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1 Introduction

In statistical theory and practice, usually, specification of a probability distribution
can be made in terms of the distribution function or by the quantile function. The
new methodology has received more attention among scientists in literature than its
traditional method. The concept and methodologies based on quantile functions are
mainly applicable when the traditional approach based on distribution functions is
either complex or fails to give desired results for the study. Quantile functions are
the best replacement for the distributions in modelling and analyzing statistical data.
The two methodologies convey the same information regarding the distribution func-
tion but they differ in interpretation style which characterizes their unique behaviour.
Many authors carried out a detailed study on quantile function, its properties, and its
usefulness in model identification. Further, quantile functions are also considered to be
more useful in situations where the distribution functions do not have tractable forms.
For related works, one can refer to Ramberg and Schmeiser (1974), Gilchrist (2000),
Hankin and Lee (2006), Sankaran and Nair (2009), Nair et al. (2011), Aswin et al.
(2020) and Dileep and Sankaran (2000). For works related to the study of non-quantile
functions in the context of information measures, one may refer to Di Crescenzo and
Longobardi (2002) and Rajesh and Sunoj (2019). Recently, the study of information
measures using quantile function are introduced by many authors in the literature.
Some of the recent references are krishnan et al. (2020), Sunoj et al. (2018), krishnan
et al. (2019) and Kayal and Tripathy (2018).

The ageing process receives special attention in reliability analysis concerning sys-
tem components and devices under examination. Based on this concept, Kotz and
Shanbhag (1980) introduced a new measure called the vitality function and obtained
several characterizations for lifetime distributions. This measure has been considered
as a helpful tool in modeling lifetime data. Nair and Rajesh (2000) introduced the no-
tion of geometric vitality function (GVF), representing the geometric mean of lifetimes
of components that have survived up to time t. One of the important applications of
the geometric mean has been observed in the stock market and was discussed in detail
by Cover and Thomas (2006). GVF can be considered as a useful tool in analyzing
lifetime data similar to the vitality function. Accordingly, Sunoj et al. (2009) discussed
GVF for the doubly (interval) truncated random variables. Later, Sathar et al. (2010)
extended the definition of GVF to a bivariate setup and provided characterizations of
some bivariate models using the functional form of the bivariate GVF. Further, Rajesh
et al. (2014) proposed a nonparametric kernel-type estimator for the GVF both in the
case of complete and censored samples. Gayathri and Sathar (2021) introduced past
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geometric vitality function (PGVF) in past life and studied several exciting properties.
Assume Y is a non-negative random variable that has an absolutely continuous distri-
bution function (cdf) F and probability density function (pdf) f with E

(
log (Y)

)
< ∞,

then the PGVF is defined as

log Ḡ(t) = E
[

log Y|Y ≤ t
]

=
1

F (t)

∫ t

0
log y f

(
y
)

dy. (1.1)

Simplification of (1.1) gives

log
(

Ḡ (t)
t

)
= −

1
F (t)

∫ t

0

F
(
y
)

y
dy.

The present paper introduces a quantile-based past geometric vitality function and
studies its essential properties. The proposed measure has several advantages. First,
this measure uniquely determines the corresponding quantile functions. Second, we
derive past geometric vitality functions for certain quantile functions which do not
have an explicit form for corresponding distribution functions. Finally, we provide an
application for the new measure based on Pareto distribution which is useful in lifetime
data analysis.

The outline of the article is described as follows. Section 2 introduces past geometric
vitality function in terms of quantile function and studies some properties such as
characterization, ageing classes and stochastic comparisons. Section 3 defines rth order
statistics of the quantile-based PGVF and studies its properties. Section 4 discusses an
application of the quantile-based PGVF as a risk measure. This section also compares
this new risk measure with right tail deviation measure and variance. In Section 5,
simulation studies and real life data application to investigating the performance of
quantile-based PGVF are carried out. A brief conclusion of the present study is given
in Section 6.

2 Quantile-based PGVF

In this section, we propose the quantile version of PGVF defined in (1.1). First, we recall
some notations and preliminary concepts using quantile function. Let Y be a random
variable with cdf F(·), then the corresponding quantile function denoted by Q(·) and is
defined as

Q(u) = F−1 (u) = in f
{
y : F

(
y
)
≥ u

}
, 0 ≤ u ≤ 1. (2.1)
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If f (·) is the pdf of Y, then f (Q(u)) is called the density quantile function. The derivative
of Q(u), q(u) = Q′(u) is known as the quantile density function of Y. From (2.1), we
have F(Q(u)) = u and differentiating it with respect to u yield

q(u) f (Q(u)) = 1. (2.2)

From (2.2) and substituting y=Q(p) in (1.1), we proposed a new reliability measure for a
non-negative random variable Y in terms of quantile function, namely quantile-based
PGVF ( QPGVF), which is denoted by log Ḡ(Q(u)) and is defined as

log Ḡ(Q(u)) =
1

F (Q(u))

∫ Q(u)

0
log Q(p) f

(
Q(p)

)
dQ(p). (2.3)

Equation (2.3) can be simplified as

log Ḡ(Q(u)) =
1
u

∫ u

0
log Q(p) dp. (2.4)

In the following example, we evaluate log Ḡ(Q(u)) for the power-Pareto distribution,
which does not have an explicitly known distribution function but has a closed-form
quantile function.

Examples 2.1. Let Y be a random variable of the power-Pareto distribution with corre-
sponding quantile function

QY(u) =
cuλ1

(1 − u)λ2
, c > 0, λ1, λ2 > 0. (2.5)

QPGVF corresponds to (2.5) is

log Ḡ(Q(u)) = log c − λ1 + λ2 + λ1 log(u) + λ2
1 − u

u
log(1 − u). (2.6)
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Figure 1: QPGVF for power-Pareto distribution with various values of parameters.

Figure 1 provides the plot of log Ḡ(Q(u)) for (2.5) for different values of λ1 , λ2 and
c. From Figure 1, it is clear that log Ḡ(Q(u)) is an increasing function in terms of various
values of λ1 , λ2 and c. By integrating by parts in (2.4), we get

log Ḡ(Q(u)) = log Q(u) −
1
u

∫ u

0

p q(p)
Q(p)

dp. (2.7)

Differentiating (2.7) with respect to u, we get the following relationship

A(u) =
d

du log Ḡ(Q(u))
q(u) log Q(u)

+
log Ḡ(Q(u))

uq(u) log Q(u)
, (2.8)

where A(u) = 1
u q(u) , is the reversed hazard quantile function. From (2.8), we can write

log Ḡ(Q(u)) =

∫ u

0
A(p) log Q(p)q(p)dp + K,

where K denotes the constant of integration. In the following theorem, we discuss the
uniqueness property of QPGVF .

Theorem 2.1. Quantile-based past geometric vitality function uniquely determines the corre-
sponding quantile function.

Proof. Differentiating (2.4) with respect to u yields

Q(u) = exp
[
log Ḡ(Q(u)) + u log Ḡ

′

(Q(u))
]
. (2.9)
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Using (2.9), one can easily derive the corresponding quantile function if we know the
QPGVF and hence the proof is complete. �

The following example illustrates Theorem 2.1.

Examples 2.2. Suppose Y follows log-logistic distribution with quantile function

Q(u) =
1
α

( u
1 − u

) 1
β

, α, β > 0. (2.10)

QPGVF corresponds to (2.10) simplifies to

log Ḡ(Q(u)) = − logα +
1
β

[
log u +

1 − u
u

log(1 − u)
]
. (2.11)

Conversly, assume (2.11) holds. Then using (2.9), we obtain

Q(u) = exp
[
− logα +

1
β

log u +
1
β

1 − u
u

log(1 − u) −
u
β

(
log(1 − u)

u
+

1 − u
u2 log(1 − u)

)]
,

and, on simplification, we get (2.10).

In the following we define a class of distributions using QPGVF.

Definition 2.1. A non-negative random variable Y is said to have increasing (decreas-
ing) QPGVF denoted as IQPGVF (DQPGVF) if log Ḡ (Q(u)) is increasing (decreasing)
in u ≥ 0.

The next theorem gives the necessary and sufficient condition for log Ḡ (Q(u)) to be
an increasing (decreasing) function of u.

Theorem 2.2. Let Y be a non-negative random variable. Y has IQPGVF (DQPGVF) if and
only if log Ḡ (Q(u)) ≤ (≥) log Q(u).

Proof. For a DQPGVF, we have
d

du
log Ḡ (Q(u)) ≤ 0. By using (2.8), we get the result

as log Ḡ (Q(u)) ≥ log Q(u). The proof of the converse part is easy by retracing the
above-given steps. In a similar manner for an IQPGVF, we can obtain the result
log Ḡ (Q(u)) ≤ log Q(u). Hence the theorem is proved. �

In Table 1, the QPGVF of some distributions are derived and the monotonicity of
the QPGVF is established.
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Table 1: Quantile functions, QPGVF and monotone nature.

Distribution Quantile functions log Ḡ(Q(u)) Monotone nature
Pareto σ(1 − u)

−1
α log σ + 1

α + 1
α

(1−u)
u log(1 − u) IQPGVF

DRHR

Log-logistic 1
α ( u

1−u )
1
β − logα + 1

β [log(u) + 1−u
u log(1 − u)] IQPGVF

DRHR

Power αu
1
β logα − 1

β [1 − log u] IQPGVF
DRHR

Exponential 1
λ [− log(1 − u)] − logλ − 1

u

∫ u
0 log(log(1 − p))dp IQPGVF

BT

Remark 1. Since the monotonicity of the reversed hazard rate function and the reversed
hazard quantile function are the same, we say that Y has an increasing (decreasing)
reversed hazard rate [IRHR (DRHR)] if reversed hazard quantile of Y, denoted as AY(u)
is increasing (decreasing) in u. In Table 1, we studied the monotonic nature of QPGVF
using some distributions which belong to IRHR (DRHR) classes. From Table 1, we can
find that IRHR (DRHR) property does not imply IQPGVF (DQPGVF) property.

Let us recall some definitions of stochastic orderings from Shaked and Shanthiku-
mar (2007). For quantile-based stochastic orderings, one may refer to Nair et al.
(2013). In the same way, the order based on QPGVF for past lifetime is given through
the following definition.

Definition 2.2. Let W and Y be two non-negative random variables then W ≤QPGVF Y,
if log ḠW(QW(u)) ≤ log ḠY(QY(u)) for all 0 < u < 1.

The following example illustrates Definition 2.2.

Examples 2.3. Suppose W∼ U(0, a) and Y∼ U(0, b) (if a < b) then the corresponding
quantile functions are QW(u) = au and QY(u) = bu, respectively.

Using (2.4), we get

log ḠW(QW(u)) − log ḠY(QY(u)) = log a + (−1 + log(u)) −
(
log b + (−1 + log(u))

)
< 0.
(2.12)

From (2.12), we have W ≤QPGVFY.

Definition 2.3. Let W and Y be two non-negative random variables then W ≤st Y, if
QW(u) ≤ QY(u) for all 0 < u < 1.
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Theorem 2.3. If W and Y are two random variables such that W ≤st Y, then W ≤QPGVF Y.

Proof. if W ≤st Y then QW(u) ≤ QY(u) and consequently∫ u

0
log QW(p)dp ≤

∫ u

0
log QY(p)dp,

or equivalently
1
u

∫ u

0
log QW(p)dp ≤

1
u

∫ u

0
log QY(p)dp.

Thus log ḠW(QW(u)) ≤ log ḠY(QY(u)). �

Definition 2.4. Let W and Y be two non-negative random variables then W ≤disp Y, if
QY(u) −QW(u) is increasing in u ∈ ( 0, 1).

Theorem 2.4. If W and Y are two random variables such that W ≤disp Y, then W ≤QPGVF Y.

Proof. if W ≤disp Y then QY(u) −QW(u) is increasing in u. Using (2.4),

log ḠW(QW(u)) =
1
u

∫ u

0
log QW(p)dp ≤

1
u

∫ u

0
log QY(p)dp = log ḠY(QY(u)).

Thus log ḠW(QW(u)) ≤ log ḠY(QY(u)). �

Definition 2.5. Let W and Y be two non-negative random variables such that AW(u) ≤
AY(u) for all u ∈ ( 0, 1). Then W is said to be smaller than Y in reversed hazard quantile
order (RHQ), denoted by W ≤RHQ Y.

In the following theorem, we consider reversed hazard quantile order to compare
two random variables based on QPGVF.

Theorem 2.5. If W and Y are two random variables such that W ≤RHQ Y, then W ≤QPGVF Y.

Proof. Let W ≤RHQ Y. So, AW(u) ≤ AY(u) implies

1
u

∫ u

0
AW(p) log QW(p)qW(p)dp ≤

1
u

∫ u

0
AY(p) log QY(p)qY(p)dp.

Thus, log ḠW(QW(u)) ≤ log ḠY(QY(u)). �

In the following example, we verify that the inequality obtained in the case of
QPGVF need not be the same in the case of PGVF and vice versa.
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Examples 2.4. Let W and Y follow the power distributions with pdf fW(w) = αwα−1, α >
0 and fY(y) = βyβ−1, β > 0, α ≥ β, respectively. Using (1.1), we have

log Ḡ(W, t) =

(
−1 + α log t

α

)
≥

(
−1 + β log t

β

)
= log Ḡ(Y, t).

Also, from Table 1, we have

log ḠW(QW(u)) =
1
α

[
−1 + log(u)

]
≤

1
β

[
−1 + log(u)

]
= log ḠY(QY(u)),

for 0 ≤ u ≤ 1. Hence W ≤QPGVF Y does not imply that W ≤QPGVF Y . Also, interchanging
the roles of W and Y implies that W ≤PGVF Y does not lead to W ≤PGVF Y .

Sunoj et al. (2013) defined quantile version of past entropy function (PQE) as

ψ̄Q(u) = 1 −
1
u

∫ u

0
log A(p)dp. (2.13)

In the following theorem, we obtain relationship between the QPGVF and PQE.

Theorem 2.6. Let Y be a non-negative random variable with QPGVF log Ḡ(Q(u)) and PQE
ψ̄Q(u). The relationship

ψ̄Q(u) − log Ḡ(Q(u)) = k, (2.14)

where k is a constant holds for all u ∈ (0, 1) if and only if Y follows power distribution with
quantile function given in Table 1.

Proof. Let (2.14) holds, using (2.13) and (2.4), we get∫ u

0
log A(p)dp +

∫ u

0
log Q(p)dp = (1 − k)u. (2.15)

Differentiating (2.15) with respect to u, we have

A(u) = K1[Q(u)]−1,

which is the reversed hazard function of power distribution and K1 = e1−k.
Conversely, let Y follows power with quantile function given in Table 1. By direct
calculation, we get

ψ̄Q(u) = log
α
β

+
β − 1
β

+
1
β

log u,

and
log Ḡ(Q(u)) = logα +

1
β
−

1
β

log u.

Now ψ̄Q(u) − log Ḡ(Q(u)) = k = 1 − log β, is a constant. �
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The relative performance of QPGVF with PQE for different life distributions are
shown in Table 2.

Table 2: Comaprison of QPGVF and PQE measures on specific lifetime distributions.

Distribution Quantile functions parameters log Ḡ(Q(u)) ψ̄Q(u)

Pareto σ(1 − u)
−1
c ,u ∈ (0, 1) c = 0.2, σ = 3 and u = 0.2 1.6357 1.7431

u=0.3 1.937 2.5106
u=0.65 4.0868 6.0708
u=0.8 -1.9221 -1.0177

Log logistic 1
α ( u

1−u )
1
c α = 5, c = 2 and u = 0.2 -2.8604 -2.4462

u=0.3 -2.6276 -2.1529
u=0.65 -2.1075 -1.3659
u=0.8 -1.9221 -1.0177

Power αu
1
σ α = 8, σ=0.2 and u = 0.2 -10.9677 -8.3583

u=0.3 -8.9404 -6.3309
u=0.65 -5.0745 -2.4650
u=0.8 -4.03628 -1.4268

On critically examining the values obtained in Table 2, it can be seen that there
are certain situations where the QPGVF is lower than the quantile-based past entropy
measure.

2 3 4 5
log G

˜
Q(u)

2

4

6

8

ψQ(u)

Figure 2: Graph of log Ḡ(Q(u)) against ψ̄Q(u) for Pareto distribution.
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In Figure 2 , we plot log Ḡ(Q(u)) against ψ̄Q(u) for different choices of u. We can
observe that QPGVF shows an increasing nature for various values of u. Furthermore,
we can conclude that QPGVF increases accordingly when the uncertainty contained in
the PQE shows an increasing nature.

3 Quantile-based PGVF of Order Statistics

Order statistics are widely applicable in many fields like reliability and survival anal-
ysis, quality control, goodness-of-fit tests, statistical inference and in probability and
statistics. In this section, we discuss the QPGVF of order statistics. Suppose Y1,Y2, ...,Yn
are independent and identically distributed (i.i.d) observations with cdf F(y) and
pdf f (y). If we arrange the observations in the increasing order of magnitude as
Y1:n ≤ Y2:n ≤ ... ≤ Yn:n, then the pdf of rth order statistic is given by

fr:n
(
y
)

=
1

B (r,n − r + 1)
[
F
(
y
)]r−1 [

1 − F
(
y
)]n−r f

(
y
)
, 1 ≤ r ≤ n, (3.1)

where B(m, k) denote the beta function given by

B(m, k) =

∫ 1

0
ym−1(1 − y)k−1dy; m, k > 0.

Suppose that (n − r + 1) - out- of- n system is functioning at time t, then log Ḡr:n(t)
represents the geometric mean of lifetimes of systems in the past period (0, t). Gayathri
and Sathar (2021) defined PGVF of r-th order statistics as follows:

log Ḡr:n(t) =
1

Fr:n(t)

∫ t

0
log y fr:n(y)dy, (3.2)

where Fr:n(t) =
∑n

i=r

(
n
i

)
[F (x)]i [1 − F (x)]n−i .Then, we define QPGVF of r-th order statis-

tics, log Ḡr:n(Q(u)) as

log Ḡr:n(Q(u)) =
1

Fr:n (Q(u))

∫ u

0
log Q(p) fr:n

(
Q(p)

)
dQ(p). (3.3)



66 V. L. Vijayan and E. I. Abdul Sathar

Putting F(Q(u)) = u, (3.1) becomes

fr:n (Q(u)) =
1

B (r,n − r + 1)
ur−1(1 − u)n−r f (Q(u)) , 1 ≤ r ≤ n

=
1

B (r,n − r + 1)
ur−1(1 − u)n−r 1

q(u)

=
gr(u)
q(u)

, (3.4)

where gr(u) = 1
B(r,n−r+1) u

r−1(1−u)n−r is the pdf of beta distribution. Using (3.4), (3.3) can
be written as

log Ḡr:n(Q(u)) =
B(r,n − r + 1)
Bu(r,n − r + 1)

∫ u

0
log Q(p)gr(p)dp, (3.5)

where Bu(r,n−r+1)
B(r,n−r+1) is the quantile form of Fr:n(t) (see Nair et al. (2013)) with Bu(r,n−r+1) =∫ u

0 pr−1(1 − p)n−rdp, is the incomplete beta function. In the following theorem, we
establish that log Ḡr:n(Q(u)) determines the corresponding quantile function uniquely.

Theorem 3.1. Quantile-based past geometric vitality function of order statistics uniquely
determines the quantile function.

Proof. Differentiating (3.5) with respect to u, we get

log Ḡ
′

r:n(Q(u)) =
d

du
[
log Ḡr:n(Q(u))

]
=

ur−1(1 − u)n−r

Bu(r,n − r + 1)
[log Q(u) − log Ḡr:n(Q(u))]. (3.6)

Equation (3.6) can be simplified as

Q(u) = exp
[
log Ḡr:n(Q(u)) +

Bu(r,n − r + 1)
ur−1(1 − u)n−r log Ḡ

′

r:n(Q(u))
]
, (3.7)

and hence the proof. �

The following example illustrates Theorem 3.1.

Examples 3.1. Suppose Y follows the power distribution with the quantile function

Q(u) = αu
1
σ , α, σ > 0. (3.8)
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Then, the nth order QPGVF simplifies to

log Ḡn:n(Q(u)) = logα +
1

nσ
(−1 + n log u). (3.9)

Conversely, assume that (3.9) holds. Then, using (3.7) , we get

Q(u) = exp
[
log Ḡn:n(Q(u)) +

Bu(n, 1)
un−1

log Ḡ
′

n:n(Q(u))
]
,

which gives

Q(u) = exp
[
logα +

1
nσ

(−1 + n log u) +
Bu(n, 1)

un−1

1
σu

]
.

On simplification, we get

Q(u) = αu
1
σ .

σ=4

σ=5

σ=6

σ=7

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3: QPGVF of n-th order statistic arising from power distribution.

In Figure 3, we plot log Ḡn:n(Q(u)) against u for the power distribution by fixing
α = 2 and n = 5 and for different values of σ and u. Figure 3 shows that the QPGVF of
nth order statistic has an increasing tendency as u increases. Using dFr:nQ(p) instead of
fr:nQ(p) in (3.3), we get

log Ḡr:n(Q(u)) = log Q(u) −
1

Bu(r,n − r + 1)

∫ u

o

q(p)
Q(p)

Bp(r,n − r + 1)dp. (3.10)
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Differentiating (3.10) with respect to u results in

Ar:n(u) =
d

du log Ḡr:n(Q(u))

q(u)
[
log Ḡr:n(Q(u)) − log Q(u)

] ,
where Ar:n(u) =

fr:nQ(u)
Fr:nQ(u) , is the reversed hazard quantile based on order statistics.

In the following theorem we provide characterization of a random variable based
on QPGVF in the context of order statistics.

Theorem 3.2. The relationship log Ḡn:n(Q(u)) = a + bu, where a and b are real constants,
holds if and only if the quantile function Q(u) = θeλu, where λ = n+1

n b and θ = ea.

Proof. The if part can be easily obatained from (3.5) and the ’only if’ part can be proved
using (3.7) as follows:

Q(u) = exp
(
log Ḡn:n(Q(u)) +

Bu(n, 1)
un−1

log Ḡ
′

n:n(Q(u))
)

= exp
(
log Ḡn:n(Q(u)) +

u
n

log Ḡ
′

n:n(Q(u))
)
.

On solving the above equation, we get

Q(u) = θeλu,where θ = eaand λ =
n + 1

n
b.

�

The following theorem discusses the monotone property for the QPGVF with re-
spect to different choices of n.

Theorem 3.3. If log Q(u) is increasing in u, then log Ḡn:n (Q(u)) is nondecreasing in n ≥ 1.

Proof. By writing (3.3) for r = n, we have

log Ḡn:n (Q(u)) =
1

Fn:n (Q(u))

∫ u

0
log Q(p) fn:n

(
Q(p)

)
dQ(p).

Using (3.5), the above equation can be simplified to

log Ḡn:n (Q(u)) =

∫ u

0
log Q(p)st

n:n(p)dQ(p),
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where st
n:n(p) = n (p)n−1

q(p)
Bp(n,1)
B(n,1) , p ≤ u represents the pdf of [QYn:n(p)|QYn:n(p) < u].

Hence we have

log Ḡn:n (Q(u)) = E[log QYn:n(p)|QYn:n(p) < u]. (3.11)

Similarly, we get log Ḡn+1:n+1 (Q(u)) = E[log QYn+1:n+1(p)|QYn+1:n+1(p) < u].

Consider
st

n:n(p)
st

n+1:n+1(p) is decreasing on the interval (0,u). We get the relation

[QYn:n(p)|QYn:n(p) < u] ≤lr [QYn+1:n+1(p)|QYn+1:n+1(p) < u],

which results in that

[QYn:n(p)|QYn:n(p) < u] ≤st [QYn+1:n+1(p)|QYn+1:n+1(p) < u].

Thus, we have

E[log QYn:n(p)|QYn:n(p) < u] ≤ E[log QYn+1:n+1(p)|QYn+1:n+1(p) < u],

since log Q(u) is increasing in u. From (3.11), we get the desired result directly. �

Counterexample 3.1. Let Y follows the Pareto distribution with the quantile function
Q(u) = σ(1 − u)

−1
α , α ≥ 0, σ > 0. Using (3.5), we have

log Ḡ1:n(Q(u)) = log σ −
1

nα(1 − u)n +
1

nα
(
1 − n log(1 − u)

)
.

By fixing σ = 3, α = 7 and u = 0.3 and for different values of n, we get

log Ḡ1:5(0.3) = 1.00814 > 0.772091 = log Ḡ1:9(0.3).

This implies log Ḡ1:n(Q(u)) is decreasing in n, even though log Q(u) is increasing in u.

Remark 2. From the above counterexample 3.1, it can be seen that although log Q(u) is
increasing in u, the QPGVF evaluated for the smallest order statistic violates Theorem
3.3 and hence the result in Theorem 3.3 could not be generalized to Yr:n.

Motivated by Di Crescenzo and Longobardi (2002), the order-based QPGVF is
given through the following definition.

Definition 3.1. Let W and Y be two non-negative random variables then Wk:n ≤QPGVF
Yk:n, if log ḠW

k:n(QW(u)) ≤ log ḠY
k:n(QY(u)).
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Examples 3.2. Suppose W and Y follow the power distribution with parameters βi = 1
and αi, for i=1, 2 given in Table 1. We have log Ḡn:n(Q(u)) = logα − 1

nβ + 1
β log(u). Now

if α1 < α2, we obtain

log ḠW
n:n(QW(u)) − log ḠY

n:n(QY(u)) ≤ 0.
which implies Wk:n ≤QGVF Yk:n.

log G
W

Yn,n (Q(u))

log G
Y

Yn,n (Q(u))

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

u

Figure 4: QPGVF of n-th order statistic arising from power distribution.

Figure 4 provides a plot for QPGVF of n-th order statistic for varying values of u
with respect to the parameter values α1 = 5, α2 = 3α1 and β1 = 8, β2 = 2β1. From this
figure, it is easily observed that log ḠW

n:n(QW(u)) is less than log ḠY
n:n(QY(u)).

Theorem 3.4. The relationship log Ḡn:n(Q(u)) = u
b , where b is real constant, holds if and only

if the quantile function is expressed as Q(u) = eλu, where λ = n+1
nb .

Proof. The if part can be easilly obatained from (3.5) and the ’only if’ part can be
proved using (3.7), which reduces to Q(u) = exp

(
log Ḡn:n(Q(u)) + u

n log Ḡ
′

n:n(Q(u))
)
, and

by solving we get the required Q(u). �
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In the following theorem, we see how the monotonicity of QPGVF is affected by an
increasing transformation.

Theorem 3.5. If W is IQPGVF and φ is a nonnegative, increasing and convex function, then
φ(W) is also IQPGVF.

Proof. Let Y = φ(W) be a non-negative, increasing and convex function. Then, the pdf
of Y is

g(y) =
f ((φ)−1(y))
φ′((φ)−1(y))

=
1

φ′(Q(u))q(u)
.

Using (3.10), QPGVF of order Yr:n is given by

log ḠY
r:n(Q(u)) = log QY(u) −

1
Bu(r,n − r + 1)

∫ u

0

qY(p)
QY(p)

Bp(r,n − r + 1)dp, (3.12)

which is equivalent to

log ḠY
r:n(Q(u)) = log QW(u) −

1
Bu(r,n − r + 1)

∫ u

0

qW(p)φ
′

(QW(p))
QW(p)

Bp(r,n − r + 1)dp

= log QW(u) −
1

Bu(r,n − r + 1)

∫ u

0

qW(p)(φ
′

(QW(p)) − 1 + 1)
QW(p)

Bp(r,n − r + 1)dp

= log QW(u) −
1

Bu(r,n − r + 1)

∫ u

0

qY(p)
QY(p)

Bp(r,n − r + 1)dp+

1
Bu(r,n − r + 1)

∫ u

0

qW(p)(1 − φ
′

(QW(p)))
QW(p)

Bp(r,n − r + 1)dp

= log ḠW
r:n(Q(u)) +

1
Bu(r,n − r + 1)

∫ u

0

qW(p)(1 − φ
′

(QW(p)))
QW(p)

Bp(r,n − r + 1)dp.

Since φ(·) is convex, φ
′

(QW(p)) < φ
′

(QW(u)), 0 < p < u. Therefore, φ
′

(QW(p)) is increasing and
non-negative. Moreover, by the assumption, W is IQPGVF. Hence φ(W) is also IQPGVF. �

Definition 3.2. Wk:n is smaller than Yk:n in dispersive order, denoted by Wk:n ≤disp Yk:n,
if QY(u) −QW(u) is increasing in u.

In the following theorem, we discuss the connection between PQGVF and dispersive
ordering.

Theorem 3.6. If Wk:n ≤disp Yk:n, then log ḠW
n:n(QW(u)) ≤ log ḠY

n:n(QY(u)).
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Proof. Assume that Wk:n ≤disp Yk:n. This implies that QY(u) − QW(u) is increasing in u.
Using (3.5), we have

n
un

∫ u

0
log QY(u)pn−1dp ≥

n
un

∫ u

0
log QW(u)pn−1dp.

Hence the theorem. �

In the following theorem, we derive the expression for QPGVF under scalar trans-
formation.

Theorem 3.7. If Yr:n = Wr:n
b , with b > 0, then log ḠY

r:n(QY(u)) = log ḠW
r:n(QW(u)) − log b.

Proof. Let Yr:n = Wr:n
b , with b > 0. Then

Fr(y) = P[ Yr:n ≤ y] = P
[ Wr:n

b
≤ y

]
= Fr

(
by

)
.

Thus, QYr:n(u) =
QWr:n (u)

b and we have

log ḠY
r:n(QY(u)) =

B(r,n − r + 1)
Bu(r,n − r + 1)

∫ u

0
log QYr:n(p)gr(p)dp

=
B(r,n − r + 1)
Bu(r,n − r + 1)

∫ u

0
log

QWr:n(p)
b

gr(p)dp

= log ḠW
r:n(QW(u)) − log b.

�

4 Application

Wang (1998) used right tail deviation as a risk measure. It is well known that the
quantile function QY(u) of a random variable Y plays a significant role in comparing
risks. Quantile-based measures can be used to measure risk in situations having no
closed form survival function. This section uses the QPGVF (log ḠQ(u)) at a fixed value
u = u0 as a risk measure.

Wang (1998) defined the right tail deviation measure D(Y) as

D(Y; r, t0) =

∫
∞

t0

(
F̄(y)
F̄(t0)

) 1
2

dy −
∫
∞

t0

F̄(y)
F̄(t0)

dy. (4.1)
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Substituting y = QY(p) in (4.1), the quantile form of the right tail deviation measure
reduces to

D(Y; r,u0) =

∫ 1

u0

(
1 − p
1 − u0

) 1
2

qY(p)dp −
∫ 1

u0

1 − p
1 − u0

qY(p)dp. (4.2)

In the following example, we consider some statistical models for compairing log ḠQ(u0),
D(Y; u0) and variance σ2

Q(u0).

Examples 4.1. For the Pareto distribution, we have log ḠQ(u0) = logα+ 1
β+ 1

β
1−u0

u0
log(1−

u0), D(Y; u0) = α((1 − u0)
−1
β )( 2

β−2 −
1
β−1 ), for β > 2, and σ2

Q(u0)=
α2

1− 2
β

+
2α2β

(β−1)(1− 1
β )

+
(αβ)2

(β−1)2 ,

for β > 1. Table 3 gives the numerical illustration of the risk measures for Pareto type I
distribution for different choices of parameters.

Table 3: Numerical illustration of log ḠQ(u0) , D(Y; r; u0) and (σ2
Q(u0)) of Pareto type I

distribution for different values of parameters
.

α β log ḠQ(u0) D(Y,u0) σ2
Q(u0)

1.5 0.75 2.5533 12.2149 18.9
2 2.8409 16.2865 33.6
4 3.5341 32.573 134.4

1.5 2.5 1.0498 7.2135 17.5
2 1.3375 9.618 31.1111
4 2.0306 19.236 124.444

1.5 3.5 0.8657 1.8189 9.66
2 1.1535 2.4254 17.1733
4 1.8465 4.8506 68.6933

1.5 4 0.8082 1.2574 8.5
2 1.0959 1.6766 15.1111
4 1.7890 3.3532 60.4444

From Table 3, we see that log ḠQ(u0) increases as α increases. At certain points in
the interval 1 ≤ β ≤ 2, the risk measures D(Y; u0) and variance do not exist but our
proposed risk measure log ḠQ(u0) exists in the same interval and can be used for the
same purpose.
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5 Simulation Study and Application to Real Life Data

In this section, the quantile-based QPGVF is proposed for some distributions. However,
based on the available real data and to keep the simulation study related to application
part, we investigate the performance of the quantile-based QPGVF for the power
distribution.

5.1 Simulation Study

We conducted simulation studies to investigate the efficiency of the QPGVF estimators
of the largest order statistics for power distribution in terms of the average bias and
mean squared error (MSE), based on sample sizes 10, 25, 100, 200 and 500 for differ-
ent parameter combinations. The estimation of parameter β was achieved using ML
estimation, and the process was repeated 2000 times.

From the result of the simulation study (see Table 4 and Table 5), conclusions are
drawn regarding the behaviour of the estimator in general, which are summarized
below: (1) The ML estimates of log Ḡn:n(Q(u)) approaches to actual value when sample
size n increases. (2) When sample size n increases, the MSE of log Ḡn:n(Q(u)) decreases.

5.2 Application to Real Life Data

The real data in this section represents 20 oral irrigators described in Jiang and Murthy
(1998) for estimating the parameters of the model. The data values are: 1.175, 7.02, 7.58,
9.76, 15.02, 15.57, 17.39, 19.55, 22.47, 23.24,23.96, 25.05, 32.44, 36.87, 42.76, 43.14, 43.81,
46.95, 56.33, 56.68. We use this data for two primary purposes: (i) for investigating
the performance of our QPGVF using the power distribution case and (ii) for compar-
ing log Ḡn:n(Q(u)) with the quantile-based Tsallis entropy (H̄Yn:n). The Tsallis entropy
associated with Yr:n was proposed by Vikas Kumar and Rekha (2018) and is defined as

H̄α
Yr:n

=
1

1 − α

(
1

Bu(r,n − r + 1)

∫ u

0
(gr(p))α(q(p))1−αdp − 1

)
.

Based on this data, we first used the maximum likelihood method to estimate the power

distribution parameter, β̂ =
∑n

i=1 log[ui]
n = 3.03. Then for different values of u, varied from

0.1 to 0.9, we calculate the estimated values of log Ḡn:n(Q(u)) and H̄Yn:n under power
distribution. The results are displayed in Table 6. It should be noted that the estimated
values of log Ḡn:n(Q(u)) increase with u. Also, the results in Table 6 clearly indicates
that the estimated values based on log Ḡn:n(Q(u)) are less than those given by H̄Yn:n .
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Table 4: Average estimates, Bias and MSE for log Ḡn:n(Q(u)) under power distribution
for different values of λ and fixed values of β =0.3

n Criterion λ = 0.2, β = 0.3 λ = 0.8, β = 0.3 λ = 1.6, β = 0.3
10 E(log Ḡn:n(Q(u))) -1.48053 -0.10244 0.58852

Bias -0.86356 -0.85536 -0.85317
MSE 0.74641 0.73201 0.72819

25 E(log Ḡn:n(Q(u))) -1.55748 -0.17510 0.51743
Bias -0.34582 -0.34190 -0.34129
MSE 0.11973 0.11696 0.11653

100 E(log Ḡn:n(Q(u))) -1.59643 -0.21107 0.48184
Bias -0.08647 -0.08554 -0.08529
MSE 0.00749 0.00732 0.00728

200 E(log Ḡn:n(Q(u))) -1.64617 -0.21707 0.47590
Bias -0.04324 -0.04281 -0.04263
MSE 0.00187 0.00183 0.00181

500 E(log Ḡn:n(Q(u))) -1.60686 -0.22072 0.47236
Bias -0.34190 -0.17111 -0.01705
MSE 0.000298 0.000292 0.000290
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Table 5: Average estimates, Bias and MSE for log Ḡn:nQ(u) under power distribution
for different values of β and fixed valuse of λ =1.2

n Criterion λ = 1.2, β = 0.3 λ = 1.2, β = 0.9 λ = 1.2, β = 1.8
10 E(log Ḡn:nQ(u)) 0.301242 0.321468 0.337189

Bias -0.853578 -0.384033 -0.277315
MSE 0.728914 0.148702 0.079216

25 E(log Ḡn:nQ(u)) 0.230024 0.238206 0.243773
Bias -0.341566 -0.153838 -0.110429
MSE 0.116718 0.023907 0.012602

100 E(log Ḡn:nQ(u)) 0.194321 0.196289 0.190005
Bias -0.085343 -0.038456 -0.027715
MSE 0.007287 0.001494 0.000797

200 E(log Ḡn:nQ(u)) 0.188307 0.189351 0.190005
Bias -0.040272 -0.0192738 -0.013806
MSE 0.001826 0.000375 0.000198

500 E(log Ḡn:nQ(u)) 0.184715 0.185073 0.184699
Bias 0.017086 0.007649 0.005527
MSE 0.000292 0.000059 0.000031

Table 6: Estimates of log ˆ̄Gn:n(Q(u)) and ĤYn:n for power distribution for different values
of u.

u 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
log ˆ̄Gn:nQ(u) 1.380 1.607 1.742 1.837 1.911 1.971 2.022 2.066 2.105

ˆ̄HYn:n 5.916 6.722 7.229 7.605 7.691 8.159 8.379 8.572 8.746

6 Conclusion

We have introduced past GVF of order statistics in terms of quantile function. Also,
we have established that the quantile-based past GVF of order statistics determines the
quantile function uniquely using a simple relationship between quantile function and
quantile-based past GVF of order statistics. The performance of the quantile-based past
GVF is investigated by simulation studies and using real data applications. We found
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that the ML estimate of the quantile-based GVF of order statistics approaches true value
when sample size n increases for the simulation part. Further in the application part,
we have compared our quantile-based past GVF of order statistics with the existing
Tsallis entropy measure and the result showed that the quantile-based past GVF is
smaller compared to Tsallis entropy.
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