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1 Introduction

The parametric linear mixed model has been frequently used in repeated measures
and grouped and longitudinal data. Applications have been reported in different
areas such as agriculture, biology, economy, geophysics and social sciences, Diggle
et al. (2002). But parametric linear mixed models are sometimes inappropriate and
likely to introduce modeling biases when underlying models are complicated. To relax
the parametric assumptions, various semiparametric models have been developed for
longitudinal data. See, Chen and Jin (2006), Ruppert et al (2003), Fan and Li (2001).
Semiparametric mixed models (Diggle et al. (2002), Zhang et al. (1998), Fuller
(1987), Fung et al. (2002) and Emami and Mansoori (2018)) are useful extensions
to linear mixed models, which use parametric fixed effects to represent the covariate
effects and an arbitrary smooth function to model the time effect, and accounts for the
within-subject correlation using random effects.

On the other hand, in practice there are many cases under which the covariates are
unobservable, or say that they are observed with measurement error. For instance, it
has been well documented in the literature that the covariates such as blood pressure,
urinary sodium chloride level and exposure to pollutants are often subject to measurem-
ent errors. For this reason, there has been extensive research in the linear measurement
error problem, as can be seen, for example, in the books by Fuller (1987) and Wu (2010).

If the covariates are measured with errors are not properly accounted, it can lead us
to incorrect statistical inferences. For example, a significant covariate can be considered
not significant, as can be seen in Wu (2010). If the measurement errors are not accounted
for naive approach, then the parameter estimates are biased and not consistent (see
Carrol et al. (1995)). Recently, the combination of random effects and measurement
errors in parametric linear mixed-effects models is investigated by some authors. For
example, Zhong et al. (2002), Zare et al. (2011) and Riquelmea et al (2015) studied the
estimation problem when the fixed effect has measurement errors. They applied the
corrected score approach of Nakamura (1990) to obtain the estimators of the regression
parameters and proved the asymptotic normality.

Measurement error problems in semiparametric context are less well studied than
their parametric counterparts, probably due to the difficulty of handling multiple
infinite-dimensional parameters. The combination of measurement error with semipar-
ametric linear mixed models is worth investigating in linear models. It is often the
case in practice that covariate values collected on individuals are measured with non-
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negligible errors and the inference of these models is less developed. For example in
this area, Emami and Mansoori (2018) developed the influence diagnostics approach in
semiprametric linear mixed models with measurement error, Yalaz and Kuran (2020)
applied the profile kernel method and used the weighted least squares to estimate the
parameters. As the most recently study, Kuran and Yalaz (2022) extended ridge regres-
sion technique to combat multicollinearity in partially linear mixed measurement error
models. Although in such studies the parametric term has received much attention,
the asymptotic distribution of estimators and specially non parametric estimators has
not been discussed.

In this paper, instead of the kernel method and least squares estimation, we derive
the estimator of parametric and non parametric terms by employing the spline method
and corrected score function of Nakamura (1990). We obtain the asymptotic distribu-
tion of the estimators of both parametric and nonparametric component with details.
The plan of the paper is as follows: In Section 2, we introduce the corrected score func-
tion for semiparametric linear mixed models with measurement error. A specialized
simple algorithm is developed to estimate the parameters and variance component.
The asymptotic properties of the estimators are given in Section 3. To illustrate the
proposed estimation methods, a simulation study is considered in Section 4 and an
example of real data is presented in Section 5. Finally, concluding remarks are given in
Section 6.

2 The Methodology

2.1 Model and Notations

Consider the following semiparametric linear mixed models with errors in variables

Y = Zβ + Ub + f (t) + ε, (1.a)
X = Z + ∆, (1.b)

where Y is a n × 1 vector of observations, Z and U = [U1,U2, . . . ,Uc] are matrices of
"regressors” with dimensions n× p and n× q respectively. Ui is an n× qi known design
matrix of the random effect factor i and bτ = (bτ1, . . . , b

τ
c ) where bi is a qi × 1 vector

of unobservable random effects from N(0, σ2
i I), where sigma2

i , i = 1, . . . , c are called
variance components. β is a p-vector of parameters, f is a twice differentiable smooth
function on some finite interval and t = (t1, , . . . , tn) where ti is a scalar (a ≤ t1, . . . , tn ≤ b),
t′i s are not all identical. ε is an n × 1 vector of unobservable random errors. Covariate
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Z is unobservable for all study subjects which can be observed from random matrix X.
Following Zhong et al. (2002), the random errors follow N(0, σ2I). X is the observed
value of Z with the measurement error ∆, where ∆ is random matrix from N(0, I ⊗ Λ)
and Λ is positive definite matrix.

We assume that bi, ε and ∆ are mutually independent. In addition, we can write
b ∼ N(0, σ2D) where D is a block diagonal matrix with the ith block being θiIci, with
θi = σ2

i /σ
2, so that Y has a multivariate normal distribution with E(Y) = Zβ + f (t) and

var(Y) = σ2V, in which V = I + UDUτ = I +
c∑

i=1
θiUτ

i Ui. This is underlying model for

response vector Y in term of covariates. We denote the ordered distinct values among
t1, . . . , tn by s1, . . . , sq. Then the connection between t1, . . . , tn and s1, . . . , sr is captured
by means of the n× r incidence matrix N, with entries Ni j = 1 if ti = s j and 0 otherwise.
Let f be the vector of values ai = f (si). The term in (1.a) can then be written as

Y = Xβ + Ub + Nf + ε,

X = Z + ∆,
(2.2)

Let L(β, b, f; Z,Y) = logl(Y, b; β, f,Z), where l(Y, b; β, f,Z) denote the joint probability
density of Y and b, then from (2.2) the joint penalized log-likelihood is defined as

L(β, b, f; Z,Y) = κσ2 −
1

2σ2 (Y − Zβ −Ub −Nf)τ(Y − Zβ −Ub −Nf)

−
1

2σ2 bτD−1b −
λ

2σ2

∫
f ′′(t)2dt,

(2.3)

where κσ2 = −(1/2)log(2πσ2)n+q
− (1/2)log|D|. Following the approach of Harvill (1977)

by solving equation ∂L
∂b = 0, we get b̃β,f(Z) = (UτU+D−1)−1Uτ(Y−Zβ−Nf). Substituting

this formula in equation (2.3) and after some simplifications, we have

Lp(β, f; Z,Y) = κσ2 −
1

2σ2 (Y − Zβ −Nf)τV−1(Y − Zβ −Nf)

−
λ

2σ2 fτKf,
(2.4)

whereλ is a smoothing parameter and K is the non-negative definite smoothing matrix,
see Emami and Mansoori (2018). In this paper, the choice of the smoothing parameter
λ is accomplished by minimizing the generalized cross validation citerion GCV(λ).
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2.2 Estimation of Parametric and non Parametric Components

As we have mentioned before, the covariate Z is measured with error and the correlated
structure arises from the random effects. Since the covariate Z is measured with error, if
we simply replace Z by X, then the estimates obtained from the score functions are not
consistent in general. Various ways are proposed in dealing with measurement error
models. In this paper, we use corrected score method proposed by Nakamura (1990)
which is a common approach in measurement error models. In this method, we have
to find a corrected score function whose expectation with respect to the measurement
error distribution coincides with the usual score function based on the unknown true
independent variables. Let E∗ denotes the conditional mean with respect to X given Y.
The corrected penalized loglikelihood L∗(β, b, f; X) for our model should satisfy

E
∗[∂L∗(β, b, f; X,Y)/∂b] = ∂L(β, b, f; Z,Y)/∂b, (2.5)

E
∗[∂L∗p(β, f; X,Y)/∂β] = ∂Lp(β, f; Z,Y)/∂β. (2.6)

Given Λ, from (2.4) and (2.5), L∗ is obtained as

L
∗(β, b, f; X,Y) = κσ2 −

1
2σ2 {(Y − Xβ −Ub −Nf)τ(Y − Xβ −Ub −Nf) − tr(V−1)βτΛβ}

−
1

2σ2 bτD−1b −
λ

2σ2 fτKf.

(2.7)

An explicit expression for b is derived from the corrected penalized likelihood equation
∂L∗

∂b = 0 as

b̃β,f(X) = (UτU + D−1)−1Uτ(Y − Xβ −Nf)

= DUτV−1(Y − Xβ −Nf).
(2.8)

Analogous to (2.7), use (2.4) to verify that

L
∗

p(β, f; X,Y) = L∗(β, b̃β,f(X), f; X,Y) = κσ2 −
1

2σ2 (Y − Xβ −Nf)τV−1(Y − Xβ −Nf)

+
1

2σ2 tr(V−1)βτΛβ −
λ

2σ2 fτKf.
(2.9)

Hence, maximizing (2.9) with respect to β and f the maximum penalized corrected
likelihood estimators (MPCLE’s) of β and f are obtained as

β̂ = (XτWX − tr(V−1)Λ)−1XτWY, (2.10)
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f̂ = (NτWxN + λK)−1NτWxY, (2.11)

where
W = V−1

−V−1SV−1, S = N(NτV−1N + λK)−1Nτ,

and
Wx = V−1

−V−1X(XτV−1X − tr(V−1)Λ)−1XτV−1. (2.12)

From (2.8) , the MPCLE of the random effect b is given by

b̃ = (UτU + D−1)−1Uτ(Y − Xβ̂ −Nf̂)

= DUτV−1(Y − Xβ̂ −Nf̂).
(2.13)

Using Equations (2.10)-(2.13), the fitted values Ŷ = Xβ̂ + Ub̂ + Nf̂ = HY where H is
obtained, where

H = I −V−1 + V−1H∗,

and

H∗ = (X N)
(

XτV−1X − tr(V−1)Λ XτV−1N
NτV−1X NτV−1N + λK

)−1 (
Xτ

Nτ

)
V−1,

see Emami and Mansoori (2018).

2.3 Specialized Algorithm

Consider L∗(β, b, f; X,Y) in (2.7). Since β̂, f̂ and b̂ are the solutions of simultaneous
equations ∂L∗

∂β = 0, ∂L
∗

∂f = 0 and ∂L∗

∂b = 0, we have


XτX − tr(V−1)Λ XτN XτU

NτX NτN + λK NτU
UτX UτN UτU + D−1



β̂
f̂
b̂

 ∆
= Φ


β̂
f̂
b̃


=


XτY
NτY
UτY

 .
(2.14)

These equations form the basis for the following algorithm, which as an extension of
Harvill (1977) , is selected to deal with the extra measurement errors in semiparametric
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mixed models:

Step 0: Set m = 0 and choose starting values σ2(0) and σ2(0)
i i = 1 . . . , c.

Step 1: Calculate estimates β̂c, f̂ and b̃1, . . . , b̃c as the solutions to the linear equations
(2.14).

Step 2: Let Di = θiUτ
i V−1, then from (2.13) we have b̃i = D̂i(Y − Xβ̂ − Nf̂). Let T∗

be the matrix formed by the last q rows and columns of Φ−1, partitioned conformably
with D as

T∗ = Φ−1 =


T∗11 . . . T∗1c
...

. . .
...

T∗c1 . . . T∗cc

 , (2.15)

then calculate

σ̂2(m+1) =
1
n

[(Y − Xβ̂(m)
−Nf̂(m))τV̂−1(Y − Xβ̂ −Nf̂(m))

−tr(V̂−1)β̂(m)τΛ̂β̂(m) + λf̂(m)τKf̂(m)],
(2.16)

and

σ̂2(m+1)
ic =

1
qi − ηi

[b̂(m)τ
ic b̂(m)

ic − tr(D̂(m)τ
i D̂

(m)
i )β̂(m)τΛ̂β̂(m) + λf̂(m)τKf̂(m)], (2.17)

where ηi = tr(T∗ii) evaluated at the current estimates are penalties under the general
linear mixed models and the term tr(V̂−1)β̂(m)τΛ̂β̂(m) and tr(D̂(m)τ

i D̂
(m)
i ) are the correction

for the extra measurement error.

Step 3: If convergence is reached, set σ̂2 = σ̂2(m+1) and σ̂2
ic = σ̂2(m+1)

ic and repeat step
1 and quit; otherwise increase m by 1 and return to step 1.

3 Asymptotic Results

In this section, the asymptotic results for the estimates are derived. It should be noted
that the components of Y are not mutually independent. We assume that all the
derivatives related to the likelihood exist and the parameters are identifiable.

Assumption 1: We assume that as n → ∞, the following limits exist: n−1tr(V−1),
n−1ZτW2Z, n−1tr(V−2S) and n−1tr(V−4S2).
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Lemma 3.1. Under Assumption 1, we have

XτWX = ZτWZ + tr(V−1)Λ + Op(n
1
2 ). (3.1)

Proof. Using (1.b), we get

n−1(XτWX − ZτWZ − tr(V−1)Λ) = n−1(ZτW∆ + ∆τWZ + C),

where C = ∆τW∆ − tr(V−1)Λ. We have also n−1/2ZτW∆ ∼ N(0,n−1ZτW2Z ⊗ Λ). By
assumption, as n→∞ , n−1ZτW2Z exist. So, we have n−1/2ZτW∆ = Op(n−1/2). Similarly,
n−1∆τWZ = Op(n−1/2) holds. Denote the (m,n)th element of C by Cmn. Then

Cmn =

n∑
i=1

n∑
j=1

∆imWi j∆ jn −

n∑
i=1

ViiΛmn,

where ∆ = (∆i j), V = (Vi j), Λ = (Λmn), i, j = 1, 2, . . . ,n and m,n = 1, 2, . . . , p. Since
W = V−1

−V−1SV−1 and E(∆im∆in) = Λmn, we get E(Cmn) = tr(V−2S). Further, we have

E(C2
mn) =

∑
i, j

∑
k,l

E(∆im∆ jn∆km∆ln)Wi jWkl −Λ2
mn{tr(V−1)}2

= ΛmmΛnn[tr(V−2) + tr(V4S2)] + Λmntr(V−2).

By assumption, n−1tr(V−1) and tr(V−4S2) exist, so we have E(n−1/2
Cmn)2 = O(1) as

n→∞ and n−1
C = Op(n−1/2). Combining all the above results, we get Lemma 3.1. �

Assumption 2: Assume that the following limits exist; n−1σ2M−1tr(WV)M−1, n−1M−1(Zβ+
Nf)τW(Zβ, Nf)ΛM−1 and n−1σ2M−1(ZτWVWZ)M−1, where M = n−1ZτWZ.

Theorem 3.1. Suppose that Assumptions 1 and 2 hold. Then β̂ is an asymptotically normal
estimator; that is

√
n(β̂ − β) d

−→ N(0,C) as n→∞, (3.2)

whereC = n−1σ2M−1tr(WV)M−1+n−1M−1(Zβ+Nf)τW(Zβ+Nf)ΛM−1+n−1σ2M−1(ZτWV
WZ)M−1.

Proof. Using (2.10) and (3.1), we get
√

nβ̂ = {M + Op(n−1/2)}n−1/2XτWY = {Ip + Op(n−1/2)}−1M−1n−1/2XτWY

= {Ip + Op(n−1/2)}M−1n−1/2XτWY,
(3.3)
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the last equality holds since {Ip + Op(n−1/2)}−1 = {Ip + Op(n−1/2)} can be obtained from
Taylor series expansion. Let W1/2 = ζΩζτ denote the spectral decomposition of W1/2,
where ζζτ = In and Ω = diag(ω1/2

1 , . . . , ω1/2
n ) and ωi’s are the eigenvalues of W. Then

for asymptotic properties of ξ = n−1/2XτWY, we have

ξ = n−1/2XτWY = n−1/2XτζΩζτW1/2Y = n−1/2X∗τΩY∗, (3.4)

where

X∗ = ζτX ∼ N(ζτZ, In ⊗Λ),

Y∗ = ζτW1/2Y ∼ N(ζτW1/2(Zβ + Nf), σ2In),
(3.5)

and the jth element of ξ is given by

ξ j = n−1/2
n∑

i=1

X∗i jω
1/2Y∗i = n1/2

n∑
i=1

ϑi.

Since ϑi’s are independent and the limit of var(ξ j) exist as n → ∞, by the central limit
theorem, ξ j are asymptotically normal. From (3.3), we have

√
nβ̂ = M−1ξ + Op(n−1/2),

since E(ξ) = n−1/2ZτW(Zβ + Nf) = M
√

nβ + Op(n−1/2). Then it follows that
√

n(β̂ − β)
is asymptotically normal with mean 0. For finding asymptotic variance of β̂, we can
write

√
n(β̂ − β) = M−1ξ −M−1M

√
nβ + Op(n−1/2)

= M−1(ξ − E(ξ)) + Op(n−1/2).
(3.6)

So, we get var(
√

nβ̂) = M−1var(ξ)M−1. On the other hand, we have

var(ξ) = E+[var∗(ξ)] + var+[E∗(ξ)]

= n−1
E

+(YτW2YΛ) + n−1var+(ZτWY)

= n−1
E

+(YτW2YΛ) + n−1σ2(ZτWVWτZ)

= n−1σ2tr(W2V) + n−1(Zβ + Nf)τW(Zβ + Nf) + n−1σ2ZτWVWZ,

(3.7)

where E+ and var+ are the expectation and variance with respect to Y and b. By the
assumptions, all of above limits exist as n→∞ and then the proof is completed. �

Theorem 3.1 implies that MPCLE of parametric term β is consistent.

Corollary 3.1. β̂ is consistent in probability and
√

n(β̂ − β) = Op(1).
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Furthermore, β̂ is weakly consistent with the same order of convergence in our
model, since it has an extra correlated structure arising from the random effects, whereas
it is strongly consistent for fixed effect models (see Nakamura (1990)).

Assumption 3: Assume that the limits n−1tr(ZτV−1Z)−2, n−1(ZτV−1Z)−2 and
n−1[V−1Z(ZτV−1Z)−1V−2]⊗2, exists as n→∞, where A⊗2 stands for AτA .

Theorem 3.1. Under Assumption 3, we have

Wx = Wz + Op(n1/2), (3.8)

where Wz = V−1
−V−1Z(ZτV−1Z)−1ZτV−1.

Proof. From Zhong et al. (2002), we have XτV−1X = ZτV−1Z+ tr(V−1)Λ+Op(n1/2), thus

n−1
{V−1X(XτV−1X − tr(V−1)Λ)−1XτV−1

−V−1Z(ZτV−1Z)−1ZτV−1
}

= n−1V−1Z(ZτV−1Z)−1∆̃ + n−1∆̃τ(ZτV−1Z)−1ZτV−1

+n−1∆̃(ZτV−1Z)−1∆̃τ + Op(n−1/2),
(3.9)

where ∆̃ = V−1∆ follows N(0,V−2
⊗Λ). Now since n−1/2V−1Z(ZτV−1Z)−1

∆̃ ∼ N(0,n−1[V−1Z(ZτV−1Z)−1V−2]⊗2
⊗Λ), by the assumption, as n→∞ ,

n−1[V−1Z(ZτV−1Z)−1V−2]⊗2 exist. So we have n−1V−1Z(ZτV−1Z)−1∆̃ = Op(n−1/2).

Similarly, n−1∆̃τ(ZτV−1Z)−1ZτV−1 = Op(n−1/2) holds. For the third term of (3.9),
if Gtu be the (t,u)th element of G = ∆̃(ZτV−1Z)−1∆̃τ., then by some calculation we
have E(Gtu) = Λt,utr((ZτV−1Z)−2) and E(Gtu) = Λt,tΛu,utr((ZτV−1Z)−2). By assumption,
n−1(ZτV−1Z)−2 exist, so we have n−1

G = Op(n−1/2). Combining all the above results, we
get Theorem 3.1. �

Assumption 4: Assume that the limit n−1R−1NτWzVWτ
zNR−1 exists, as n→ ∞, where

R = n−1(NτWzN + λK) .

Theorem 3.2. Suppose that Assumptions 1 to 4 hold. The mean and variance of
√

n(f̂ − f)
tends to R−1NτWz(Zβ + Nf)/

√
n and O(1), respectively. Hence, f̂ is a consistent estimator of

f.

Proof. From lemma 3.1, we have
√

nf̂ = {n−1(Nτ[Wz + O(n1/2)]N + λK)}−1n−1/2Nτ[Wz + O(n1/2)]Y

= {n−1(NτWzN + λK) + O(n−1/2)}−1[n−1/2NτWz + O(1)]Y

= {Iq + O(n−1/2)}{n−1(NτWzN + λK)}[n−1/2NτWz + O(1)]Y

= R−1ζ + O(n−1/2),

(3.10)
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where ζ = n−1/2NτWzY. Since E(ζ) = n−1/2NτWz(Zβ + Nf), it follows that
√

n(f̂ − f)
is asymptotically normal with mean R−1

E(ζ). For the asymptotic variance, we have
var(
√

nf̂) = R−1var(ζ)R−1, where var(ζ) = n−1NτWzVWτ
zNσ2. �

Assumption 5: Assume that the following limits exist; Γ1 = n−1(UτU + D−1), Γ2 =
n−1UτX, Γ3 = n−1UτN and n−1M−1NτWzVWτZR−1.

Theorem 3.3. Under Assumptions 1-5,
√

n(b̂ − bt) = Op(1) is asymptotically normally
distributed with the asymptotic variance

var(
√

n(b̂ − bt)) = Γ−1
1 Γ2var(

√
nβ̂)Γτ2Γ−1

1 + Γ−1
1 Γ3var(

√
nf̂)Γτ3Γ−1

1

+2Γ−1
1 Γ2cov(

√
nβ̂,
√

nf̂)Γτ3Γ−1
1 ,

where cov(
√

nβ̂,
√

nf̂) ≈ n−1M−1NτWzVWτZR−1σ2.

Proof. From (2.7) and (2.8), we have
√

n(b̂ − bt) = −(UτU + D−1)−1Uτ
{X
√

n(β̂ − β) + N
√

n(f̂ − f)}

= −{n−1(UτU + D−1)}−1
{n−1UτZ + Op(n−1/2)}

√
n(β̂ − β)

−{n−1/2(UτU + D−1)}−1n−1UτN
√

n(f̂ − f)

= −Γ−1
1 Γ2

√
n(β̂ − β) − Γ−1

1 Γ3
√

n(f̂ − f) + Op(n−1/2).
(3.11)

Here, we used the relation UτX = UτZ + Op(n1/2) whose proof is similar to Lemmas
(3.1). Since β̂ = M−1n−1/2ξ+Op(n−1/2) and

√
nf̂ = R−1ζ+O(n−1/2) and using conditional

rule, we get
cov(ξ, ζ) = n−1NτWzVWτZ.

So we have
√

ncov(β̂, f̂) ≈ cov(M−1ξ,R−1ζ) = n−1M−1NτWzVWτZR−1σ2. (3.12)

Using (3.11) and (3.12), the proof will be completed. �

4 Numerical Experiments

4.1 Example 1

We illustrate the performance of the estimators in the following. The response Yi j

is simulated from the model Yi j = z(1)
i j β1 + z(2)

i j β2 + b1 j + f (ti j) + εi j for i = 1, . . . ,m
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and j = 1, . . . , q. Expressing this model in the matrix form of (1.a), we write c = 1,
b1 = (b11, . . . , b1q)τ and Z, f and ε would be rewritten in concordance with

Y = (Y11, . . . ,Y1q,Y21, . . . ,Y2q, . . . ,Ym1, . . . ,Ymq)τ.

Then for simulation, we take the following combinations: q = 50, m = 3 or 8, which
are common sample sizes in longitudinal studies. We also set β1 = 1, β2 = 2, zi j ∼

N(0, 1), f (ti j) = sin2πti j, ti j ∼ U(0, 1), b1 j ∼ N(0, σ2
1), εi j ∼ N(0, σ2), σ2

1 = 0.52, σ2 = 0.62.
We consider two cases: (I) with known Λ = diag(0.252, 0.252) (II): with unknown Λ. To
estimate Λ, since there are replicated observations Xis = Zi + ∆is, s = 1, 2, . . . ,mi, we use
the consistent unbiased estimator of Λ as

Λ̂ =

n∑
i=1

mi∑
s=1

(Xis − X̄i)(Xis − X̄i)τ

n∑
i=1

(mi − 1)
, (4.1)

in which X̄i is the sample mean of the replicates. For each combination of parameters,
1000 repetitions were performed. The results of maximum penelized likelihood (MPLE)
based on true value of Z, MPCLEs and usual naive estimators ignoring measurement
errors in X, are presente in Tables 1 and 2. It can be seen from Table 2 that the estimator
based on the MPCLE is obviously consistent. Besides, it can be observed that the
performance of the MPCLEs for the small sample size with measurement errors are
very well. The mean of estimators are close to their true values. By contrast, the
naive estimators are bias. The biases cause, in turn, the error variance estimate σ̂2

to be overestimated to a rather large extent. Similarly, for the larger sample size the
penalized corrected score function estimators give the nearly unbiased estimates for
parameters and likewise the estimates of naive methods are biased. The normal QQ
plots in Fig. 1 show that, even for small sample sizes, the distribution of the MPCLEs is
close to the normal distribution. The MPCLE and naive estimators of the nonparametric
component f (.) of case (II) for n = 150 and n = 400 are plotted in Fig. 2. We see that the
estimates of nonparametric component outperforms for naive estimator.



Corrected Likelihood Estimation in Semiparametric 117

Theorical Quantile

S
am

pl
e 

Q
ua

nt
ile

1.0

1.5

2.0

−2 −1 0 1 2

Theorical Quantile
S

am
pl

e 
Q

ua
nt

ile

1.0

1.5

2.0

−3 −2 −1 0 1 2 3

Figure 1: Normal QQ plot of β̂1(�) and β̂2(◦) for case (II). Left panel:n = 150, Right
panel: n = 400.

Table 1: Mean, standard deviation (SD) and mean squared error (MSE) of each estimator
from simulation study using the MPLE based on the true value Z.

Parameter q = 50 m = 3 q = 50 m = 8

Mean SD MSE Mean SD MSE

β1 = 1 0.998 0.051 0.003 1.003 0.046 0.001
β2 = 2 1.996 0.053 0.003 2.00 0.047 0.001
σ2 = 0.36 0.355 0.066 0.005 0.359 0.050 0.003
σ2

1 = 0.25 0.253 0.067 0.005 0.250 0.050 0.003
f (t) − - 2 × 10−4 - - 8 × 10−5
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Table 2: Mean, SD and MSE of each estimator from simulation study of case (I)-(II)
using the MPCLE and naive estimator based on X

Parameter Estimate q = 50 m = 3 q = 50 m = 8

Mean SD MSE Mean SD MSE

Case(I)
β1 = 1 MPCLE 1.002 0.049 0.002 1.000 0.010 0.001

Naive 0.810 0.061 0.007 0.913 0.045 0.009
β2 = 2 MPCLE 2.000 0.043 0.002 2.000 0.012 0.001

Naive 1.641 0.072 0.007 1.963 0.051 0.008
σ2 = 0.64 MPCLE 0.655 0.046 0.005 0.648 0.048 0.002

Naive 0.536 0.063 0.087 0.765 0.059 0.009
σ2

1 = 0.25 MPCLE 0.259 0.045 0.002 0.250 0.034 0.002
Naive 0.238 0.091 0.095 0.250 0.043 0.007

f (t) MPCLE - - 0.003 - - 0.001
Naive - - 0.015 - - 0.009

Case(II)
β1 = 1 MPCLE 1.011 0.609 0.014 1.005 0.068 0.005

Naive 0.699 0.093 0.052 0.796 0.053 0.044
β2 = 2 MPCLE 2.024 0.012 0.021 2.016 0.081 0.006

Naive 1.719 0.098 0.167 1.609 0.054 0.059
σ2 = 0.64 MPCLE 0.661 0.216 0.0501 0.658 0.085 0.010

Naive 0.551 0.182 0.960 0.592 0.085 0.081
σ2

1 = 0.25 MPCLE 0.251 0.175 0.031 0.250 0.071 0.005
Naive 0.261 0.103 0.024 0.346 0.071 0.017

f (t) MPCLE - - 0.008 - - 0.002
Naive - - 0.028 - - 0.019
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Figure 2: The estimators of the nonparametric component f (.) for case(II), sin2πt (solid
curve), the proposed estimator (dash-dotted curve) and the naive estimator (dotted
curve). Right panel: n = 150 ( m = 3 and q = 50). Left panel:n = 400 (m = 8 and q = 50).

4.2 Example 2

Here, for smaller values of n, we explore a model that allows the covariance structure
of the random effects to be correlated. Therefore, we modify the simulated model in
Example 1 as follows

Yi j =

8∑
l=1

z(l)
i j βl + b1 j + b2 jui j + f (ti j) + εi j i = 1, . . . ,m, j = 1, . . . , q, (4.2)

where βl is the ith element of arbitrary vector (2,−2, 1, 3, 5,−4,−1, 6)τ, (b1 j, b2 j)τ ∼

N(
[

0
0

]
,

[
1 ρ
ρ 1

]
) with ρ = 0.75, 0.90, 0.99, ui j = j for i = 1, . . . ,m, j = 1, . . . q and

other setting of simulation remains unchanged. We consider m = 5, 8 and q = 10,
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therefore we have the sample sizes of n = 50, 80. For each combination of ρ and m the
experiment is replicated 500 times and the average scalar mean square error (sMSE) of
estimated vectors of β and b are calculated, respectively, as follows:

sMSE(β̂) =
1

500

500∑
r=1

(β̂(r) − β)τ(β̂(r) − β) sMSE(b̂) =
1

500

500∑
r=1

(b̂(r) − b)τ(b̂(r) − b), (4.3)

where β̂r and b̂r denote the estimated parameters in the r-th simulation. The simulation
results for m = 5 and m = 8 are summarized in Table 3 and 4, respectively.

Table 3: sMSE values of β̂ and b̂ and MSE value of f̂ (t) under Case (I) and (II) with
m = 5 and q = 10 (n = 50).

Case (I) Case (II)

β̂ b̂ f̂ (t) β̂ b̂ f̂ (t)

ρ = 0.75 0.061 0.004 0.960 0.088 0.007 1.443
σ2

u = 0.5 ρ = 0.90 0.063 0.006 1.010 0.090 0.007 1.451
ρ = 0.99 0.064 0.005 1.030 0.097 0.007 1.450
ρ = 0.75 0.103 0.008 1.422 0.110 0.009 1.832

σ2
u = 0.75 ρ = 0.90 0.106 0.009 1.521 0.115 0.009 1.960

ρ = 0.99 0.102 0.009 1.530 0.111 0.010 1.840

Table 4: sMSE values of β̂ and b̂ and MSE value of f̂ (t) under Case (I) and (II) with
m = 8 and q = 10 (n = 80).

Case (I) Case (II)

β̂ b̂ f̂ (t) β̂ b̂ f̂ (t)

ρ = 0.75 0.039 0.001 0.725 0.045 0.003 0.088
σ2

u = 0.5 ρ = 0.90 0.042 0.001 0.730 0.049 0.002 0.902
ρ = 0.99 0.041 0.001 0.741 0.046 0.002 1.001
ρ = 0.75 0.061 0.002 1.017 0.079 0.005 1.207

σ2
u = 0.75 ρ = 0.90 0.072 0.003 1.182 0.083 0.005 1.280

ρ = 0.99 0.077 0.003 1.193 0.083 0.006 1.294
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From these tables, it can be seen that the performance of the discussed estimation
procedure for the small sample size and almost large variance of measurement error is
good. Furthermore, we see that at any level of dependency among the random effects
(ρ), increasing the measurement error’s variance σ2

u increases the sMSE (β̂), sMSE (b̂)
and MSE ( f̂ (t)). Besides, at any level of σ2

u decreasing the degree of dependency results
in a decrease in MSE’s.

5 The Iranian Households and Expenditure Data

In this section, to study the performance of the proposed model, we analyze Iranian
urban household income and expenditure data (IUHIE)1. We study household mem-
bers’ incomes from paying jobs (on log scale) as response variable (Y), the number of
employees in the household (NEH), the number of literates in the household (NLH)
and the number of days they work in a week (NDW) as covarites, which are selected
by stepwise regression. This data set was analyzed by Zarei et al. (2007) and Arima
and Zarei (2023) in the small area estimation via linear mixed models and when some
covariates are measured with error. People usually tend not to tell the truth about their
income. Also, try to make sure that their lies remain hidden. Therefore, they do not
tell the whole truth that might lead to finding out the real income, so we expect that
there is an error in the covariates. Therefore, these data are in line with the research
objectives. Similar to Zarei et al. (2007) and Arima and Zarei (2023), we deal with
1700 households sampled in 4 provinces of Iran including Lorestan, Hamedan, Tehran
and Khorasan Razavi. Here, fitting a semiparametric linear mixed model with mea-
surement error obliges us to identify the nonparametric part of the model, so we seek
the added variable plots to get help. The added-variable plots can be used to detect
the nonparametric component of the model and enable us to visually assess the effect
of each predictor, having adjusted for the effects of the other predictors. From the
added-variable plot in Fig. 3, it is reasonable to assume that the relationship between
Y and NLH is nonlinear. Therefore, we can say that NEH and NDW are expressed as
fixed effects; NLH’s are explained as nonparametric term and, since these provinces are
selected randomly from the 31 provinces, the provinces factor effect on the response is
expressed as random effect. Then the model is formed as:

Yi j = β0 + β1NEHi j + β2NDWi j + P j + f (NLHi j) + εi j , (5.1)

where j = 1, 2, 3, 4, i = 1, . . . ,n j and n j ∈ {335, 236, 166, 936}. Since in each province we
have repeated data, the estimation of non-diagonal covariance matrix of measurement

1Available at www.amar.org.ir/english/Statistics-by-Topic/Household-Expenditure-and-Income.
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error for the fixed effects is obtained as Λ̂ =

[
0.657 1.647
1.647 12.922

]
. The smoothing param-

eter λ = 0.461 is selected by cross validation. Table 5 shows the MPCLEs (t-ratios) for
the parametric term. As can be found in Table 5, the t-ratios of the variables NEH show
that after correcting for the effect of the measurement errors, this variable is statistically
significant for MPCLE; while it is not significant in MPLE . Fig. 6 shows the nonpara-
metric estimate of the nonparametric function which is computed based the MPCLEs
and MPLEs.

6 Conclusion

In this paper, we have studied the estimation of semiparametric mixed linear models
when some of the covariates are measured with errors. Since the corrected score
method of Nakamura (1990) provide a valuable tool for estimating in measurement
errors, we constructed corrected estimators for for the parametric and nonparametric
component by taking the measurement errors into account, and showed that they were
consistent and asymptotically normal. The simulation study and analyzing of IUHIE
data showed that the proposed estimators are also performing well in finite sample
cases and with moderate sample sizes.

−4 −2 0 2 4 6

−
4

−
2

0
2

NLH|Others

y|
O

th
er

s

Linear fit
Spline fit

−2 −1 0 1 2 3 4

−
4

−
2

0
2

NEH|Others

y|
O

th
er

s

−10 0 10 20

−
4

−
2

0
2

NWD|Others

$y
|O

th
er

s$

Figure 3: Added variable plot for NLH, NEH and NWD from left to right.
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Table 5: MPCLEs and MPLEs for the Iranian households and expenditure data. The
t-ratios are in parentheses. * Significant at 0.05 level.

Parameter MPCLE MPLE

β0 16.132∗(14.253) 10.918∗(12.603)
β1 0.515∗(3.011) 0.259(1.072)
β2 0.0928∗(7.419) 0.106∗(8.308)
σ2

1 0.318 0.610
σ2 0.898 1.417
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Figure 4: Estimated curve of f (.) with a consideration of measurement error for the the
Iranian households and expenditure data. The dots are the partial residuals (r = WxY).
The solid curve is the estimated f (.) based MPLEs and dashed curve is the estimated
f (.) based MPCLEs.
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