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Abstract. The transformer network is a deep learning architecture that uses self-
attention mechanisms to capture the long-term dependencies of a sequential data. The
Poisson-Lee-Carter model, introduced to predict mortality rate, includes the factors of
age and the calendar year, which is a time-dependent component. In this paper, we use
the transformer to predict the time-dependent component in the Poisson-Lee-Carter
model. We use the real mortality data set of some countries to compare the mortality
rate prediction performance of the transformer with that of the long short-term memory
(LSTM) neural network, the classic ARIMA time series model and simple exponential
smoothing method. The results show that the transformer dominates or is comparable
to the LSTM, ARIMA and simple exponential smoothing method.
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1 Introduction

Predicting future mortality rates enables governments and demographic information
organizations such as social security, insurance companies, etc., to plan for the future
more accurately. Therefore, mortality rate models have garnered increased attention
and many researchers have attempted to introduce and develop mortality rate mod-
els with more accurate predictions. Some well-known mortality rate models in the
literature are:

Lee-Carter (LC) (Lee and Carter, 1992), Poisson LC (PLC) (Brouhns et al., 2002),
RH (Renshaw and Haberman, 2006), augmented common factor (Li and Lee, 2005),
Poisson common factor (Li, 2013), Bayesian Poisson log-bilinear (Antonio et al., 2015)
and Bayesian Poisson common factor with overdispersion (Roshanietal., 2022). Among
these, the PLC model remains a popular and widely used model. For a comprehensive
review of mortality rate modellings, one can see Hunt and Blake (2021).

Suppose that Dy, m,; and E,; are the number of deaths, central death rate and
central exposure-to-risk, respectively, for age x in year t. The PLC model is

Dyt ~ Poisson(Ey 11y ), (1.1)
log Myt = ay + Prkt, xeX,teT, '

where X = {x;|i=1,2,...,A}, A is the number of age groups, 7 = {t;|i=1,2,...,T},
ay measures the age effect, «; is a time-dependent parameter and g is the age-related
parameter which measures the marginal effect of x; over time on the log mortality

rate. The constraints Z By, = 1 and Z Ky, = 0 are taken into account to ensure model

identification (see Brouhns etal. 2002) 1In this model and the other introduced mortality
rate models, after estimating the parameters ay’s, f,’s and «;’s, an auto-regressive
integrated moving average (ARIMA) time series model is fitted to &, t € 7, to predict
the future mortality rates, where &; is the estimate of x;, t € 7.

Machine learning algorithms, particularly neural networks, have recently gained
popularity as a tool in some applications such as natural language processing (NLP),
computer vision, automatic speech recognition, social network filtering, and medical
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diagnosis. Various neural network techniques were developed, each used for a specific
application; convolutional, perceptron, recurrent, and transformer arejjust a few examp-
les. Recurrent neural networks (RNNSs) retain past or historical information to predict
future values. This property has led to their application in the analysis of sequential
data such as time-series data. Some examples of sequential data are a series of data
points; Audio, video, text, biomedical data such as EEG signals or DNA sequence data
and financial data such as stock prices.

RNNSs such as LSTM (introduced in Section A.1) (Hochreiter and Schmidhuber,
1997) and Gated recurrent unit (GRU) (Chung et al., 2014) have been recently used in
mortality rate models to predict the calendar year effect. Richman and Wiithrich (2019)
predicted Swiss female and male mortality rates using LSTM and GRU architectures
to predict the mortality rate and compared them with the LC model. Nigri et al. (2019)
introduced a new approach based on LSTM architecture to predict the time-dependent
component, k;, in the LC model. They applied the technique to data from six countries
separately for males and females. Perla et al. (2021) generalized the LC model using
a simple convolutional network model as well as an LSTM network. Choi (2021)
proposed the 6-parameter model and used LSTM to forecast time-dependent factors in
conjunction with traditional time series methods such as vector autoregression (VAR).

The transformer (introduced in Section A.2) is a deep learning architecture that was
first proposed for NLP by a group of Google researchers (Vaswani et al., 2017). This
architecture relies on encoder-decoder attention mechanisms rather than recurrent lay-
ers. Transformers avoids the vanishing gradient problem that plagues RNNs (Pascanu
et al., 2013) and use self-attention mechanisms to capture the long-term dependencies.
Transformers are much faster to train and easier to parallelize (Géron, 2019).

Recently, transformers have been used to predict time series. Wu et al. (2020)
used the transformer network for forecasting influenza-like illness and show that it
outperforms the LSTM and Seq2Seq models. Farsani and Pazouki (2021) used the
transformer network to provide more accurate time series prediction over longer time
intervals.

To the best of our knowledge, time-series transformer architecture have not been
used in the mortality rate modelling in the literature. Therefore, the rest of this paper
is organized as follows. In Section 2, we use the transformer architecture to predict
the time-dependent component in the PLC mortality rate model. Using the mortality
data of several countries, we compare the transformer with the LSTM, the best ARIMA
time series model (Box et al., 2015), and the best simple exponential smoothing method
denoted by SES (Hyndman et al., 2008) for predicting the time-dependent parameter.



84 A. Roshani et al.

The results show that the mortality rate prediction performance of the transformer
outperforms or is comparable to those of the LSTM, the best ARIMA model, and
the best SES technique. We explain the transformer and LSTM neural networks in
Appendix A.

2 Methodology and Data Analysis

In this section, we first describe the data, then we explain the methodology. We use the
male and female mortality rates from Japan, Australia, Sweden, Italy, France, Switzer-
land, Austria, Norway, Denmark, Canada, and the United States. The source of the
data is the Human Mortality Database (HMD!). We consider the ages from 0 to 89, so
A =90. The time period selected for each country begins in 1950 and ends depending
on the information in the HMD. We use the data from 1950 to 2000 as the train data
(T train) and from 2001 onward as the test data (7 est) which is shown in Table 1.

Table 1: Total, training and testing set by country

Country T ﬂrain 7_test

ITA 1950-2017 1950-2000 2001-2017
SWE 1950-2018 1950-2000 2001-2018
FRA 1950-2018 1950-2000 2001-2018
CHE 1950-2018 1950-2000 2001-2018
AUT 1950-2017 1950-2000 2001-2017
NOR 1950-2018 1950-2000 2001-2018
DEN 1950-2019 1950-2000 2001-2019
USA 1950-2017 1950-2000 2001-2017
CAN 1950-2016 1950-2000 2001-2016
JPN 1950-2018 1950-2000 2001-2018
AUS 1950-2018 1950-2000 2001-2018

Using StMoMo (Villegas et al., 2018) package in R software (R Core Team, 2021), we
fit the PLC model to the train data for male and female groups of each country and
estimate the parameters ay, by, and x; denoted by dy, by, and &, respectively. The
estimated parameters X, t € Tain, are considered as the input data for the transformer,

LSTM, ARIMA and SES, to predict future values ¢, t € Tiest. We apply the auto.arima

lwww.mortality.org
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and ses functions in the forecast package in R (Hyndman and Khandakar, 2008) to
find the best ARIMA and SES. The parameters of ARIMA model for all the countries
are determined and included in Table 2.

Table 2: Best ARIMA model for each country and gender.

Country Male Female

ITA ARIMA(0,2,3) ARIMA(0,1,1) with drift
SWE ARIMA(2,2,2) ARIMA(0,1,1) with drift
FRA ARIMA(0,1,1) with drift ARIMA(0,1,1) with drift
CHE ARIMA(0,2,2) ARIMA(0,1,1) with drift
AUT ARIMA(1,2,1) ARIMA(1,1,0) with drift
NOR ARIMA(1,2,1) ARIMA(0,1,1) with drift
DEN ARIMA(1,1,0) with drift ARIMA(1,1,0) with drift
USA ARIMA(0,2,1) ARIMA(0,1,0) with drift
CAN ARIMA(0,2,1) ARIMA(0,1,0) with drift
JPN ARIMA(0,1,1) with drift ARIMA(0,1,1) with drift
AUS ARIMA(0,2,2) ARIMA(1,1,0) with drift

For the LSTM and the transformer networks, we divide the training data into two
sets, a reduced training data set (80% of the training data) and a validation data set
(20% of the training data). Because, the random initial values of the learning parameters
provide random prediction, we apply each network 50 times on the reduced training
data for various selections of hyper-parameters and predict «;, for t € Tyalidation- Then,
we calculate the average MSE based on the validation data set for the selected hyper-
parameters. The hyper-parameters with the minimum average MSE are chosen. Next,
we use the network with optimum hyper-parameters to predict «;, t € Tiest, using the
whole training data for 50 times. Now, we use the average of predicted «;’s in the
PLC model to predict the mortality rate, my, for t € Test, denoted by 7, ;. Finally, we
compute the mean absolute percentage error (MAPE) measure defined below, that is
used to compare our transformer results with those of LSTM, ARIMA and SES.

It is worth to mention that, for the transformer and LSTM to have a high accurate
prediction, we make the time series stationary and then re-scale it to [0, 1] (Brownlee,
2017, p. 87).

The MAPE which is a common model selection measure of accuracy is used to
compare the above four models in predicting mortality rates. This criterion is defined
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as
log(mx,t) - log(mx,t)
log(x,4)

MAPE = 1
N
(x/t) €)<><7—test

4

where N is the cardinality of X' X Test.

For all countries, we use a single hidden layer and the sigmoid activation function
for LSTM architecture. Other hyperparameters such as the number of neurons, the
learning rate, the length of input samples and the number of epochs?, depend on the
countries (Table 3). In transformer architecture, we use the Rectified Linear Unit (ReLLU)
activation function in Feed-Forward layers for both encoder and decoder blocks. The
number of encoder and decoder blocks and the number of heads in multi-head attention
are set to be one. The input length of the encoder and decoder, the learning rate, the
number of epochs, and other hyperparameters, are explained in Section A.2, depend
on the countries (Table 4).

We use the open-source python libraries PyTorch (Paszke et al., 2019) and Keras
(Chollet et al., 2015) to apply the transformer and LSTM networks. In addition, to use
the output of these libraries in R, we used Reticulate package (Ushey et al., 2021).

We apply these four methods on the mortality data of the countries displayed in
Table 1. The computed MAPE for the test data is presented in Table 5. For males, the
MAPE of the transformer is less than that of the LSTM, SES and ARIMA for all the
countries except Italy and Norway. It is worth to mention that the MAPE result for
Norway using transformer is less than LSTM and SES and is comparable with that of
ARIMA. That is, the transformer network provides more accurate predictions than the
LSTM, SES and ARIMA. For the female group, the results obtained by transformer,
LSTM, SES and ARIMA are comparable as presented in Table 5. We plot the mortality
rate predictions for ages 20, 40, 60 and 80, along with actual values for Sweden based
on the transformer, LSTM, ARIMA and SES method in Figure 1. Finally, in Tables 6, 7,
8 and 9, we present 2022 prediction of mortality rate for ages of 20, 40, 60 and 80 for
males and females, respectively.

After obtaining the optimum parameters, the prediction running time of LSTM
and Transformer algorithms are given in Table 10. We see that the running time for
Transformer in considerably shorter than LSTM. The system that we used is Google
Collaboration Platform with 2-core Intel® Xeon® 2.20GHz CPU and 13.6 GB RAM.

2One epoch is when all samples in the training dataset are processed once, and the network weights
are updated.
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Table 3: Hyperparameters of LSTM network for each country and gender.

LSTM hyperparameters
Country ~ Gender length of input number of neurons learning rate epoch

ITA Male 8 1 0.0001 200
Female 4 4 0.01 200

Male 4 1 0.0001 200

SWE Female 16 16 0.01 200
Male 8 8 0.01 200

FRA Female 2 32 0.001 200
Male 4 1 0.0001 200

CHE Female 1 8 0.001 200
Male 16 8 0.01 200

AUT Female 1 1 0.0001 200
Male 32 1 0.01 200

NOR Female 32 1 0.01 200
Male 1 1 0.0001 200

DEN Female 32 2 0.01 200
Male 16 1 0.0001 200

UsA Female 32 1 0.01 200
Male 16 32 0.01 200

CAN Female 16 8 0.0001 200
JPN Male 32 32 0.0001 200
Female 4 32 0.01 200

Male 32 8 0.01 200

AUS Female 16 1 0.01 200
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Table 4: Hyperparameters of transformer network for each country and gender.

Transformer hyperparameters

Country Gender

encoder decoder i number of number of number of 1 . " h

length  length k heads encoder layers decoder layers earming rate - epoc

ITA Male 32 8 10 5 1 1 1 0.0001 200
Female 2 2 128 64 1 1 1 0.0001 400

SWE Male 32 32 128 64 1 1 1 0.01 200
Female 8 8 128 64 1 1 1 0.01 200

FRA Male 32 2 10 5 1 1 1 0.0001 400
Female 2 2 10 5 1 1 1 0.0001 400

CHE Male 32 32 10 5 1 1 1 0.01 200
Female 2 2 10 5 1 1 1 0.0001 400

AUT Male 32 2 10 5 1 1 1 0.0001 400
Female 32 4 10 5 1 1 1 0.0001 400

NOR Male 2 2 12 6 1 1 1 0.01 200
Female 16 16 10 5 1 1 1 0.01 200

DEN Male 16 8 128 64 1 1 1 0.0001 200
Female 8 2 10 5 1 1 1 0.01 200

USA Male 16 16 10 5 1 1 1 0.0001 400
Female 32 4 10 5 1 1 1 0.0001 400

CAN Male 16 2 10 5 1 1 1 0.0001 400
Female 32 2 128 64 1 1 1 0.0001 400

PN Male 32 2 10 5 1 1 1 0.0001 400
Female 8 2 128 64 1 1 1 0.01 200

AUS Male 2 2 10 5 1 1 1 0.01 200
Female 16 2 10 5 1 1 1 0.0001 400

Table 5: MAPE of ARIMA, SES, LSTM and Transformer for each country and gender.

Male Female
Country ARIMA SES LSTM  Transformer ARIMA  SES LSTM Transformer
ITA 45669 49164 4.4717 4.5284 19021 2.6465 2.2168 1.9528
SWE 41184  4.2207 4.0705 4.0049 2.5426 24253 24831 2.4334
FRA 3.8747  3.3165 3.175 2.9727 24898 24910 2.4876 2.4845
CHE 42215 43584 4.7111 4.0611 3.1667 3.1890 3.1691 3.1919
AUT 3.8224  3.8980 3.8639 3.7405 3.1895 3.3819 3.2133 3.3196
NOR 5.656  11.6106 5.9546 5.6641 3.0841 3.0346 3.1913 3.0327
DEN 7005 69791 6.9546 6.6331 5298 5.0316 5.1574 5.4565
USA 2.5338  2.5351 2.5343 2.4508 17678  2.1363 2.1783 2.1910
CAN 34104 3.7195 3.3526 3.2759 1.5878  1.6255 1.5996 1.5747
JPN 3.1593  3.0090 2.9173 2.9162 7.6805 7.8694 7.4117 7.5783

AUS 39564 54907 5.5608 3.6050 2.1823  3.8583 2.1837 2.2083
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Figure 1: Plots of fitted and projected mortality rates for Swedish male and female
groups (The left side for males and the right side for females) with ages 20, 40 and 85
accompanied by observed crude mortality rates.
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Table 6: Mortality rate for Male in year 2022.

Age
Country Model 50 0 &0 30

ARIMA 0.0004535 0.0008014 0.0060383 0.0501608
ITA SES 0.0004522 0.0007986 0.0060191 0.0500402
LSTM 0.0004399 0.0007729 0.0058398 0.0489068
Transformer 0.0004384 0.0007698 0.0058183 0.0487702

ARIMA 0.0004308 0.0008134 0.005490  0.049991
SWE SES 0.0004673 0.0008848 0.0059591 0.0533261
LSTM 0.0004398 0.0008311 0.0056063 0.0508236
Transformer 0.0004191 0.0007906 0.0053401 0.0489129
ARIMA 0.0007042 0.001521  0.0084967 0.0447384
FRA SES 0.0006996 0.0015103 0.0084366 0.0443904
LSTM 0.0006894 0.0014867 0.0083031 0.0436179
Transformer 0.0007116 0.0015383 0.0085944 0.0453044
ARIMA 0.0004955 0.0007738 0.0050696 0.0427874
CHE SES 0.0004942 0.0007718 0.0050561 0.0426957
LSTM 0.000495  0.000773  0.0050645 0.0427528
Transformer 0.0004992 0.0007793 0.0051074 0.0430435
ARIMA 0.0006134 0.0010305 0.0078522 0.0523279
AUT SES 0.0006169 0.0010363 0.0078897 0.0525628
LSTM 0.0006066 0.0010192 0.0077792 0.0518701
Transformer 0.0006047 0.0010159 0.0077579 0.0517367
ARIMA 0.0005491 0.0008312 0.0052029 0.0490369
NOR SES 0.0005497 0.0008324 0.0052109 0.0490897
LSTM 0.0005443 0.0008226 0.0051431 0.0486408

Transformer 0.0005588 0.0008487 0.0053244 0.049837
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Table 7: (continued) Mortality rate for Male in year 2022.

Age
Country Model 50 ) &0 30

ARIMA 0.0003637 0.0011184 0.0079847 0.055705
DEN SES 0.0003233 0.0010284 0.0073781 0.0519341
LSTM 0.0003807 0.0011554 0.0082333 0.0572407
Transformer 0.0003667 0.0011249 0.008028  0.0559724
ARIMA 0.0011283 0.0021099 0.0100346 0.0578829
USA SES 0.0011869 0.0022258 0.0108314 0.0614882
LSTM 0.0012018 0.0022553 0.0110372 0.0624101
Transformer 0.0011955 0.0022429 0.0109505 0.0620221
ARIMA 0.0005949 0.001029  0.0061699 0.0496926
CAN SES 0.0006219 0.0010683 0.0064465 0.0511498

LSTM 0.0006242 0.0010716 0.0064697 0.051271
Transformer 0.0006232 0.0010701 0.0064592 0.0512164
ARIMA 0.0003193 0.0008715 0.0061243 0.0447223

JPN SES 0.0003243 0.0008826 0.0061898 0.045197
LSTM 0.0003236 0.000881  0.00618 0.0451257
Transformer 0.0003241 0.0008822 0.006187  0.0451769
ARIMA 0.0005728 0.0011092 0.005228  0.0456955

AUS SES 0.0005272 0.0010455 0.0047616 0.042778
LSTM 0.0005681 0.0011027 0.0051797 0.0453968
Transformer 0.0005339 0.001055  0.0048297 0.0432095

91
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Table 8: Mortality rate for Female in year 2022.

Age
Country Model 50 0 &0 30

ARIMA 0.0001249 0.0004599 0.0032093 0.0293615
ITA SES 0.0001309 0.0004786 0.0033178 0.0304109
LSTM 0.0001253 0.000461  0.0032158 0.0294238
Transformer 0.0001271 0.0004669 0.0032502 0.0297567
ARIMA 0.0002055 0.0005423 0.004045 0.0329319
SWE SES 0.0002095 0.0005565 0.0041251 0.0337557
LSTM 0.0002075 0.0005496 0.0040861 0.0333542
Transformer 0.0002087 0.0005536 0.0041087 0.0335868

ARIMA 0.0002307 0.0007129 0.0035631 0.025043
FRA SES 0.0002339 0.0007221 0.0036071 0.0254237
LSTM 0.0002327 0.0007187 0.0035908 0.0252822

Transformer 0.000236  0.0007284 0.0036372 0.025685
ARIMA 0.0002203 0.0004982 0.003211  0.0271815
CHE SES 0.0002218 0.0005024 0.0032373 0.0274295
LSTM 0.000221  0.0005002 0.0032235 0.0272998

Transformer 0.0002203 0.000498  0.0032103 0.027175
ARIMA 0.0001978 0.000521  0.0040394 0.0342367
AUT SES 0.0002278 0.0006104 0.0045304 0.0390488
LSTM 0.0002145 0.0005707 0.0043151 0.0369286
Transformer 0.0002085 0.0005527 0.0042161 0.0359585
ARIMA 0.0002516  0.0005876 0.0041719 0.0328564
NOR SES 0.00025 0.0005805 0.0041307 0.0324245
LSTM 0.0002495 0.0005782 0.0041176 0.0322881
Transformer 0.0002508 0.0005841 0.0041516 0.0326431
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Table 9: (continued) Mortality rate for Female in year 2022.

Age
Country Model 50 0 &0 30

ARIMA 0.0001744 0.0007002 0.0058506 0.0367189
DEN SES 0.0001552 0.0006194 0.0054182 0.0329184

LSTM 0.0001808 0.0007271 0.0059907 0.037976

Transformer 0.0001725 0.0006921 0.0058081 0.03634

ARIMA 0.0003773 0.001134 0.0063689 0.0393065
USA SES 0.0004007 0.0012136  0.006777  0.0419853
LSTM 0.0003968 0.0012004 0.0067091 0.0415388

Transformer 0.0004007 0.0012138 0.0067778 0.041991
ARIMA 0.0002452 0.0006503  0.0043027 0.0315134

CAN SES 0.0002491 0.0006616  0.0043704 0.03199

LSTM 0.0002473 0.0006564  0.0043389 0.0317683
Transformer 0.0002441 0.0006468 0.0042818 0.0313665
ARIMA 0.0000901 0.000421 0.0025267 0.0219111
JPN SES 0.0000953 0.0.000438 0.0026139 0.0227017
LSTM 0.0000882 0.0004145 0.0024934 0.0216091
Transformer 0.0000874 0.0004118 0.0024793 0.0214822
ARIMA 0.0002616 0.0005848 0.0033139 0.0287985
AUS SES 0.0002383 0.0005187  0.0029183 0.0257003
LSTM 0.0002637 0.000591 0.0033508 0.0290852
Transformer 0.0002426 0.0005307 0.0029901 0.0262656

93
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Table 10: The runtime (in seconds) of LSTM and Transformer algorithms by gender.

Country Male Female
LSTM  Transformer LSTM  Transformer

ITA 1107.42 82.84 1098.58 269.09
SWE 1005.33 696.11 1639.98 387.42
FRA 1155.77 168.98 1147.67 127.34
CHE 1020.31 99.55 908.50  143.26
AUT 1313.89 166.64 948.79  174.49
NOR 913.22 76.92 97249 101.34
DEN 915.73  267.19 977.69  80.58

USA 1147.59 190.81 97691  149.87
CAN 1483.96 177.68 1141.49 394.43
JPN 1162.95 178.85 1088.29 356.84
AUS 1029.15 76.96 1208.58 165.05
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A Appendix

Let {Kt}thl be an observed sequential time series data. The aim is to predict «; for
t=T+1,..., using the LSTM and the transformer networks. Input and output data are
required for supervised learning methods in machine learning. Therefore, we need to
divide the training data into two parts as displayed in Table 11.

Table 11: Divide the training data into two parts input and output.

Input Output
K1,K2,..., K¢ Kevl
K2,K3,.--, Kt Ke+2
KT—, KT—t+1,---,KT-1 KT

The optimum hyperparameter ¢, the size of the input data, is obtained using MSE
criteria. The sample size from the above method is T — .

Al LSTM

Recurrent neural networks can remember a lot of information about the past and use it
to predict the future more accurately. This property is used to analyse sequential data
such as time series. RNNs developed in the 1980s (Rumelhart et al., 1986) and have
recently become popular due to increasing computing power. RNNs have a hidden
state (or memory) and loop to store the output for a given input which is again used
as inputs in the next time step. In other words, RNNs consist of a recursive loop that
allows information gained from previous time step.

RNNSs are comprised of several cells connected in a series across a time axis. Figure
2 illustrates a simple RNN architecture with one hidden layer. The right side of the
figure shows the unfolding of the network through time. At time step t, the RNN's cell
receive input x; as well as the previous hidden state, h;_;, update the current hidden
state, h;, and eventually produce output ¥;.
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Figure 2: RNN architecture in two forms, folded (left side) and unfolded across time
(right side).

The RNN network’s hidden state and output in time step ¢ are specified as follows:

h; = f (Wyx; + Wihi_1 +bp),
}~’t = f(woht + bo)/

where,

e X; is the input vector of size nj.

¥+ is the output vector of size n,.

h; is the hidden state of size ny,.

W, is the nj, X nj matrix of connection weights for the inputs.

W, is the n, X nj, matrix of connection weights for the previous hidden states.

W, is the 1, X n;, matrix of connection weights for the current hidden states.

by, is the bias vector of size ny,.

b, is the bias vector of size n,.
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e f(.)is an activation function such as hyperbolic tangent or ReLU.

In general, training means a process that a model learns the optimal parameters
with a training set by minimizing a given error function which depends on trainable
parameters. Training is composed of three steps, forward propagation, backpropaga-
tion and parameter update. At each time step t, forward propagation of RNN updates
values of the state hy, the output §; and the corresponding error

E=Y (60~

i=1

with respect to the input x; and the target y;, where (y;); is the ith component of the
vector y;. Note that the parameters of weights Wy, W;,, W,, and biases b;, b, remain
unchanged during the forward propagation. The initial state hy and the initial values
of weights and biases are required to compute the first state h; and consequently the
output value §;. The initial state and biases are usually set to zero, and the initial
weights are determined by the Glorot uniform initializer (Glorot and Bengio, 2010). In
backpropagation step, the gradients (partial derivatives) of the error function

v, 1y
EZ?Z i_FZ, {50 (Yt)}

are computed with respect to the learning parameters W, Wy, W, b;, and b,. The chain
ruleis applied to compute gradients and then used to updates parameters with learning
rate y. For example, for parameter Wy,

JE

Wx<—Wx—y8W.
X

Hochreiter and Schmidhuber (1997) introduced LSTM networks which are special
cases of RNNs. They are proficient in considering long-term dependencies of a sequen-
tial data. The diagram of the unfolded LSTM network across time is shown in Figure 3.
The cell state, C;, conveys the processed information so far to the next cell, which acts
like state h; in simple RNN. As the cell state does not have any activation functions,
it is less influenced by the vanishing or exploding gradient caused by the product of
partial derivatives in the learning procedure.

The forget gate, input gate, and output gate are the three gates that make up the
LSTM cell. A sigmoid layer plus a point-wise multiplication operation make up the
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Figure 3: LSTM diagram. The gates are separated by a vertical dashed line.

gates. The sigmoid layer generates numbers between 0 and 1 that indicate how much
of each component should be permitted to pass.
The gates in the time step t are specified as follows:

fi=0o (W;rfxt + W;fht_l +b f) , (forget gate)
ir=o0 (W;xt + W;Tz-ht—l + bi) ,
C; = tanh (W;Cxt + W, h;_ 1 + bc) , (input gate)
C=£3C1+i;0C,
0=0 (W;C'_Oxt + W hy_1 + bo) ,
¥+ = hy = 0; ® tanh(Cy). (output gate)

where

¢ X; is the input vector of size n;.

e ¥, is the output vector of size n,.

o W.r, Wi, Wy, and Wy, are the n1Xn;, matrices of connection weights for the inputs
in the forget gate, input gate, candidate state, and output gate, respectively.
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o Wy r, Wyi, Wy, and Wy, are the 1y, X1, matrices of connection weights for previous
hidden states in the forget gate, input gate, candidate state, and output gate,
respectively.

e W, is the i, X n, matrix of connection weights for the current hidden states.
e b r b;, b., and b, are the bias vectors of size ny,.
e b, is the bias vector of size 1,.

e ® stands for the element-wise product operator.

A.2 Transformer

Vaswani et al. (2017) presented the transformer network for NLP for the first time. The
transformer is a deep learning architecture that avoids the vanishing gradient problem
that plagues RNNs (Pascanu et al., 2013) and uses self-attention mechanisms to capture
the long-term dependencies. The transformer has an encoder-decoder structure. Both
the encoder and the decoder use stacked self-attention and point-wise completely
connected layers, as shown in Figure 4. The decoder receives previous outputs and
the encoded input from the encoder to generate the output. Because the transformer
network has been proposed initially for translation tasks, the input of the encoder and
decoder section is a series of words.

Thus, it needs an embedding layer to convert the words into numbers. In this
paper, the values of a time-series data, which are numbers, are given to the transformer
network. Thus, the embedding layer is removed in the encoder and decoder sections.
In sequential data, an element’s position is essential in predicting future values. Thus,
the sequence is given to a positional encoding layer before feeding the encoder and
decoder sections. Followed by the original paper (Vaswani et al., 2017), we use the
sinusoidal function in this layer.

Encoder: The first stage is the multi-head self-attention block. The output position
information from positional encoding is added to the features before feeding the multi-
head self-attention mechanism. The basic idea behind self-attention is to develop an
attention mechanism that allows any element in a sequence to attend to any other. In a
self-attention mechanism, three different copies of each input are created by multiplying
with three weight matrices, query, key, and value, learned through the training process.

The attention value from element i to element j is based on the dot product atten-

tion which is defined by Attention(Q, K, V) = softmax(Q—I;T)V, where d; is the hidden
k
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dimensionality for queries Q € R™ and keys K € R and softmax is the well known
softmax function. Instead of performing single self-attention, multi-head attention,
i.e., multiple different query, key, and value triples on the same sequence, performs to
capture multiple various aspects of sequence elements. Suppose that m head attentions
apply on the same sequence, then the heads are concatenated and combined with a
final weight matrix as follows

Multihead(Q, K, V) = Concat(Head, ..., Head,,)\W°,
where
Head; = Attention(Q;, K;, V;), i=1,...,m.

The next layer is an add and normalization layer. In this layer, the output vector of
the multi-head attention block is added to the original input of the encoder section,
denoted by x. Then, the layer normalization of the vector x is given by

X~ d
LayerNorm(x) = y—— B,

where u and ¢ are the mean and standard deviation of elements of x, respectively. The
scale parameter y and bias parameter f§ are learned through the training process. In the
next stage, a fully connected feed-forward network (FEN) is applied to each position
with a ReLU activation function. This layer consists of two linear transformations as
follows:

FFN(x) = max{0, xW1 + b1}Ws + by

where Wy, Wy, by and b, are learned parameters. The FEN is followed by an add and
norm layer, which is the final stage of the encoder section. The output of the encoder
is fed to the decoder.

Decoder: Similar to the encoder section, after the positional encoding, the first layer
is multi-head attention, followed by an add and norm layer. The second multi-head
attention takes the output of the encoder block and makes the linear transformation’s
key and value in the self-attention mechanism. The third linear transformation, i.e.,
the query, is made from the output of the add and norm layer. The decoder section
is finished by an add and norm layer, a fully connected feed-forward network with a
ReLu activation function, and another add and norm layer.
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Figure 4: Transformer Architecture.
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