
JIRSS (2022)

Vol. 21, No. 01, pp 81-103

DOI: 10.22034/JIRSS.2022.704621

Transformer Self-Attention Network for Forecasting Mortality
Rates

Amin Roshani 1, Muhyiddin Izadi 1, Baha-Eldin Khaledi 2

1 Department of Statistics, Razi University, Kermanshah, Iran.
2 Department of Applied Statistics and Research Methods, University of Northern Colorado,
Greeley, CO 80636, USA.

Received: 15/04/2022, Accepted: 21/12/2022, Published online: 03/05/2023

Abstract. The transformer network is a deep learning architecture that uses self-
attention mechanisms to capture the long-term dependencies of a sequential data. The
Poisson-Lee-Carter model, introduced to predict mortality rate, includes the factors of
age and the calendar year, which is a time-dependent component. In this paper, we use
the transformer to predict the time-dependent component in the Poisson-Lee-Carter
model. We use the real mortality data set of some countries to compare the mortality
rate prediction performance of the transformer with that of the long short-term memory
(LSTM) neural network, the classic ARIMA time series model and simple exponential
smoothing method. The results show that the transformer dominates or is comparable
to the LSTM, ARIMA and simple exponential smoothing method.

Keywords. Auto-Regressive Integrated Moving Average, Human Mortality Database,
Long Short-Term Memory, Mean Absolute Percentage Error, Poisson-Lee-Carter Morta-
lity Model, Recurrent Neural Network, Simple Exponential Smoothing, Time Series

Amin Roshani (roshani.amin@gmail.com)
Corresponding Author: Muhyiddin Izadi (izadi_552@yahoo.com)
Baha-Eldin Khaledi (bahaedin.khaledi@unco.edu)

82 A. Roshani et al.

Prediction.

MSC: 62P05, 62-08.

1 Introduction

Predicting future mortality rates enables governments and demographic information
organizations such as social security, insurance companies, etc., to plan for the future
more accurately. Therefore, mortality rate models have garnered increased attention
and many researchers have attempted to introduce and develop mortality rate mod-
els with more accurate predictions. Some well-known mortality rate models in the
literature are:

Lee-Carter (LC) (Lee and Carter, 1992), Poisson LC (PLC) (Brouhns et al., 2002),
RH (Renshaw and Haberman, 2006), augmented common factor (Li and Lee, 2005),
Poisson common factor (Li, 2013), Bayesian Poisson log-bilinear (Antonio et al., 2015)
and Bayesian Poisson common factor with overdispersion (Roshani et al., 2022). Among
these, the PLC model remains a popular and widely used model. For a comprehensive
review of mortality rate modellings, one can see Hunt and Blake (2021).

Suppose that Dx,t,mx,t and Ex,t are the number of deaths, central death rate and
central exposure-to-risk, respectively, for age x in year t. The PLC model is

Dx,t ∼ Poisson(Ex,t mx,t),
log mx,t = αx + βxκt, x ∈ X, t ∈ T ,

(1.1)

where X = {xi | i = 1, 2, . . . ,A}, A is the number of age groups, T = {ti | i = 1, 2, . . . ,T},
αx measures the age effect, κt is a time-dependent parameter and βx is the age-related
parameter which measures the marginal effect of κt over time on the log mortality

rate. The constraints
A∑

i=1
βxi = 1 and

T∑
i=1
κti = 0 are taken into account to ensure model

identification (see Brouhns et al., 2002). In this model and the other introduced mortality
rate models, after estimating the parameters αx’s, βx’s and κt’s, an auto-regressive
integrated moving average (ARIMA) time series model is fitted to κ̂t, t ∈ T , to predict
the future mortality rates, where κ̂t is the estimate of κt, t ∈ T .

Machine learning algorithms, particularly neural networks, have recently gained
popularity as a tool in some applications such as natural language processing (NLP),
computer vision, automatic speech recognition, social network filtering, and medical

Transformer Network for Forecasting Mortality Rate 83

diagnosis. Various neural network techniques were developed, each used for a specific
application; convolutional, perceptron, recurrent, and transformer are just a few examp-
les. Recurrent neural networks (RNNs) retain past or historical information to predict
future values. This property has led to their application in the analysis of sequential
data such as time-series data. Some examples of sequential data are a series of data
points; Audio, video, text, biomedical data such as EEG signals or DNA sequence data
and financial data such as stock prices.

RNNs such as LSTM (introduced in Section A.1) (Hochreiter and Schmidhuber,
1997) and Gated recurrent unit (GRU) (Chung et al., 2014) have been recently used in
mortality rate models to predict the calendar year effect. Richman and Wüthrich (2019)
predicted Swiss female and male mortality rates using LSTM and GRU architectures
to predict the mortality rate and compared them with the LC model. Nigri et al. (2019)
introduced a new approach based on LSTM architecture to predict the time-dependent
component, κt, in the LC model. They applied the technique to data from six countries
separately for males and females. Perla et al. (2021) generalized the LC model using
a simple convolutional network model as well as an LSTM network. Choi (2021)
proposed the 6-parameter model and used LSTM to forecast time-dependent factors in
conjunction with traditional time series methods such as vector autoregression (VAR).

The transformer (introduced in Section A.2) is a deep learning architecture that was
first proposed for NLP by a group of Google researchers (Vaswani et al., 2017). This
architecture relies on encoder-decoder attention mechanisms rather than recurrent lay-
ers. Transformers avoids the vanishing gradient problem that plagues RNNs (Pascanu
et al., 2013) and use self-attention mechanisms to capture the long-term dependencies.
Transformers are much faster to train and easier to parallelize (Géron, 2019).

Recently, transformers have been used to predict time series. Wu et al. (2020)
used the transformer network for forecasting influenza-like illness and show that it
outperforms the LSTM and Seq2Seq models. Farsani and Pazouki (2021) used the
transformer network to provide more accurate time series prediction over longer time
intervals.

To the best of our knowledge, time-series transformer architecture have not been
used in the mortality rate modelling in the literature. Therefore, the rest of this paper
is organized as follows. In Section 2, we use the transformer architecture to predict
the time-dependent component in the PLC mortality rate model. Using the mortality
data of several countries, we compare the transformer with the LSTM, the best ARIMA
time series model (Box et al., 2015), and the best simple exponential smoothing method
denoted by SES (Hyndman et al., 2008) for predicting the time-dependent parameter.

84 A. Roshani et al.

The results show that the mortality rate prediction performance of the transformer
outperforms or is comparable to those of the LSTM, the best ARIMA model, and
the best SES technique. We explain the transformer and LSTM neural networks in
Appendix A.

2 Methodology and Data Analysis

In this section, we first describe the data, then we explain the methodology. We use the
male and female mortality rates from Japan, Australia, Sweden, Italy, France, Switzer-
land, Austria, Norway, Denmark, Canada, and the United States. The source of the
data is the Human Mortality Database (HMD1). We consider the ages from 0 to 89, so
A = 90. The time period selected for each country begins in 1950 and ends depending
on the information in the HMD. We use the data from 1950 to 2000 as the train data
(Ttrain) and from 2001 onward as the test data (Ttest) which is shown in Table 1.

Table 1: Total, training and testing set by country

Country T Ttrain Ttest

ITA 1950–2017 1950–2000 2001-2017
SWE 1950–2018 1950–2000 2001-2018
FRA 1950–2018 1950–2000 2001-2018
CHE 1950–2018 1950–2000 2001-2018
AUT 1950–2017 1950–2000 2001-2017
NOR 1950–2018 1950–2000 2001-2018
DEN 1950–2019 1950–2000 2001-2019
USA 1950–2017 1950–2000 2001-2017
CAN 1950–2016 1950–2000 2001-2016
JPN 1950–2018 1950–2000 2001-2018
AUS 1950–2018 1950–2000 2001-2018

Using StMoMo (Villegas et al., 2018) package in R software (R Core Team, 2021), we
fit the PLC model to the train data for male and female groups of each country and
estimate the parameters ax, bx, and κt denoted by âx, b̂x, and κ̂t, respectively. The
estimated parameters κ̂t, t ∈ Ttrain, are considered as the input data for the transformer,
LSTM, ARIMA and SES, to predict future values κt, t ∈ Ttest. We apply the auto.arima

1www.mortality.org

Transformer Network for Forecasting Mortality Rate 85

and ses functions in the forecast package in R (Hyndman and Khandakar, 2008) to
find the best ARIMA and SES. The parameters of ARIMA model for all the countries
are determined and included in Table 2.

Table 2: Best ARIMA model for each country and gender.

Country Male Female
ITA ARIMA(0,2,3) ARIMA(0,1,1) with drift
SWE ARIMA(2,2,2) ARIMA(0,1,1) with drift
FRA ARIMA(0,1,1) with drift ARIMA(0,1,1) with drift
CHE ARIMA(0,2,2) ARIMA(0,1,1) with drift
AUT ARIMA(1,2,1) ARIMA(1,1,0) with drift
NOR ARIMA(1,2,1) ARIMA(0,1,1) with drift
DEN ARIMA(1,1,0) with drift ARIMA(1,1,0) with drift
USA ARIMA(0,2,1) ARIMA(0,1,0) with drift
CAN ARIMA(0,2,1) ARIMA(0,1,0) with drift
JPN ARIMA(0,1,1) with drift ARIMA(0,1,1) with drift
AUS ARIMA(0,2,2) ARIMA(1,1,0) with drift

For the LSTM and the transformer networks, we divide the training data into two
sets, a reduced training data set (80% of the training data) and a validation data set
(20% of the training data). Because, the random initial values of the learning parameters
provide random prediction, we apply each network 50 times on the reduced training
data for various selections of hyper-parameters and predict κt, for t ∈ Tvalidation. Then,
we calculate the average MSE based on the validation data set for the selected hyper-
parameters. The hyper-parameters with the minimum average MSE are chosen. Next,
we use the network with optimum hyper-parameters to predict κt, t ∈ Ttest, using the
whole training data for 50 times. Now, we use the average of predicted κt’s in the
PLC model to predict the mortality rate, mx,t, for t ∈ Ttest, denoted by m̂x,t. Finally, we
compute the mean absolute percentage error (MAPE) measure defined below, that is
used to compare our transformer results with those of LSTM, ARIMA and SES.

It is worth to mention that, for the transformer and LSTM to have a high accurate
prediction, we make the time series stationary and then re-scale it to [0, 1] (Brownlee,
2017, p. 87).

The MAPE which is a common model selection measure of accuracy is used to
compare the above four models in predicting mortality rates. This criterion is defined

86 A. Roshani et al.

as

MAPE =
1
N

∑
(x,t)∈X×Ttest

∣∣∣∣ log(m̂x,t) − log(mx,t)
log(mx,t)

∣∣∣∣,
where N is the cardinality of X × Ttest.

For all countries, we use a single hidden layer and the sigmoid activation function
for LSTM architecture. Other hyperparameters such as the number of neurons, the
learning rate, the length of input samples and the number of epochs2, depend on the
countries (Table 3). In transformer architecture, we use the Rectified Linear Unit (ReLU)
activation function in Feed-Forward layers for both encoder and decoder blocks. The
number of encoder and decoder blocks and the number of heads in multi-head attention
are set to be one. The input length of the encoder and decoder, the learning rate, the
number of epochs, and other hyperparameters, are explained in Section A.2, depend
on the countries (Table 4).

We use the open-source python libraries PyTorch (Paszke et al., 2019) and Keras
(Chollet et al., 2015) to apply the transformer and LSTM networks. In addition, to use
the output of these libraries in R, we used Reticulate package (Ushey et al., 2021).

We apply these four methods on the mortality data of the countries displayed in
Table 1. The computed MAPE for the test data is presented in Table 5. For males, the
MAPE of the transformer is less than that of the LSTM, SES and ARIMA for all the
countries except Italy and Norway. It is worth to mention that the MAPE result for
Norway using transformer is less than LSTM and SES and is comparable with that of
ARIMA. That is, the transformer network provides more accurate predictions than the
LSTM, SES and ARIMA. For the female group, the results obtained by transformer,
LSTM, SES and ARIMA are comparable as presented in Table 5. We plot the mortality
rate predictions for ages 20, 40, 60 and 80, along with actual values for Sweden based
on the transformer, LSTM, ARIMA and SES method in Figure 1. Finally, in Tables 6, 7,
8 and 9, we present 2022 prediction of mortality rate for ages of 20, 40, 60 and 80 for
males and females, respectively.

After obtaining the optimum parameters, the prediction running time of LSTM
and Transformer algorithms are given in Table 10. We see that the running time for
Transformer in considerably shorter than LSTM. The system that we used is Google
Collaboration Platform with 2-core Intel R© Xeon R© 2.20GHz CPU and 13.6 GB RAM.

2One epoch is when all samples in the training dataset are processed once, and the network weights
are updated.

Transformer Network for Forecasting Mortality Rate 87

Table 3: Hyperparameters of LSTM network for each country and gender.

Country Gender
LSTM hyperparameters

length of input number of neurons learning rate epoch

ITA
Male 8 1 0.0001 200
Female 4 4 0.01 200

SWE
Male 4 1 0.0001 200
Female 16 16 0.01 200

FRA
Male 8 8 0.01 200
Female 2 32 0.001 200

CHE
Male 4 1 0.0001 200
Female 1 8 0.001 200

AUT
Male 16 8 0.01 200
Female 1 1 0.0001 200

NOR
Male 32 1 0.01 200
Female 32 1 0.01 200

DEN
Male 1 1 0.0001 200
Female 32 2 0.01 200

USA
Male 16 1 0.0001 200
Female 32 1 0.01 200

CAN
Male 16 32 0.01 200
Female 16 8 0.0001 200

JPN
Male 32 32 0.0001 200
Female 4 32 0.01 200

AUS
Male 32 8 0.01 200
Female 16 1 0.01 200

88 A. Roshani et al.

Table 4: Hyperparameters of transformer network for each country and gender.

Country Gender
Transformer hyperparameters

encoder
length

decoder
length d dk

number of
heads

number of
encoder layers

number of
decoder layers learning rate epoch

ITA
Male 32 8 10 5 1 1 1 0.0001 200
Female 2 2 128 64 1 1 1 0.0001 400

SWE
Male 32 32 128 64 1 1 1 0.01 200
Female 8 8 128 64 1 1 1 0.01 200

FRA
Male 32 2 10 5 1 1 1 0.0001 400
Female 2 2 10 5 1 1 1 0.0001 400

CHE
Male 32 32 10 5 1 1 1 0.01 200
Female 2 2 10 5 1 1 1 0.0001 400

AUT
Male 32 2 10 5 1 1 1 0.0001 400
Female 32 4 10 5 1 1 1 0.0001 400

NOR
Male 2 2 12 6 1 1 1 0.01 200
Female 16 16 10 5 1 1 1 0.01 200

DEN
Male 16 8 128 64 1 1 1 0.0001 200
Female 8 2 10 5 1 1 1 0.01 200

USA
Male 16 16 10 5 1 1 1 0.0001 400
Female 32 4 10 5 1 1 1 0.0001 400

CAN
Male 16 2 10 5 1 1 1 0.0001 400
Female 32 2 128 64 1 1 1 0.0001 400

JPN
Male 32 2 10 5 1 1 1 0.0001 400
Female 8 2 128 64 1 1 1 0.01 200

AUS
Male 2 2 10 5 1 1 1 0.01 200
Female 16 2 10 5 1 1 1 0.0001 400

Table 5: MAPE of ARIMA, SES, LSTM and Transformer for each country and gender.

Male Female
Country ARIMA SES LSTM Transformer ARIMA SES LSTM Transformer
ITA 4.5669 4.9164 4.4717 4.5284 1.9021 2.6465 2.2168 1.9528
SWE 4.1184 4.2207 4.0705 4.0049 2.5426 2.4253 2.4831 2.4334
FRA 3.8747 3.3165 3.175 2.9727 2.4898 2.4910 2.4876 2.4845
CHE 4.2215 4.3584 4.7111 4.0611 3.1667 3.1890 3.1691 3.1919
AUT 3.8224 3.8980 3.8639 3.7405 3.1895 3.3819 3.2133 3.3196
NOR 5.656 11.6106 5.9546 5.6641 3.0841 3.0346 3.1913 3.0327
DEN 7.005 6.9791 6.9546 6.6331 5.298 5.0316 5.1574 5.4565
USA 2.5338 2.5351 2.5343 2.4508 1.7678 2.1363 2.1783 2.1910
CAN 3.4104 3.7195 3.3526 3.2759 1.5878 1.6255 1.5996 1.5747
JPN 3.1593 3.0090 2.9173 2.9162 7.6805 7.8694 7.4117 7.5783
AUS 3.9564 5.4907 5.5608 3.6050 2.1823 3.8583 2.1837 2.2083

Transformer Network for Forecasting Mortality Rate 89
0.

00
10

0.
00

15
0.

00
20

0.
00

25

Sweden / Male / Age 40

Year

m
x,

 t

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Real (fit)
Real (predict)
ARIMA
LSTM
Transformer
SES

0.
00

05
0.

00
10

0.
00

15
0.

00
20

Sweden / Female / Age 40

Year

m
x,

 t

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Real (fit)
Real (predict)
ARIMA
LSTM
Transformer
SES

0.
00

6
0.

00
8

0.
01

0
0.

01
2

0.
01

4
0.

01
6

Sweden / Male / Age 60

Year

m
x,

 t

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Real (fit)
Real (predict)
ARIMA
LSTM
Transformer
SES

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

Sweden / Female / Age 60

Year

m
x,

 t

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Real (fit)
Real (predict)
ARIMA
LSTM
Transformer
SES

0.
06

0.
08

0.
10

0.
12

Sweden / Male / Age 80

Year

m
x,

 t

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Real (fit)
Real (predict)
ARIMA
LSTM
Transformer
SES

0.
04

0.
06

0.
08

0.
10

0.
12

Sweden / Female / Age 80

Year

m
x,

 t

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Real (fit)
Real (predict)
ARIMA
LSTM
Transformer
SES

Figure 1: Plots of fitted and projected mortality rates for Swedish male and female
groups (The left side for males and the right side for females) with ages 20, 40 and 85
accompanied by observed crude mortality rates.

90 A. Roshani et al.

Table 6: Mortality rate for Male in year 2022.

Country Model
Age

20 40 60 80

ITA

ARIMA 0.0004535 0.0008014 0.0060383 0.0501608
SES 0.0004522 0.0007986 0.0060191 0.0500402

LSTM 0.0004399 0.0007729 0.0058398 0.0489068
Transformer 0.0004384 0.0007698 0.0058183 0.0487702

SWE

ARIMA 0.0004308 0.0008134 0.005490 0.049991
SES 0.0004673 0.0008848 0.0059591 0.0533261

LSTM 0.0004398 0.0008311 0.0056063 0.0508236
Transformer 0.0004191 0.0007906 0.0053401 0.0489129

FRA

ARIMA 0.0007042 0.001521 0.0084967 0.0447384
SES 0.0006996 0.0015103 0.0084366 0.0443904

LSTM 0.0006894 0.0014867 0.0083031 0.0436179
Transformer 0.0007116 0.0015383 0.0085944 0.0453044

CHE

ARIMA 0.0004955 0.0007738 0.0050696 0.0427874
SES 0.0004942 0.0007718 0.0050561 0.0426957

LSTM 0.000495 0.000773 0.0050645 0.0427528
Transformer 0.0004992 0.0007793 0.0051074 0.0430435

AUT

ARIMA 0.0006134 0.0010305 0.0078522 0.0523279
SES 0.0006169 0.0010363 0.0078897 0.0525628

LSTM 0.0006066 0.0010192 0.0077792 0.0518701
Transformer 0.0006047 0.0010159 0.0077579 0.0517367

NOR

ARIMA 0.0005491 0.0008312 0.0052029 0.0490369
SES 0.0005497 0.0008324 0.0052109 0.0490897

LSTM 0.0005443 0.0008226 0.0051431 0.0486408
Transformer 0.0005588 0.0008487 0.0053244 0.049837

Transformer Network for Forecasting Mortality Rate 91

Table 7: (continued) Mortality rate for Male in year 2022.

Country Model
Age

20 40 60 80

DEN

ARIMA 0.0003637 0.0011184 0.0079847 0.055705
SES 0.0003233 0.0010284 0.0073781 0.0519341

LSTM 0.0003807 0.0011554 0.0082333 0.0572407
Transformer 0.0003667 0.0011249 0.008028 0.0559724

USA

ARIMA 0.0011283 0.0021099 0.0100346 0.0578829
SES 0.0011869 0.0022258 0.0108314 0.0614882

LSTM 0.0012018 0.0022553 0.0110372 0.0624101
Transformer 0.0011955 0.0022429 0.0109505 0.0620221

CAN

ARIMA 0.0005949 0.001029 0.0061699 0.0496926
SES 0.0006219 0.0010683 0.0064465 0.0511498

LSTM 0.0006242 0.0010716 0.0064697 0.051271
Transformer 0.0006232 0.0010701 0.0064592 0.0512164

JPN

ARIMA 0.0003193 0.0008715 0.0061243 0.0447223
SES 0.0003243 0.0008826 0.0061898 0.045197

LSTM 0.0003236 0.000881 0.00618 0.0451257
Transformer 0.0003241 0.0008822 0.006187 0.0451769

AUS

ARIMA 0.0005728 0.0011092 0.005228 0.0456955
SES 0.0005272 0.0010455 0.0047616 0.042778

LSTM 0.0005681 0.0011027 0.0051797 0.0453968
Transformer 0.0005339 0.001055 0.0048297 0.0432095

92 A. Roshani et al.

Table 8: Mortality rate for Female in year 2022.

Country Model
Age

20 40 60 80

ITA

ARIMA 0.0001249 0.0004599 0.0032093 0.0293615
SES 0.0001309 0.0004786 0.0033178 0.0304109

LSTM 0.0001253 0.000461 0.0032158 0.0294238
Transformer 0.0001271 0.0004669 0.0032502 0.0297567

SWE

ARIMA 0.0002055 0.0005423 0.004045 0.0329319
SES 0.0002095 0.0005565 0.0041251 0.0337557

LSTM 0.0002075 0.0005496 0.0040861 0.0333542
Transformer 0.0002087 0.0005536 0.0041087 0.0335868

FRA

ARIMA 0.0002307 0.0007129 0.0035631 0.025043
SES 0.0002339 0.0007221 0.0036071 0.0254237

LSTM 0.0002327 0.0007187 0.0035908 0.0252822
Transformer 0.000236 0.0007284 0.0036372 0.025685

CHE

ARIMA 0.0002203 0.0004982 0.003211 0.0271815
SES 0.0002218 0.0005024 0.0032373 0.0274295

LSTM 0.000221 0.0005002 0.0032235 0.0272998
Transformer 0.0002203 0.000498 0.0032103 0.027175

AUT

ARIMA 0.0001978 0.000521 0.0040394 0.0342367
SES 0.0002278 0.0006104 0.0045304 0.0390488

LSTM 0.0002145 0.0005707 0.0043151 0.0369286
Transformer 0.0002085 0.0005527 0.0042161 0.0359585

NOR

ARIMA 0.0002516 0.0005876 0.0041719 0.0328564
SES 0.00025 0.0005805 0.0041307 0.0324245

LSTM 0.0002495 0.0005782 0.0041176 0.0322881
Transformer 0.0002508 0.0005841 0.0041516 0.0326431

Transformer Network for Forecasting Mortality Rate 93

Table 9: (continued) Mortality rate for Female in year 2022.

Country Model
Age

20 40 60 80

DEN

ARIMA 0.0001744 0.0007002 0.0058506 0.0367189
SES 0.0001552 0.0006194 0.0054182 0.0329184

LSTM 0.0001808 0.0007271 0.0059907 0.037976
Transformer 0.0001725 0.0006921 0.0058081 0.03634

USA

ARIMA 0.0003773 0.001134 0.0063689 0.0393065
SES 0.0004007 0.0012136 0.006777 0.0419853

LSTM 0.0003968 0.0012004 0.0067091 0.0415388
Transformer 0.0004007 0.0012138 0.0067778 0.041991

CAN

ARIMA 0.0002452 0.0006503 0.0043027 0.0315134
SES 0.0002491 0.0006616 0.0043704 0.03199

LSTM 0.0002473 0.0006564 0.0043389 0.0317683
Transformer 0.0002441 0.0006468 0.0042818 0.0313665

JPN

ARIMA 0.0000901 0.000421 0.0025267 0.0219111
SES 0.0000953 0.0.000438 0.0026139 0.0227017

LSTM 0.0000882 0.0004145 0.0024934 0.0216091
Transformer 0.0000874 0.0004118 0.0024793 0.0214822

AUS

ARIMA 0.0002616 0.0005848 0.0033139 0.0287985
SES 0.0002383 0.0005187 0.0029183 0.0257003

LSTM 0.0002637 0.000591 0.0033508 0.0290852
Transformer 0.0002426 0.0005307 0.0029901 0.0262656

94 A. Roshani et al.

Table 10: The runtime (in seconds) of LSTM and Transformer algorithms by gender.

Country
Male Female

LSTM Transformer LSTM Transformer
ITA 1107.42 82.84 1098.58 269.09
SWE 1005.33 696.11 1639.98 387.42
FRA 1155.77 168.98 1147.67 127.34
CHE 1020.31 99.55 908.50 143.26
AUT 1313.89 166.64 948.79 174.49
NOR 913.22 76.92 972.49 101.34
DEN 915.73 267.19 977.69 80.58
USA 1147.59 190.81 976.91 149.87
CAN 1483.96 177.68 1141.49 394.43
JPN 1162.95 178.85 1088.29 356.84
AUS 1029.15 76.96 1208.58 165.05

Acknowledgements

The authors would like to thank the reviewers for their valuable comments and sug-
gestions, which definitely improved the quality and presentation of the paper.

References

Antonio, K., Bardoutsos, A., and Ouburg, W. (2015), Bayesian poisson log-bilinear
models for mortality projections with multiple populations. European Actuarial Jour-
nal, 5(2), 245-281.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015), Time series analysis:
forecasting and control. New York: John Wiley & Sons.

Brouhns, N., Denuit, M., and Vermunt, J. K. (2002), A poisson log-bilinear regres-
sion approach to the construction of projected lifetables. Insurance: Mathematics and
economics, 31(3), 373-393.

Brownlee, J. (2017), Long short-term memory networks with python: develop sequence
prediction models with deep learning. Machine Learning Mastery.

Transformer Network for Forecasting Mortality Rate 95

Choi, J. (2021), 6-parametric factor model with long short-term memory. Communica-
tions for Statistical Applications and Methods, 28(5), 521–536.

Chollet, F. et al. (2015), Keras. https://github.com/fchollet/keras.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014), Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv:1412.3555.

Farsani, R. M., and Pazouki, E. (2021)., A transformer self-attention model for time
series forecasting. Journal of Electrical and Computer Engineering Innovations (JECEI),
9(1), 1-10.

Géron, A. (2019), Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media.

Glorot, X., and Bengio, Y. (2010), Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, JMLR Workshop and Conference Proceedings, 249-256.

Hochreiter, S., and Schmidhuber, J. (1997), Long short-term memory. Neural computa-
tion, 9(8), 1735-1780.

Hunt, A., and Blake, D. (2021), On the structure and classification of mortality models.
North American Actuarial Journal, 25(1), 215-234.

Hyndman, R. J., Koehler, A. B., Ord, J. K., and Snyder, R. D. (2008), Forecasting with
exponential smoothing: the state space approach. Springer Science & Business Media.

Hyndman, R. J., and Khandakar, Y. (2008), Automatic time series forecasting: the
forecast package for R. Journal of Statistical Software, 26(3), 1-22.

Lee, R. D., and Carter, L. R. (1992), Modeling and forecasting us mortality. Journal of
the American statistical association, 87(419), 659-671.

Li, J. (2013), A poisson common factor model for projecting mortality and life ex-
pectancy jointly for females and males. Population studies, 67(1), 111-126.

Li, N., and Lee, R. (2005), Coherent mortality forecasts for a group of populations: An
extension of the lee-carter method. Demography, 42(3), 575-594.

Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S., and Perla, F. (2019), A deep
learning integrated lee–carter model. Risks, 7(1), 33.

96 A. Roshani et al.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. In International conference on machine learning, PMLR, 1310-1318.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, Steiner, B., Fang, L., Bai, J. and Chintala, S. (2019),
Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems, Wallach, H., Larochelle, H., Beygelzimer, A.,
dAlché-Buc, F., Fox, E. and Garnett, R. (Eds.). Curran Associates, Inc., 8024-8035.

Perla, F., Richman, R., Scognamiglio, S. and Wüthrich, M. V. (2021), Time-series fore-
casting of mortality rates using deep learning. Scandinavian Actuarial Journal, 1-27.

R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing.

Renshaw, A. E. and Haberman, S. (2006), A cohort-based extension to the lee–carter
model for mortality reduction factors. Insurance: Mathematics and economics, 38(3),
556-570.

Richman, R. and Wüthrich, M. V. (2019), Lee and carter go machine learning: Recurrent
neural networks. Available at SSRN 3441030.

Roshani, A., Izadi, M. and Khaledi, B. (2022), Bayesian poisson common factor model
with overdispersion for mortality forecasting in multiple populations. Submitted.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986), Learning representations by
back-propagating errors. nature, 323(6088), 533-536.

Ushey, K. and Allaire, J. and Tang, Y. (2021). reticulate: Interface to Python. R package
version 1.22.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.
and Polosukhin, I. (2017), Attention is all you need. In Advances in neural information
processing systems, 5998-6008.

Villegas, A. M., Kaishev, V. K., and Millossovich, P. (2018), StMoMo: An R package for
stochastic mortality modeling. Journal of Statistical Software, 84(3), 1-38.

Wu, N., Green, B., Ben, X., and O’Banion, S. (2020), Deep transformer models for time
series forecasting: The influenza prevalence case. arXiv:2001.08317.

Transformer Network for Forecasting Mortality Rate 97

A Appendix

Let {κt}
T
t=1 be an observed sequential time series data. The aim is to predict κt for

t = T + 1, . . ., using the LSTM and the transformer networks. Input and output data are
required for supervised learning methods in machine learning. Therefore, we need to
divide the training data into two parts as displayed in Table 11.

Table 11: Divide the training data into two parts input and output.

Input Output
κ1, κ2, . . . , κ` κ`+1
κ2, κ3, . . . , κ`+1 κ`+2
...

...
κT−`, κT−`+1, . . . , κT−1 κT

The optimum hyperparameter `, the size of the input data, is obtained using MSE
criteria. The sample size from the above method is T − `.

A.1 LSTM

Recurrent neural networks can remember a lot of information about the past and use it
to predict the future more accurately. This property is used to analyse sequential data
such as time series. RNNs developed in the 1980s (Rumelhart et al., 1986) and have
recently become popular due to increasing computing power. RNNs have a hidden
state (or memory) and loop to store the output for a given input which is again used
as inputs in the next time step. In other words, RNNs consist of a recursive loop that
allows information gained from previous time step.

RNNs are comprised of several cells connected in a series across a time axis. Figure
2 illustrates a simple RNN architecture with one hidden layer. The right side of the
figure shows the unfolding of the network through time. At time step t, the RNN’s cell
receive input xt as well as the previous hidden state, ht−1, update the current hidden
state, ht, and eventually produce output ỹt.

98 A. Roshani et al.

... ...

Figure 2: RNN architecture in two forms, folded (left side) and unfolded across time
(right side).

The RNN network’s hidden state and output in time step t are specified as follows:

ht = f (Wxxt + Whht−1 + bh) ,
ỹt = f (Woht + bo) ,

where,

• xt is the input vector of size nI.

• ỹt is the output vector of size no.

• ht is the hidden state of size nh.

• Wx is the nh × nI matrix of connection weights for the inputs.

• Wh is the nh × nh matrix of connection weights for the previous hidden states.

• Wo is the no × nh matrix of connection weights for the current hidden states.

• bh is the bias vector of size nh.

• bo is the bias vector of size no.

Transformer Network for Forecasting Mortality Rate 99

• f (.) is an activation function such as hyperbolic tangent or ReLU.

In general, training means a process that a model learns the optimal parameters
with a training set by minimizing a given error function which depends on trainable
parameters. Training is composed of three steps, forward propagation, backpropaga-
tion and parameter update. At each time step t, forward propagation of RNN updates
values of the state ht, the output ỹt and the corresponding error

Et =

no∑
i=1

{(
ỹt

)
i −

(
yt

)
i

}2
,

with respect to the input xt and the target yt, where (yt)i is the ith component of the
vector yt. Note that the parameters of weights Wx,Wh,Wo and biases bh,bo remain
unchanged during the forward propagation. The initial state h0 and the initial values
of weights and biases are required to compute the first state h1 and consequently the
output value ỹ1. The initial state and biases are usually set to zero, and the initial
weights are determined by the Glorot uniform initializer (Glorot and Bengio, 2010). In
backpropagation step, the gradients (partial derivatives) of the error function

E =
1
T

T∑
t=1

Et =
1
T

T∑
t=1

no∑
i=1

{(
ỹt

)
i −

(
yt

)
i

}2

are computed with respect to the learning parameters Wx,Wh,Wo,bh and bo. The chain
rule is applied to compute gradients and then used to updates parameters with learning
rate γ. For example, for parameter Wx,

Wx ←−Wx − γ
∂E
∂Wx

.

Hochreiter and Schmidhuber (1997) introduced LSTM networks which are special
cases of RNNs. They are proficient in considering long-term dependencies of a sequen-
tial data. The diagram of the unfolded LSTM network across time is shown in Figure 3.
The cell state, Ct, conveys the processed information so far to the next cell, which acts
like state ht in simple RNN. As the cell state does not have any activation functions,
it is less influenced by the vanishing or exploding gradient caused by the product of
partial derivatives in the learning procedure.

The forget gate, input gate, and output gate are the three gates that make up the
LSTM cell. A sigmoid layer plus a point-wise multiplication operation make up the

100 A. Roshani et al.

... ...

Figure 3: LSTM diagram. The gates are separated by a vertical dashed line.

gates. The sigmoid layer generates numbers between 0 and 1 that indicate how much
of each component should be permitted to pass.

The gates in the time step t are specified as follows:

ft = σ
(
W>

x f xt + W>

h f ht−1 + b f

)
, (forget gate)

it = σ
(
W>

xixt + W>

hiht−1 + bi

)
,

C̃t = tanh
(
W>

xcxt + W>

hcht−1 + bc
)
, (input gate)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t,

ot = σ
(
W>

xoxt + W>

hoht−1 + bo
)
,

ỹt = ht = ot ⊗ tanh(Ct). (output gate)

where

• xt is the input vector of size nI.

• ỹt is the output vector of size no.

• Wx f , Wxi, Wxc, and Wxo are the nI×nh matrices of connection weights for the inputs
in the forget gate, input gate, candidate state, and output gate, respectively.

Transformer Network for Forecasting Mortality Rate 101

• Wh f , Whi, Whc, and Who are the nh×nh matrices of connection weights for previous
hidden states in the forget gate, input gate, candidate state, and output gate,
respectively.

• Wp is the nh × no matrix of connection weights for the current hidden states.

• b f , bi, bc, and bo are the bias vectors of size nh.

• bp is the bias vector of size no.

• ⊗ stands for the element-wise product operator.

A.2 Transformer

Vaswani et al. (2017) presented the transformer network for NLP for the first time. The
transformer is a deep learning architecture that avoids the vanishing gradient problem
that plagues RNNs (Pascanu et al., 2013) and uses self-attention mechanisms to capture
the long-term dependencies. The transformer has an encoder-decoder structure. Both
the encoder and the decoder use stacked self-attention and point-wise completely
connected layers, as shown in Figure 4. The decoder receives previous outputs and
the encoded input from the encoder to generate the output. Because the transformer
network has been proposed initially for translation tasks, the input of the encoder and
decoder section is a series of words.

Thus, it needs an embedding layer to convert the words into numbers. In this
paper, the values of a time-series data, which are numbers, are given to the transformer
network. Thus, the embedding layer is removed in the encoder and decoder sections.
In sequential data, an element’s position is essential in predicting future values. Thus,
the sequence is given to a positional encoding layer before feeding the encoder and
decoder sections. Followed by the original paper (Vaswani et al., 2017), we use the
sinusoidal function in this layer.

Encoder: The first stage is the multi-head self-attention block. The output position
information from positional encoding is added to the features before feeding the multi-
head self-attention mechanism. The basic idea behind self-attention is to develop an
attention mechanism that allows any element in a sequence to attend to any other. In a
self-attention mechanism, three different copies of each input are created by multiplying
with three weight matrices, query, key, and value, learned through the training process.

The attention value from element i to element j is based on the dot product atten-
tion which is defined by Attention(Q,K,V) = softmax(QKT

√
dk

)V, where dk is the hidden

102 A. Roshani et al.

dimensionality for queries Q ∈ Rd×dk and keys K ∈ Rd×dk and softmax is the well known
softmax function. Instead of performing single self-attention, multi-head attention,
i.e., multiple different query, key, and value triples on the same sequence, performs to
capture multiple various aspects of sequence elements. Suppose that m head attentions
apply on the same sequence, then the heads are concatenated and combined with a
final weight matrix as follows

Multihead(Q,K,V) = Concat(Head1, . . . ,Headm)Wo,

where

Headi = Attention(Qi,Ki,Vi), i = 1, . . . ,m.

The next layer is an add and normalization layer. In this layer, the output vector of
the multi-head attention block is added to the original input of the encoder section,
denoted by x. Then, the layer normalization of the vector x is given by

LayerNorm(x) = γ
x − µ
σ

+ β,

where µ and σ are the mean and standard deviation of elements of x, respectively. The
scale parameter γ and bias parameter β are learned through the training process. In the
next stage, a fully connected feed-forward network (FFN) is applied to each position
with a ReLU activation function. This layer consists of two linear transformations as
follows:

FFN(x) = max{0, xW1 + b1}W2 + b2

where W1, W2, b1 and b2 are learned parameters. The FFN is followed by an add and
norm layer, which is the final stage of the encoder section. The output of the encoder
is fed to the decoder.

Decoder: Similar to the encoder section, after the positional encoding, the first layer
is multi-head attention, followed by an add and norm layer. The second multi-head
attention takes the output of the encoder block and makes the linear transformation’s
key and value in the self-attention mechanism. The third linear transformation, i.e.,
the query, is made from the output of the add and norm layer. The decoder section
is finished by an add and norm layer, a fully connected feed-forward network with a
ReLu activation function, and another add and norm layer.

Transformer Network for Forecasting Mortality Rate 103

Inputs

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Positional
Encoding

Outputs
(shifted right)

Multi-Head
Attention

Add & Norm

Positional
Encoding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Linear

Outputs

Figure 4: Transformer Architecture.

