 6.6155 *** · · · · · · 0.3003 0.1343 *** 0.8440 *** · · · · · ·

(no variables) (0.0625) (0.0468) (0.7324) · · · · · · (0.0259) (0.0376) (0.0568) · · · · · ·

Model 2: ARMA GARCH-X 0.6473 *** 0.3003 *** 4.7537 *** 0.0002 0.0928 *** 0.0183 0.1502 *** 0.8488 *** · · · · · ·

(variables in mean) (0.0621) (0.0497) (0.8880) (0.0002) (0.0177) (0.0178) (0.0493) (0.0578) · · · · · ·

Model 3: ARMA GARCH-X 0.7057 *** 0.2796 *** 5.9643 *** · · · · · · 0.0000 0.4998 *** 0.2903 * 0.0006 ** 0.0000
(variables in variance) (0.0529) (0.0508) (0.2363) · · · · · · (0.0000) (0.1753) (0.1708) (0.0003) (0.0068)
Model 4: ARMA GARCH-X 0.6819 *** 0.3153 *** 4.2437 *** -0.0001 0.0811 *** 0.0000 0.6433 *** 0.2908 * 0.0004 ** 0.0000
(variables in both) (0.0599) (0.0574) (0.4610) (0.0002) (0.0217) (0.0000) (0.2088) (0.1587) (0.0002) (0.0059)
Model 5: ARMA GARCH-X 0.6883 *** 0.3086 *** 4.2503 *** · · · 0.0775 *** 0.0000 0.6373 *** 0.2883 * 0.0005 ** · · ·

(variables in both) (0.0551) (0.0540) (0.4711) · · · (0.0208) (0.0000) (0.1681) (0.1099) (0.0005) · · ·

Note: Standard robust errors of the respective coefficients in parentheses. Symbol * (**,***) represents signifi-
cance at 10% (5%, 1%) level.

Incorporation of the external variables in the equations proves the influence of the
exogenous regressors in the series to some extent. Models 2 and 4 show that just SST
is significant in the mean model, and Models 3 and 4 imply the same effect with TI in
the variance equation, but with less statistical significance. Therefore, we extend the
estimation to a new model (Model 5) with SST in mean and TI in variance, that shows
better properties for the significance of coefficients.

Next, we study the models by information criteria. Table 5 presents the value of
these criteria for each model, and according to this information Model 5 has the best
performance since it has the smallest value in all criteria. Overall, it is clear that the
GARCH-X models are better suited in basis of information criteria to explain the time
series evolution than a GARCH model.
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Table 5: Information criteria of Models 1 to 5.

Information criteria Model 1 Model 2 Model 3 Model 4 Model 5
Akaike 1356.278 1341.547 1320.935 1309.702 1306.125
Bayes 1382.028 1375.880 1355.267 1352.618 1340.458

Shibata 1356.147 1341.315 1320.702 1309.340 1305.893
Hannan-Quinn 1366.349 1354.975 1334.362 1326.486 1319.552

To ensure the advantages of one specification over another, and taking advantage
of the fact that the defined models are nested, we develop some likelihood ratio tests.
In all cases, the first model will be considered as the restricted model. Table 6 presents
the results of these tests for some important comparisons of Models 1 to 5. This
information further supports the evidence in favor of the use of exogenous variables
and the GARCH-X model, even though there are some specifications with better results
than others. In summary, it seems that Model 5 provides a better fit according to the
likelihood ratio test.

Table 6: Likelihood ratio tests of Model 2 to 5.

Comparison LRT statistic d.f p-value (χ2 distribution)
Model 1 - Model 2 18.73 2 < 0.0001
Model 1 - Model 3 39.34 2 < 0.0001
Model 1 - Model 4 54.57 4 < 0.0001
Model 1 - Model 5 54.15 2 < 0.0001
Model 2 - Model 4 35.84 2 < 0.0001
Model 3 - Model 4 15.23 2 0.0005
Model 5 - Model 4 0.42 2 0.8093

Our next step is the revision of stability in the models using the Hansen-Nyblom
test (Hansen, 1992; Nyblom, 1989). This test is an extension of the Chow test that allows
the verification of model general stability as well as individual parameter stability in
more general situations. Table 7 presents the information from the Hansen-Nyblom
tests performed both individually to each coefficient and to the complete model. The
null hypothesis is that all the coefficients are constant and the alternative is that some
of them are variable. Due to the difficulty of calculating the theoretical distribution of
the test statistics, the two last rows of the table showcritical values for the statistic of
the complete model and the statistic of each variable separately. If the respective value
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exceeds the critical value, the null hypothesis of stability is rejected.

Table 7: Hansen-Nyblom test of Models 1 to 5.

Model 1 Model 2 Model 3 Model 4 Model 5
Joint 1.2902 2.2798 8.2684 8.7559 8.2516

Individual statistics
AR1 0.0518 0.0518 0.3317 0.1839 0.1932
AR2 0.0337 0.0419 0.2520 0.1461 0.1531
µ 0.3013 0.3266 0.4745 0.2926 0.3200

TI (mean) · · · 0.0589 · · · 0.0858 · · ·

SST (mean) · · · 0.1630 · · · 0.1578 0.1708
ω 0.2686 0.2595 3.1107 4.1117 4.0816
α 0.1631 0.1088 0.7681 0.4784 0.4964
β 0.1918 0.1620 1.2917 1.5284 1.5379

TI (var) · · · · · · 1.0435 1.5439 1.5656
SST (var) · · · · · · 2.6254 3.6680 · · ·

Critical values (significance level 1%)
Joint 2.12 2.59 2.59 3.05 2.59

Individual 0.75 0.75 0.75 0.75 0.75

From the results of the Hansen-Nyblom tests, we conclude that Model 1 and 2 as
a whole are stable and Model 3 to 5 are not. A closer verification of the individual
stability shows that the unstable parameters belong to the variance model. Besides,
since the parameters that are considered unstable do not have a numerically high or
statistically significant value, we can affirm that instability is not an extremely serious
problem in models with exogenous variables.

Finally, we compare the models to check the accuracy of their adjusted values. Table
8 presents the mean absolute error (MAE), the root of the mean squared error (RMSE)
and the mean absolute percentage error (MAPE) calculated for the models. MAE and
RMSE are common indicators in many studies to check the performance of forecasting
models, and MAPE is recommended in series with positive values much greater than
zero (Hyndman and Koehler, 2006).
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Table 8: Error measurements of Models 1 to 5.

Model 1 Model 2 Model 3 Model 4 Model 5
MAE 0.6351 0.6422 0.6253 0.6303 0.6293
RMSE 0.9233 0.9221 0.9211 0.9199 0.9196
MAPE 9.09% 9.14% 8.93% 8.97% 8.95%

Although the differences are not very high, Models 3 and 5 present the minimum
values in MAE, RMSE and MAPE. Therefore, these models perform better at fitting the
values of LSAR. Despite this, the remaining models are very close in error measures
so their forecasting performance is fairly good. Finally, Figures 2 and 3 present the
comparison between the actual values of monthly sardine landings and the values
predicted by all models and the empirical distribution of the standardized residuals,
respectively. This information confirms that the ARMA GARCH-X specification is
useful and the series behavior is well adjusted.

4 Conclusions

In this paper we proposed an ARMA GARCH-X model to adjust the monthly sardine
landings off northern Chile and tested the possible advantages of using environmental
variables in the model to improve the results. Based on the results of the analysis,
we conclude that an ARMA GARCH-X model with certain external variables in mean
and variance surpassed the other possible specifications of ARMA GARCH-X and
ARMA GARCH models. Despite not having a clear winner in all the tests that were
carried out, the model with variables in the mean (Model 3) as well as the model with
different variables in mean and variance (Model 5) performed better in adjustment of
observations, information criteria and model selection tests, despite the fact that they
could be suffering from instability in some of their parameters. However, our work
proved that the inclusion of external variables in the equations is useful and could
improve the understanding of the dynamics of pelagic resources in Chile to manage
them in a reasonable way, a challenge that is faced by many countries in the region that
also have strong fishing industries (de la Puente and López de la Lama, 2019).
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5

Figure 2: Observed against adjusted plot of the monthly sardine landings.
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Figure 3: Empirical distribution of the standardized residuals of Models 1 to 5.

As mentioned in the introduction, sardine and anchovy are closely related due to
geographic proximity and similar environmental behaviors. Then, it is quite certain
that an ARMA GARCH-X model is also a good alternative to forecast the anchovy
landings in the same Chilean region. Even more, we expect to extend the application
of this model to other regions and species, choosing the possible exogenous variables
according to the different natural circumstances well as the human made ones, like
fishing effort or capture quotas. However, these are generally difficult to be accurately
measured, and their effect may be strongly imprecise.

Finally, as possible additional developments, there is the extension of the methodol-
ogy to incorporate seasonal components that allow modeling and forecasting short-
term dynamics, advancing from the use of an ARMA structure to the more general
SARIMA (Seasonal Autoregressive Integrated Moving Average) case. This also en-
tails updating the main definition of our model to include exogenous variables in a
compatible way with the new SARIMA structure, given that this inclusion is the main
advantage of our proposal to improve the results of a single series model. On a long-
term scale, much more sophisticated techniques could also be applied in the modeling
of the mean equation, such as TAR (Threshold Autoregressive) or STAR (Smooth Tran-
sition Autoregressive) models with their corresponding extensions to admit external
variables. These techniques have generally been considered in the analysis of series in
the financial field, so there are not many examples of their application to the biological
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or ecological field, which are the ones we have dealt with in this work.

Acknowledgements

The authors wish to thank Francisco Plaza and Cristian Meza, Universidad de Val-
paraíso, for their helpful suggestions and constructive criticism of the article.

The first author was supported through this work by a scholarship granted by the
Postgraduate and Programs Direction of Universidad Técnica Federico Santa María.

The second author was partially supported by Fondecyt Postdoctorado 3190465;
Proyecto ECOS210037 and Mathamsud AMSUD210023.

References

Bollerslev, T. (1986), Generalized autoregressive conditional heteroskedasticity. Journal
of Econometrics, 31(3), 307-327.

Bollerslev, T., and Wooldridge, J. M. (1992), Quasi-maximum likelihood estimation and
inference in dynamic models with time-varying covariances. Econometric reviews,
11(2), 143-172.

Box, G., and Jenkins, G. (1976), Time Series Analysis: Forecasting and Control. Holden-Day,
San Francisco.

Brenner, R. J., Harjes, R. H., and Kroner, K. F. (1996), Another look at models of the
short-term interest rate. Journal of Financial and Quantitative Analysis, 31(1), 85-107.

de la Puente, S., and López de la Lama, R. (2019), Pesquería industrial en América
Latina: retos y lecciones aprendidas de Chile, México y Perú. In Ruiz, M., Oyanedel,
R., and Monteferri, B., editors, Mar, costas y pesquerías: una mirada comparativa desde
Chile, México y Perú. Sociedad Peruana de Derecho Ambiental-SPDA.

Ghalanos, A. (2020), rugarch: Univariate GARCH models. R package version 1.4-4.

Hansen, B. E. (1992), Testing for parameter instability in linear models. Journal of Policy
Modeling, 14(4), 517-533.

Hyndman, R. J., and Koehler, A. B. (2006), Another look at measures of forecast
accuracy. International Journal of Forecasting, 22(4), 679-688.



34 J. Barrera and H. Araya

Koutroumanidis, T., Iliadis, L., and Sylaios, G. K. (2006), Time-series modeling of
fishery landings using ARIMA models and Fuzzy Expected Intervals software. En-
vironmental Modelling & Software, 21(12), 1711-1721.

Lai, E. K. M., Cheng, Y. W., and MacAleer, M. (2005), Predicting monthly catch for some
western Australia coastal finfish species with seasonal ARIMA-GARCH models. In
Modelling Western Australian Fisheries with Techniques of Time Series Analysis: Examining
Data from a Different Perspective, chapter 9. Department of Fisheries Research Division,
Western Australian Marine Research Laboratories.

Ling, S., and McAleer, M. (2003), Asymptotic theory for a vector ARMA-GARCH
model. Econometric theory, 19(2), 280-310.

Nyblom, J. (1989), Testing for the constancy of parameters over time. Journal of the
American Statistical Association, 84(405), 223-230.

Park, H.-H., and Yoon, G.-D. (1996), Analysis and prediction of anchovy fisheries in
Korea ARIMA model and spectrum analysis. Korean Journal of Fisheries and Aquatic
Sciences, 29(2), 143-149.

SERNAPESCA (1963-2021), Anuarios Estadísticos de Pesca. Servicio Nacional de Pesca,
Ministerio de Economía, Fomento y Turismo, Chile.

Stergiou, K. (1989), Modelling and forecasting the fishery for pilchard (Sardina
pilchardus) in Greek waters using ARIMA time-series models. ICES Journal of Marine
Science, 46(1), 16-23.

Stergiou, K. (1991), Short-term fisheries forecasting: comparison of smoothing, ARIMA
and regression techniques. Journal of Applied Ichthyology, 7(4), 193-204.

Tsay, R. S. (1987), Conditional heteroscedastic time series models. Journal of the American
Statistical Association, 82(398), 590-604.

Tsitsika, E. V., Maravelias, C. D., and Haralabous, J. (2007), Modeling and forecasting
pelagic fish production using univariate and multivariate ARIMA models. Fisheries
Science, 73(5), 979-988.

Valdés, J., Ortlieb, L., Gutierrez, D., Marinovic, L., Vargas, G., and Sifeddine, A. (2008),
250 years of sardine and anchovy scale deposition record in Mejillones Bay, northern
Chile. Progress in Oceanography, 79(2-4), 198-207.



Modeling Chile Fishing Data with GARCH-X Model 35

Vivas, E., Allende-Cid, H., Salas, R., and Bravo, L. (2019), Polynomial and wavelet-type
transfer function models to improve fisheries’ landing forecasting with exogenous
variables. Entropy, 21(11), 1082-1099.

Yáñez, E., Plaza, F., Gutiérrez-Estrada, J. C., Rodríguez, N., Barbieri, M. Á., Pulido-
Calvo, I., and Bórquez, C. (2010), Anchovy (engraulis ringens) and sardine (sardinops
sagax) abundance forecast off northern Chile: a multivariate ecosystemic neural
network approach. Progress in Oceanography, 87(1-4), 242-250.

Yáñez, E., Plaza, F., Silva, C., Sánchez, F., Barbieri, M. Á., and Aranis, A. (2016), Pelagic
resources landings in central-southern Chile under the A2 climate change scenarios.
Ocean Dynamics, 66(10), 1333-1351.


