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Abstract. This article introduces a two-step calibration technique for the inverse re-
lationship between study variable and auxiliary variable along with the double use
of the auxiliary variable. In the first step, the calibration weights and design weights
are set proportional to each other for a given sample. While in the second step, the
constant of proportionality is to be obtained on the basis of some different objectives
of the investigation viz. bias reduction or minimum Mean Squared Error (MSE) of the
proposed estimator. Many estimators based on inverse relationship between x and y
have been already developed and are considered to be special cases of the proposed
estimator. Properties of the proposed estimator is discussed in details. Moreover, a
simulation study has also been conducted to compare the performance of the pro-
posed estimator under Simple Random Sampling Without Replacement (SRSWOR)
and Lahiri-Midzuno (L-M) sampling design in terms of percent relative bias and MSE.
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The benefits of two-step calibration estimator are also demonstrated using real life data.
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1 Introduction

The prime objective of finite sampling theory is to develop such methodology which
provides reliable estimates of the population parameters viz. population mean, total,
ratio etc. by incorporating valid and proper additional informations. These additional
information are also known as auxiliary information and are used to obtain the im-
proved estimator of population mean or total by means of ratio method of estimation.
In this method of estimation, information on auxiliary variable is available which is
linearly related to the variable under study and is utilized to estimate the parameter
(s). Whereas, in some practical situations, the variable under study and its associated
auxiliary variable are negatively correlated. For example, a negative correlation exists
between the age of individuals and their sleeping hours in general, height of sea level
and temperature etc. In these situations, ratio estimator does not perform well and
thus the product estimator, developed by (Murthy, 1964), seems a good alternative.

Deville and Sarndal (1992) considered a new method of calibration for designing
weights, by incorporating additional information in the (Horvitz and Thompson, 1952)
estimator to improve the parameter(s) estimates. Based on their method, an estimator
is developed by (Sud et al., 2014) for the cases with negatively correlated study and
auxiliary variables, which outperforms product estimator in terms of bias and mean
squared error criterion. The available literature is enriched with a class of estimators
based on their proposed calibration methods. (Singh, 2004), (Singh, 2006), (Singh, 2012),
(Sud et al., 2014), (Farrell and Singh, 2002), (Farrell and Singh, 2005), (Wu and Sitter,
2001), (Estevao and Sarndal, 2003), (Kott, 2003), (Montanari and Ranalli, 2005), (Rueda
et al., 2006), (Rai et al., 2018), (Raiet al., 2020), (Alka et al., 2021), (Alka et al., 2021)
derived different efficient calibrated estimators. The two-step technique is proposed
by (Singh and Sedory, 2016) for the calibration of design weights for linear relationship
between auxiliary and study variables. Further, (Alka et al., 2019) used the same two-
step calibration technique using two auxiliary variable in sample surveys. (Alam and
Shabbir, 2020) enhanced the accuracy of the estimator of the finite population mean
using auxillary information in the ranks of the auxiliary variable in stratified random
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sampling design.

Now, as far as the negative correlation between the study and auxiliary variables is
concerned, the available literature indicates that very few studies have been carried out
on a two-step calibration technique for the inverse relationship. Therefore, the present
literature encouraged us to introduce a two-step regression-type calibration based
estimator under the assumption that a negative correlation exists between the study and
auxiliary variables. Furthermore, the Mean Square Error (MSE) properties are derived
for the proposed estimator and values of the proportionality constant are obtained
theoretically. In order to judge the performance of the proposed estimator, the percent
Relative Bias (RB%) and Percent Relative Mean Square Error (RMSE%) are evaluated by
using a simulation study under SRSWOR and Lahiri-Midzuno (L-M) sampling designs.
In addition, an application of the proposed estimator is shown using Sweden revenue
data (Särndal et al., 1992), where the effect of the number of municipal employees
on the total number of seat revenue for 284 different municipalities is considered.
The very basic properties of such calibration approach based estimators are already
developed in the literature of survey sampling. The fundamental problem of such
estimators are related with their optimality condition for Bias and MSE’s and their real-
life applications under such situation are questionable regarding these issues. Here, in
the present article, such issues are also considered and an attempt is made to obtain
better solution.

2 Proposed Estimator

Let us consider a case where information on one auxiliary variable is available. Suppose
there is a finite population Ω = {1, 2, ...,N} from which a probability sample s(s ∈ Ω) of
size n is drawn following a sampling design denoted by p(.). The first- and second-
order inclusion probabilities πi = P(i ∈ s) and πi j = P(i, j ∈ s) are assumed to be
strictly positive, ∀ i, j ∈ Ω. The study and the auxiliary variables are denoted as y
and x, respectively, and further let (yi, xi) denote the values taken by the ith unit in the
population by both y and x, i ∈ Ω. Let the population total of the auxiliary variable
X =

∑ N
i=1xi be known. One more assumption can be made that the investigator has

access to the information on the unit-level xi, if not then at least the population total of
the inverse values of xi, i.e., X′ =

∑ N
i=1(1/xi) is known.

The purpose is to estimate the total Y =
∑ N

i=1yi of population. The (Horvitz and
Thompson, 1952) estimator for population total Y is expressed as ŶHT =

∑n
i=1 diyi and
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that for the population total of inverse values of xi is X̂′HT =
∑n

i=1
di

xi
,where, for di = 1/πi

are design weights. (Deville and Sarndal, 1992) proposed the calibrated estimator of
the population total Y as:

Ŷcal =

n∑
i=1

wiyi , (2.1)

where wi are modified calibrated weights obtained by minimizing the chi-square dis-

tance function
1
2
∑n

i=1
(wi − di)2

diqi
subject to the constraints

n∑
i=1

wi

xi
=

N∑
i=1

1
xi
, (2.2)

and q′i s are known positive weights and are usually considered as 1, but (Deville and
Sarndal, 1992) also motivated to use unequal weights for the purpose.

2.1 Two- Step Calibration based Estimator

Under this technique, the calibration weights wi are set proportional to the design
weights di, that is

wi ∝ di, (2.3)

or equivalently

wi = cidi =⇒

n∑
i=1

wi =

n∑
i=1

cidi , (2.4)

where ci are constants of proportionality, and can be determined on the basis of dif-
ferent options considered by an investigator. Now, we use the method of Lagrange’s
multiplier for minimization of function given below

L1 =
1
2

n∑
i=1

(wi − di)2

di
− λ1

 n∑
i=1

wi

xi
−

N∑
i=1

1
xi

 − λ2

 n∑
i=1

wi −

n∑
i=1

cidi

 , (2.5)

where λ1 and λ2 are the Lagrange multipliers. The value of qi is considered as 1.
Differentiating the above equation with respect to wi and setting equal to 0, we have

wi = di

(
1 + λ1

1
xi

+ λ2

)
. (2.6)
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Substituting the value of wi in Eq.(2.2) and Eq.(2.4), we have

λ1

n∑
i=1

di

x2
i

+ λ2

n∑
i=1

di

xi
=

N∑
i=1

1
xi
−

n∑
i=1

di

xi
. (2.7)

and

λ1

n∑
i=1

di

xi
+ λ2

n∑
i=1

di =

n∑
i=1

cidi −

n∑
i=1

di . (2.8)

On solving further and replacing the values of λ1 and λ2 in wi, the proposed calibrated
estimator based on modified weight is obtained as

Ŷcal,1 = ŶHT + β̂1

(
X′ − X̂′HT

)
+ β̂2

n∑
i=1

(ci − 1)di , (2.9)

where

β̂1 =

∑n
i=1 di

∑n
i=1

diyi

xi
−

∑n
i=1 diyi

∑n
i=1

di

xi∑n
i=1

di

x2
i

∑n
i=1 di −

(∑n
i=1

di

xi

)2 ,

β̂2 =

∑n
i=1 diyi∑n

i=1 di
+



∑n
i=1 diyi∑n

i=1 di

(∑n
i=1

di

xi

)2

−
∑n

i=1
diyi

xi

∑n
i=1

di

xi∑n
i=1

di

x2
i

∑n
i=1 di −

(∑n
i=1

di

xi

)2


.

• Special Cases

1. If ci = 1, for all i ∈ s, the proposed estimator in Eq.(2.9) reduces to the estimator
derived by (Sud et al., 2014).

2. If ci =
N
n
πi, for all i ∈ s, the proposed estimator in Eq.(2.9) reduces to

Ŷcal,1 = ŶHT + β̂1

(
X′ − X̂′HT

)
+ β̂2N

1 −
1
n

n∑
i=1

di

 . (2.10)
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• Some Properties

Let us define some notations to study different properties of the proposed esti-
mator.

ε1 =
ŶHT

Y
− 1, ε2 =

X̂′HT

X′
− 1, δ1 =

β̂1

β1
− 1, δ2 =

β̂2

β2
− 1, η =

∑n
i=1(ci − 1)di∑N

i=1(ci − 1)
− 1 ,

such that E(ε1) = E(ε2) = E(δ1) = E(δ2) = E(η) = 0. Rewriting Eq.(2.9) by using
above notations, we have

Ŷcal,1 = Y + Yε1 − β1ε2X′ − β1δ2ε2X′ + β2

 N∑
i=1

ci −N

 (1 + η + δ2 + ηδ2).

If ci = c, this estimator will be simplified to the following form:

Ŷcal,1 = Y + Yε1 − β1ε2X′ − β1δ2ε2X′ + β2N [c − 1] (1 + η + δ2 + ηδ2).

Taking expectation on both sides and setting the bias of the estimator equal to 0,
we have

c = 1 +
β1E(δ1ε2)X′

Nβ2(1 + E(ηδ2))
. (2.11)

The above Eq.(2.11) gives the obvious choice of proportionality constant c in order
to obtain an exactly unbiased estimator i.e. it should be a constant other than
unity. Now, the expression of MSE is obtained as

MSE(Ŷcal,1) = E
[
Yε1 − β1ε2X′ − β1δ2ε2X′ + β2N (c − 1) (1 + η + δ2 + ηδ2)

]2 .

By taking expected values and neglecting higher order terms, we get

MSE(Ŷcal,1) =V(ŶHT) + β2
1V(X̂′HT) − 2β1Cov(ŶHT, X̂′HT)

+ (c − 1)2
[
N2β2

2 + N2V(β̂2) + β2
2V(N̂) + 4Nβ2Cov(β̂2, N̂)

]
− 2(c − 1)

[
Nβ2Cov(X̂′HT, β̂1) + Nβ1Cov(X̂′HT, β̂2)

+β1β2Cov(X̂′HT, N̂) −NCov(ŶHT, β̂2) − β2Cov(ŶHT, N̂)
]
. (2.12)

On setting
MSE(Ŷcal,1)

(c − 1)
= 0 and keeping the same constants β1 and β2 we have,

c = 1 +
Nβ2Cov(X̂′HT, β̂1) + Nβ1Cov(X̂′HT, β̂2) + β1β2Cov(X̂′HT, N̂) −NCov(ŶHT, β̂2) − β2Cov(ŶHT, N̂)

N2β2
2 + N2V(β̂2) + β2

2V(N̂) + 4Nβ2Cov(β̂2, N̂)
.
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2.2 Calibration-based Estimator with Double Use of Auxiliary Variable

Now, to use auxiliary information in another way by means of their ranks. Let Ri(x), i =
1, 2, · · · ,N be the rank of ith unit of auxiliary variable (according to their magnitude) in
the population. Along with the two constraints defined in Eq.(2.2) and Eq.(2.4), let us
define another rank-based constraint [(Alam and Shabbir, 2020)] defined by

n∑
i=1

wiri =

N∑
i=1

Ri , (2.13)

where ri(x), i = 1, 2, · · · ,n is the rank of ith unit of X in the sample. Again this is the prob-
lem of optimization thus, using the method of Lagrange’s multiplier for minimization
of a function,

L2 =
1
2

n∑
i=1

(wi − di)2

diqi
− λ3

 n∑
i=1

wi

xi
−

N∑
i=1

1
xi

 − λ4

 n∑
i=1

wi −

n∑
i=1

cidi

 − λ5

 n∑
i=1

wiri −

N∑
i=1

Ri

 , (2.14)

where λ3, λ4 and λ5 are the Lagrange multipliers. Differentiating the above equation
with respect to wi and setting it equal to 0, we have

wi = di + diqi

(
λ3

1
xi

+ λ4 + λ5ri

)
. (2.15)

The calibtration estimator based on the double use of the auxiliary variables (see Ap-
pendix), is obtained as

Ŷcal,2 = ŶHT + β̂3

 N∑
i=1

1
xi
−

n∑
i=1

di

xi

 + β̂4

 n∑
i=1

cidi −

n∑
i=1

di

 + β̂5

 N∑
i=1

Ri −

n∑
i=1

diri

 , (2.16)

where

β3 =

(
d f − e2

)∑N
i=1

diqiyi

xi
+

(
ce − b f

)∑n
i=1 diqiyi + (be − cd)

∑n
i=1 diqiyiri

det(A)
,

β4 =

(
ce − b f

)∑N
i=1

diqiyi

xi
+

(
a f − c2

)∑n
i=1 diqiyi + (bc − ae)

∑n
i=1 diqiyiri

det(A)
,

β5 =

(be − cd)
∑N

i=1
diqiyi

xi
+ (bc − ae)

∑n
i=1 diqiyi +

(
ad − b2

)∑n
i=1 diqiyiri

det(A)
.
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3 Simulation Study

This section presents the design of simulation study to check the performance of the
proposed estimators and their results. The aim of this study is to introduce a two-
step calibration technique for inverse relationship between x and y. In addition, we
compared the efficiency of proposed estimator under SRSWOR and L-M designs using
percentage RB (%) and percentage Root MSE (RMSE) (%) as performance criteria.
We follow the simulation scheme of Sud et al. (2014). The values of the estimators
are replicated M=50000 times using R-software. The percent RB, RMSE and RE of
proposed estimator Ŷprop can be given as

RB(Ŷp) =
1
M (

∑M
i=1 Ŷp) − Y

Y
× 100%, (3.1)

RMSE(Ŷp) =

√
1
M

∑M
i=1(Ŷp − Y)2

Y
× 100%, (3.2)

PRE(Ŷp) =
MSE(Ŷe)

MSE(Ŷp)
× 100%, (3.3)

where Ŷp is the proposed estimators derived in Eqs. (2.9) and (2.16) and Ŷe is the existing
calibration estimator. The model yi = β1 + β2x−1

i + εi ; i = 1, 2, ...,N is considered,
where N refers to be population size, εi is generated from normal distribution with
mean µ = 0 and σ2

ε = 0.25, 1.00, 1.50, 2.00, and auxiliary variable xi is generated from
normal distribution with mean µ = 5 and σ2

x = 0.50, 1.00, 2.00, and fixed the values
of β j, j = 1, 2. The description of the simulation parameter is given in Table 1, where
N = 1000 and twelve different population datasets (A1,A2,A3, ...) are generated. The
inverse relationship between x and y is given in Table 1. Furthermore, in order to check
the effect of sample sizes on the proposed two-step calibration estimator, six different
combinations of sample size such as n = 50, 100, 150, 200, 250, 300 are considered.

4 Real Data based Application

To check the efficiency of proposed two-step inverse calibration estimatorThe Sweden
data among its (N=284) municipalities is considered from appendix B, (Särndal et al.,
1992) to check the efficiency of proposed two-step inverse (for details see appendix B,
(Särndal et al., 1992)). In this dataset, two variables are used i.e. total number of seats
revenue as y and the number of municipal employees in 1984 as x. The objective of
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this application is to estimate the population total Y with known
∑N

i=1
1
xi

. Samples of

proportion 5%, 10%, 15%, 20%, 25% and 30% of total population are drawn under two
sampling designs i.e. SRSWOR and L-M scheme.

Moreover, to check the efficacy of the proposed two-step inverse calibration estimat-
or with double use of auxiliary variable, the Iris dataset used by (Fisher, 1936) is
considered. This data set consists of 3 classes with 50 instances each, where each class
refers to a type of iris plant. The study variable is taken as a sepal width (cm) and
the auxiliary variable as sepal length (cm) with a correlation of -0.10937 between them.
The proposed estimator is compared with the product estimator and the estimator
developed by (Sud et al., 2014) as defined below, in terms of their PRE’s.

Ŷprod = ȳ
x̄
X̄
, (4.1)

ŶSud = ŶHT + β̂π

 N∑
i=1

1
xi
−

n∑
i=1

di

xi

 , (4.2)

where

β̂π =

∑n
i=1 di

∑n
i=1

diyi

xi
−

∑n
i=1 diyi

∑n
i=1

di

xi∑n
i=1

di

x2
i

∑n
i=1 di −

(∑n
i=1

di

xi

)2 ,
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Table 1: Simulation Parameter Combination

Parameter Combination σ2
x σ2

e Cor(y, x) Cor(y, 1
x )

A1 0.50 0.25 -0.65011 0.65359
A2 0.50 1.00 -0.17835 0.18215
A3 0.50 1.50 -0.10882 0.10389
A4 0.50 2.00 -0.08566 0.08103
B1 1.00 0.25 -0.83495 0.88126
B2 1.00 1.00 -0.47283 0.48141
B3 1.00 1.50 -0.31475 0.32417
B4 1.00 2.00 -0.21301 0.22195
C1 2.00 0.25 -0.19111 0.99858
C2 2.00 1.00 -0.18766 0.97949
C3 2.00 1.50 -0.18766 0.97949
C4 2.00 2.00 -0.16228 0.92429
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Table 2: RB(%) and RMSE(%) of proposed estimator Ŷcal,1 under SRSWOR design

Sample RB RMSE RB RMSE RB RMSE RB RMSE

Proportion (%) A1 A2 A3 A4

5 0.00038 0.06881 -0.00178 0.26432 0.00223 0.40479 0.00762 0.53503
10 0.00009 0.04715 -0.00066 0.18162 0.00239 0.27638 0.00189 0.36604
15 0.00018 0.03718 -0.00050 0.14186 0.00084 0.21963 0.00343 0.29190
20 0.00031 0.03126 0.00006 0.11956 -0.00027 0.18434 -0.00050 0.24409
25 0.00014 0.02700 -0.00078 0.10374 0.00045 0.15939 0.00079 0.21080
30 0.00014 0.02393 0.00025 0.09140 0.00101 0.14056 0.00133 0.18702

B1 B2 B3 B4

5 -0.00016 0.06830 0.00205 0.26352 0.00010 0.40609 0.00013 0.53543
10 -0.00053 0.04705 0.00063 0.18070 0.00126 0.27555 0.00235 0.36684
15 -0.00011 0.03716 0.00072 0.14215 0.00260 0.21988 0.00139 0.28874
20 -0.00022 0.03112 0.00065 0.12071 0.00067 0.18323 0.00058 0.24276
25 0.00010 0.02689 0.00019 0.10361 0.00075 0.15920 0.00032 0.21128
30 -0.00001 0.02368 0.00142 0.09155 0.00076 0.14062 0.00002 0.18631

C1 C2 C3 C4

5 0.00002 0.06845 0.00683 0.26118 -0.01778 0.39919 0.00977 0.53094
10 0.00019 0.04703 0.00386 0.17877 -0.00971 0.27429 0.00751 0.36569
15 0.00033 0.03679 0.00346 0.14134 -0.00990 0.21689 0.00635 0.28949
20 -0.00003 0.03104 0.00206 0.11904 -0.00653 0.18242 0.00506 0.24248
25 0.00004 0.02689 0.00250 0.10355 -0.00487 0.15788 0.00364 0.20964
30 0.00011 0.02361 0.00198 0.09077 -0.00457 0.13923 0.00299 0.18448
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Table 3: RB(%) and RMSE(%) of proposed estimator Ŷcal,1 under L-M design

Sample RB RMSE RB RMSE RB RMSE RB RMSE

Proportion (%) A1 A2 A3 A4

5 -0.01692 2.80011 0.00020 2.83086 -0.04339 2.84582 -0.01841 2.85918
10 -0.00536 0.88070 -0.00488 0.89370 -0.00222 0.91894 -0.00356 0.94794
15 -0.00504 0.43372 -0.00238 0.45550 0.00098 0.48578 -0.00688 0.52304
20 -0.00373 0.25726 0.00183 0.28041 -0.00060 0.31601 0.00025 0.35325
25 0.00023 0.16920 -0.00119 0.19478 -0.00118 0.22894 0.00121 0.26554
30 -0.00045 0.11575 -0.00037 0.14547 0.00064 0.17919 0.00081 0.21747

B1 B2 B3 B4

5 -0.03433 1.44462 -0.03362 1.46907 -0.04539 1.49526 -0.02535 1.54558
10 -0.01077 0.45528 -0.01125 0.49047 -0.01101 0.53140 -0.00837 0.58788
15 -0.00552 0.22678 -0.00551 0.26501 -0.00200 0.31340 -0.00723 0.36783
20 -0.00285 0.13660 -0.00288 0.17798 -0.00332 0.22749 -0.00392 0.27854
25 -0.00188 0.09106 -0.00153 0.13487 -0.00110 0.18020 -0.00110 0.22893
30 -0.00127 0.06472 -0.00135 0.10896 -0.00114 0.15175 0.00032 0.19550

C1 C2 C3 C4

5 -0.04409 1.46436 -0.03697 1.47113 -0.04062 1.52060 -0.04198 1.55579
10 -0.00773 0.88371 -0.00505 0.89370 -0.01337 0.93985 0.00003 0.95816
15 0.00035 0.68633 -0.00291 0.69584 -0.00059 0.73563 -0.00237 0.75268
20 0.00157 0.57416 -0.00237 0.58364 -0.00414 0.61489 0.00138 0.62561
25 -0.00096 0.49533 0.00132 0.50229 -0.00569 0.52679 0.00403 0.54282
30 0.00430 0.43489 0.00216 0.44501 -0.00081 0.46569 0.00128 0.47660

Table 4: RB (%) and RMSE (%) of proposed estimator Ŷcal,1 under SRSWOR design

Sample Proportion (%) RB RMSE
5 9.49 34.87
10 5.06 26.20
15 4.64 20.43
20 3.91 18.54
25 1.09 16.83
30 1.36 14.77
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Table 5: RB (%) and RMSE (%) of proposed estimator Ŷcal,1 under L-M design

Sample Proportion (%) RB RMSE
5 12.55 60.10
10 6.30 39.20
15 3.69 31.03
20 2.66 26.45
25 2.02 23.79
30 1.43 21.16

Probability samples of various proportion sizes at an increment of 5% are drawn
using SRSWOR sampling scheme. . The PRE values are calculated for the proposed
estimators (Ŷcal,1 and Ŷcal,2) with respect to the existing estimators which are shown in
Table 6. The whole procedure is replicated 500 times using R-software.

Table 6: PRE of Proposed Calibration Estimators (Ŷcal,1 and Ŷcal,2)

Sample
Ŷcal,1 Ŷcal,2

Proportion (%) Ŷprod ŶSud Ŷprod ŶSud

5 127.92 6539.54 151.85 7762.51
10 163.14 6840.45 181.64 7616.49
15 137.57 1525.81 143.05 4996.99
20 151.48 5282.29 159.58 5564.55
25 146.91 1624.04 154.46 3551.96
30 173.08 3210.93 161.51 2996.23

5 Results and Discussion

Tables 2 and 3 show the result of RB (%) and RMSE (%) of population total, Y, under
SRSWOR and L-M sampling designs, respectively. It is found that, as the inverse rela-
tionship or the degree of correlation decreased, the percent RB and RMSE is increased.
When the sample size increased, the percent relative bias and root mean squared error
decreased. For instance, the minimum RMSE is obtained for 30 % sample proportion
for B1 population set (0.02361) and maximum for 5 % sample proportions for B4 pop-
ulation set (0.53543) under SRSWOR sampling design. Whereas, under L-M sampling
scheme, the minimum and maxmum RMSE values are obtained for B1 population set
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(0.06472) using 30 % sample proportion and A4 population set (2.85918) using 5 %
sample proportion respectively. It is noted that the sample size (or proportion) has a
significant effect on the percent relative root mean squared error. The two-step calibra-
tion method always performed quite well under SRSWOR design instead of the L-M
design for the simulation study.

From the Tables 4 and 5, it can be concluded empirically that the proposed estimator
under SRSWOR design performed consistently better than for L-M design in terms of
percent relative bias and percent relative root mean squared error. On increasing
sample proportions from 5 % to 30 %, a decrease of 57.64 % and 64.79 % in RMSE
values is observed under SRSWOR and L-M sampling designs respectively. Further, a
decrease of 85.66 % and 88.60 % in RB values is obtained for same sampling proportions
increasing patterns under SRSWOR and L-M sampling designs respectively. This
reveals that the suggested estimator shows better efficiency as compared to existing
dataset for real life application also.

The PRE values of the proposed calibration estimators (Ŷcal,1 and Ŷcal,2) with respect
to the existing calibration estimators (Ŷprod and ŶSud) is presented in Table 6. The
maximum PRE is obtained for 10 % and 5 % sample proportions for Ŷcal,1 (6840.45)
and Ŷcal,2 (7762.51) respectively. It can be observed that, both proposed estimators
are considerably efficient compared to the (Sud et al., 2014) estimator and product
estimator available in the literature.

6 Concluding Remarks

In this article, a new calibrated estimator under the two-step calibration technique
given by (Singh and Sedory, 2016) is proposed for the inverse relationship between x
and y. Moreover, the properties of the proposed estimator have been studied. The
result of the proposed two-step calibtration estimator is also extended for the case of
double use of auxiliary variable. The simulated and real application results show that
the proposed estimator performs quite well under basic SRSWOR design. Since large
sample sizes (e.g., when sampling fraction was 0.25 or more) show a visible gain in
efficiency of the proposed estimator with respect to RB(%) and RMSE(%) under both
sampling designs. Also, the calibrated estimator with double use of auxiliary variable
is found to perform better than the simple two-step inverse calibration estimator, prod-
uct estimator and (Sud et al., 2014) estimator in terms of PRE.
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A Appendix

On substituting the value of wi from Eq.(2.15) in Eqs.(2.2), (2.4) and (2.13), we get a
system of linear equations in lambdas, whose matrix form is given by
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After solving the system of linear equations, we get

λ3 =

(
d f − e2) (∑N
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1
xi
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di
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(
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)
det(A)

,
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) (∑N
i=1

1
xi
−

∑n
i=1

di

xi

)
+

(
a f − c2) (∑n

i=1 cidi −
∑n

i=1 di
)

+ (bc − ae)
(∑N

i=1 Ri −
∑n

i=1 diri

)
det(A)

,
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,

where det(A) = ad f −ae2
−b2 f +2bce−dc2. On putting these values of λ3, λ4 and λ5 in Eq.

(2.15), the optimum calibrated weights are obtained which are used for the derivation
of final form of calibration estimator in Eq.(2.16).


