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Abstract. Lifetime data has several applications in different fields such as Biology and
Engineering. Failures for this type of data may occur due to several causes. In real
world, causes of failures are interacting together which violates the independency as-
sumption. Once dependency between failures is satisfied, bivariate families should be
used to analyze the data. In literature, the majority of studies handle the case when data
come from one source. However, in real life, data could come from different sources.
One way to analyze data from different sources together and reduce the time and cost
of the experiment is joint type-II censoring. To the best of our knowledge, joint type-II
censoring was not yet derived using bivariate lifetime distributions. In this paper, we
derive the likelihood function of joint type-II censoring using bivariate family in the
presence of dependent competing risks. A simulation study is performed and two real
datasets are analyzed.
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1 Introduction

Rapid enhancement in technology results in producing multi component machines.
Failures of those complex structure machines can occur from different causes or factors
which can be analyzed using competing risk models. Selection of the appropriate
model depends on the relation between causes of failures.

Previous studies have mostly consider causes of failure to be independent. Once
independence between causes is assumed, univariate distributions are considered to
model lifetime data. For example, Kundu and Sarhan (2006) used Weibull distribu-
tion, Sarhan (2007) considered Generalized exponential distribution, Sarhan et al (2010)
used exponential, Weibull and Chen distributions and Mazucheli and Achcar (2011)
considered Lindley distribution.

The independence assumption is not always realistic. For example, the failure of
one of a plane engine causes more load on the second engine which increases the risk
of failure for this engine and the plane. In medical field, a patient with a disease that
causes the blindness of one eye, would increase the pressure on the other eye and hence
increase its risk of blindness. Accordingly, it is more reliable to consider dependence
between causes of failures. For more details see Shen and Xu (2018).

Once dependent competing risk model is considered, bivariate distributions must
be used as lifetime models. Since simultaneous occurrence of failure has positive prob-
ability, bivariate Marshall-Olkin family is widely used. Few works were performed
under dependent competing risk model. Feizjavadian and Hashemi (2015) considered
dependent competing risk model under progressive hybrid censoring using Marshall-
Olkin bivariate Weibull distribution (MOBW). Shen and Xu (2018) studied dependent
competing risk models under complete sampling assuming MOBW distribution. Bai
et al. (2020) discussed statistical inference of constant-stress accelerated dependent
competing risk model under Type II hybrid censoring assuming MOBW lifetime dis-
tribution. Wang et al. (2020) illustrated the statistical inference of Marshall-Olkin
bivariate Kumaraswamy distribution under generalized pregressive hybrid censoring.
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Previous studies handled the case when all data come from one source. However,
in real world, data may come from two different sources. For example, suppose we
have patients with a disease that causes the blindness of eyes from two different hos-
pitals. To save time, we can analyze all data together after observing a prespecified
number of failures (r). As an example in engineering, consider the units which are
being manufactured by two different production lines within the same facility. To
save time, the producer may like to analyze all data together. Also, he would like to
reduce the cost by analyzing only part of the sample. To do so, one may use joint
type-II censoring. This type of censoring analyze all data together and save cost by
terminating the experiment after the occurrence of a pre-specified number of failures (r).

Joint type-II censoring can be explained as follows:

Let {x1, ..., xm} be the lifetime of m specimens of production line A (or lifetimes of
m patients from hospital A) with pdf f (x) and cdf F(x) and {y1, ..., yn} be the lifetime
of n specimens of production line B (or lifetimes of n patients from hospital B) with
pdf g(y) and cdf G(y). Now, define {w1 < w2 < ... < wN} to be the order statistics of
{x1, ..., xm, y1, ..., yn}, N = n + m. Then, under joint type-II censoring, the experiment
is terminated after the occurrence of a predetermined number of failures (r). The
likelihood function is as follows (for more details, see Balakrishnan and Rasouli (2008))

L =
m!n!

(m −mr)(n − nr)

r∏
i=1

f (wi)zi g(wi)1−zi[1 − F(wr)]m−mr[1 − G(wr)]n−nr , (1.1)

where mr is the number of x failures in w, nr is the number of y failures in w and

zi =

{
1, if wi from x,
0, if wi from y. .

Dealing with univariate lifetime distributions, several work considered joint type-
II censoring, using different lifetime distributions and different estimation techniques.
See for example, Balakrishnan and Rasouli (2008), Ashour and Abo-Kasem (2014),
Balakrishnan and Su (2015) and Abu-Zinadah (2017).

To the best of our knowledge, this type of censoring was not yet derived in the
bivariate lifetime distributions. Here, we are interested in joint Type-II censoring under
dependent competing risk model represented by a bivariate lifetime distribution.

The paper is organized as follows. In Section 2, the model is described. In Section
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3, derivation of the likelihood function under joint type-II censoring in presence of
dependent competing risk model is illustrated in details. Maximum likelihood and
Bayesian approaches are used to estimate the unknown parameters in Section 4. In
Section 5, a simulation study is performed and two real datasets are analyzed. Finally,
the paper is concluded in Section 6.

2 The Model

In this Section, we illustrate the bivariate Marshall-Olkin family, the bivariate inverted
Kumaraswamy (BIK) distribution and the form of the likelihood function under Type-II
censoring in the presence of dependent competing risk model.

2.1 Bivariate Marshall-Olkin Family

Marshall and Olkin (1967) presented a bivariate exponential distribution with expo-
nential marginals and loss of memory property. This type of bivariate distribution has
the following form:

fX1,X2(x1, x2) =


f1(x1, x2) i f x1 < x2
f2(x1, x2) i f x2 < x1

f3(x) i f x1 = x2 = x
, (2.1)

which has both an absolutely continuous part (i.e f1(x1, x2) and f2(x1, x2)) and singular
part ( f3(x)).

Marshall-Olkin family has several applications in reliability engineering field such
as shock model (see, Marshall and Olkin (1967)), maintenance model and stress model
(Kundu and Gupta (2009)). Also, Marshall and Olkin (1967) illustrated some examples
in which the case of x1 = x2 has positive probability. For example, if x1 and x2 are
lifetimes, then the case of x1 = x2 may occur due to a simultaneous shock. Also, the
case of x1 = x2 may occur if a jet engine explodes and the adjacent engine is destroyed
by the explosion.

In this paper, we are applying the likelihood function on the bivariate inverted
Kumaraswamy distribution (BIK) as a member of the bivariate Marshall-Olkin family.
However, any other distribution, such as BMOW, can be used.
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Aly and Abuelamayem (2020) derived bivariate and multivariate inverted Kumar-
aswamy distribution and illustrated its applications in different fields like engineering,
medicine and sports. For example, as a lifetime distribution it can be used in reliability
and life testing problems. Also it has applications in Maintenance models, shock mod-
els and failure rate models in medical research and biological studies such as frailty
model. Moreover, it can be used in engineering studies like degradation of mechani-
cal components. (For more details see, Aly and Abuelamayem (2022)). Moreover, In
literature, BIK gave better results when applied in real datasets compared to bivariate
generalized exponential, bivariate inverted Weibull and bivariate exponential distribu-
tions (For more details see, Aly and Abuelamayem (2020) and Aly and Abuelamayem
(2022)). Here, we use the same methodology but using minimum instead of maximum
in deriving the distribution. The joint survival function of (X1, X2) has the following
form:

SX1,X2(x1, x2) =


S1(x1, x2) i f x1 < x2
S2(x1, x2) i f x2 < x1

S3(x) i f x1 = x2 = x
, (2.2)

where

S1(x1, x2) = SIK(x1, β1, α)SIK(x2, β2 + β3, α),
S2(x1, x2) = SIK(x1, β1 + β3, α)SIK(x2, β2, α),

S3(x) = SIK(x, β1 + β2 + β3, α),

SIK(x, α, β) = 1 − (1 − (1 + x)−α)β, x > 0, α > 0, β > 0. (2.3)

The joint pdf can be written as illustrated in (2.1) as follows:

f1(x1, x2) = fIK(x1, β1, α) fIK(x2, β2 + β3, α),
f2(x1, x2) = fIK(x1, β1 + β3, α) fIK(x2, β2, α),

f3(x) =
β3

β1 + β2 + β3
fIK(x, β1 + β2 + β3, α),

fIK(x, α, β) = αβ(1 + x)−(α+1)(1 − (1 + x)−α)β−1, x > 0, α > 0, β > 0. (2.4)
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2.2 Likelihood Function under Type-II Censoring

Let {(x11, x21), ..., (x1m, x2m)} be the lifetime of m specimens from production line A with
p.d.f fX1,X2(x1, x2) and survival function SX1,X2(x1, x2). Let ui = min(x1i, x2i), i = 1, ...,m.
The likelihood function under type II censoring in presence of dependent competing
risk model is derived using Feizjavadian and Hashemi (2015) as follows:

L ∝

r∏
i=1

[ fX1,X2(ui,ui)]δi0[−
∂
∂x1

SX1,X2(x1, x2)|(ui,ui)]
δi1[−

∂
∂x2

SX1,X2(x1, x2)|(ui,ui)]
δi2

x [SX1,X2(ui,ui)]m−r, (2.5)

where

δi0 =

{
1, if x1 = x2,
0, otherwise. , δi1 =

{
1, if x1 < x2,
0, otherwise. , δi2 =

{
1, if x1 > x2,
0, otherwise. ,

and r is a predetermined number of failures.

3 Derivation of the Likelihood Function under Joint Type-II
Censoring

In this Section, we illustrate the derivation of the likelihood function under joint type-II
censoring in the presence of dependent competing risk model.

Let {(x11, x21), ..., (x1m, x2m)} be the lifetimes of m specimens from production line
A (or lifetimes of m patients from hospital A) with pdf fX1,X2(x1, x2, β1, β2, β3, α) and
survival function SX1,X2(x1, x2). Suppose {(y11, y21), ..., (y1n, y2n)} are the lifetimes of n
specimens from production line B (or lifetimes of n patients from hospital B) with the
same facilities as A, pdf gY1,Y2(y1, y2, β∗1, β

∗

2, β
∗

3, α
∗) and survival function GY1,Y2(y1, y2).

For competing risk model, define x∗i = min(x1i, x2i), i = 1, ...,m, and y∗j = min(y1 j, y2 j),
j = 1, ...,n and let w1 < w2 < ... < wN are the order statistics of {x∗1, ..., x

∗
m, y∗1, ..., y

∗
n} and

N = n + m.

Now, to save cost and time, we apply joint type-II censoring and end the experiment
after r failures and observe {w1, ...,wr}, {z1, ..., zr}, where
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zk =

{
1, if failures fromx∗,
0, if failures fromy∗. ,

k = 1, ..., r.

The dataset under the presented type of censoring consists of {(w1, z1, δ10, δ11, δ12), ...,
(wr, zr, δr0, δr1, δr2)} , n, m, r, nr and mr, where

δk0 =


1, if x1 = x2,

or y1 = y2
0, otherwise.

, δk1 =


1, if x1 < x2,

or y1 < y2
0, otherwise.

, δk2 =


1, if x1 > x2,

or y1 > y2
0, otherwise.

.

r is the predetermined number of failures, mr is the total number of failures from x∗

in w and nr is the total number of failures from y∗ in w.

The derived likelihood function is as follows:

L ∝

r∏
k=1

{[ fX1,X2(wk,wk)]zk[gY1,Y2(wk,wk)]1−zk}
δk0

x {[−
∂
∂x1

SX1,X2(x1, x2)|(wk,wk)]zk[−
∂
∂y1

GY1,Y2(y1, y2)|(wk,wk)]1−zk}
δk1

x {[−
∂
∂x2

SX1,X2(x1, x2)|(wk,wk)]zk[−
∂
∂y2

GY1,Y2(y1, y2)|(wk,wk)]1−zk}
δk2

x [SX1,X2(wr,wr)]m−mr[GY1,Y2(wr,wr)]n−nr . (3.1)

Applying the previous likelihood function on bivariate inverted Kumaraswamy
distribution, we have:

fX1,X2(wk,wk) =
β3

β1 + β2 + β3
fIK(wk, α, β1 + β2 + β3),

gY1,Y2(wk,wk) =
β∗3

β∗1 + β∗2 + β∗3
fIK(wk, α

∗, β∗1 + β∗2 + β∗3),

−
∂
∂x1

SX1,X2(x1, x2)|(wk,wk) = fIK(wk, α, β1)SIK(wk, α, β2 + β3),

−
∂
∂y1

GY1,Y2(y1, y2)|(wk,wk) = fIK(wk, α
∗, β∗1)SIK(wk, α

∗, β∗2 + β∗3),

−
∂
∂x2

SX1,X2(x1, x2)|(wk,wk) = fIK(wk, α, β2)SIK(wk, α, β1 + β3),
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−
∂
∂y2

GY1,Y2(y1, y2)|(wk,wk) = fIK(wk, α
∗, β∗2)SIK(wk, α

∗, β∗1 + β∗3),

SX1,X2(wr,wr) = SIK(wr, α, β1 + β2 + β3),
GY1,Y2(wr,wr) = SIK(wr, α

∗, β∗1 + β∗2 + β∗3), (3.2)

where fIK and SIK are as defined in equations (2.1) and (2.2).

The likelihood function is as follows:

L ∝

r∏
k=1

{[αβ3(1 + wk)−(α+1)(1 − (1 + wk)−α)β1+β2+β3−1]zk

x [α∗β∗3(1 + wk)−(α∗+1)(1 − (1 + wk)−α
∗

)β
∗

1+β∗2+β∗3−1]1−zk}
δk0

x {[αβ1(1 + wk)−(α+1)(1 − (1 + wk)−α)β1−1(1 − (1 − (1 + wk)−α)β2+β3)]zk

x [α∗β∗1(1 + wk)−(α∗+1)(1 − (1 + wk)−α
∗

)β
∗

1−1(1 − (1 − (1 + wk)−α
∗

)β
∗

2+β∗3)]1−zk}
δk1

x {[αβ2(1 + wk)−(α+1)(1 − (1 + wk)−α)β2−1(1 − (1 − (1 + wk)−α)β1+β3)]zk

x [α∗β∗2(1 + wk)−(α∗+1)(1 − (1 + wk)−α
∗

)β
∗

2−1(1 − (1 − (1 + wk)−α
∗

)β
∗

1+β∗3)]1−zk}
δk2

x [1 − (1 − (1 + wr)−α)β1+β2+β3]m−mr[1 − (1 − (1 + wr)−α
∗

)β
∗

1+β∗2+β∗3]n−nr . (3.3)

4 Estimation

In this section, we estimate the unknown parameters using maximum likelihood and
Bayesian approaches.

4.1 Maximum Likelihood Approach

In this sub-section, the maximum likelihood estimators (MLEs) of the unknown param-
eters are obtained by maximizing the logarithm of the likelihood function derived in
Section 3. The derivatives of the log-likelihood with respect to the unknown parameters
are illustrated in the Appendix. Maximum likelihood estimators can not be obtained in
closed form, hence numerical analysis using monte carlo simulation is used. R program
is used to do the numerical analysis using optim function and L-BFGS-B method which
is a limited-memory modification of the BFGS quasi-Newton method. For more details
see Byrd et al. (1995). Using the asymptotic distribution of the maximum likelihood
estimators, the confidence intervals can be obtained as follows;

λ̂ ± z γ
2

√
ˆvar(λ̂), (4.1)
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where λ̂ = β̂1, β̂2, β̂3, α̂, β̂∗1, β̂∗2, β̂∗3, α̂∗, ˆvar(λ̂) is the estimated variance, and z γ
2

is the upper
γ/2-th percentile of the standard normal distribution.

4.2 Bayesian Approach

Let (X1, X2) be two random variables from BIK(θ), where θ = (α, β1, β2, β3) is the vector
of unknown parameters. Also assume that (Y1, Y2) be two random variables from
BIK(θ∗), where θ∗ = (α, β∗1, β

∗

2, β
∗

3) is a second vector of unknown parameters. The
posterior pdf can be obtained as follows

P(θ, θ∗|(X1,X2,Y1,Y2)) ∝ L(X1,X2,Y1,Y2;θ, θ∗)P(θ)P(θ∗), (4.2)

where L is defined in equation (3.1), P(θ) and P(θ∗) are the prior distributions.

Here, we considered a gamma prior distribution with the following pdf

P(βi, ai, bi) ∝ β
ai−1
i exp(−biβi). (4.3)

It can be seen that the Bayes estimators can not be obtained in explicit forms under
square error loss function. Therefore, we obtain the posterior mean using MCMC
method which is illustrated in the next section.

5 Numerical Results

In this Section, a simulation study is carried out to investigate the performance of the
derived likelihood function under different schemes using different arbitrary chosen
values of n, m, r and using different initial values. Moreover, an example and two real
data sets are analyzed.

5.1 Simulation Results

In this subsection, we illustrate the simulation steps and the estimates obtained using
the ML and Bayesian methods.

The following steps are applied in the simulation studies:

Step 1: Generate a sample {(x11, x21), ..., (x1m, x2m)} from BIK distribution (similar to
Aly and Abuelamayem (2020)) as follows:

a) Generate U1,U2 and U3 from uniform(0,1).
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b) Compute T1 = (1 −Uβ1
1 )

1
α ,T2 = (1 −Uβ2

2 )
1
α and T3 = (1 −Uβ3

3 )
1
α .

c) Define Z1 = 1
T1
− 1,Z2 = 1

T2
− 1 and Z3 = 1

T3
− 1.

d) Obtain X1 = min(Z1,Z3) and X2 = min(Z2,Z3).

Use the same steps to generate a second sample of size n {(y11, y21),..., (y1n, y2n)}.

Step 2: Define x∗i = min(x1i, x2i), i = 1, ...,m and y∗j = min(y1 j, y2 j), j = 1, ...,n.

Step 3: Let w1, ...,wN be the order statistics of x∗1, ..., x
∗
m, y∗1, ..., y

∗
n, N = n + m.

Step 4: Define the number of failures r.

Step 5: Maximize the likelihood function in section 3.

Step 6: Repeat the five previous steps 5000 times (for ML).

Here, the following schemes are considered:

• β2 = 0.9, β3=2.6, β∗2 = 0.8, β∗3=1.9.

• β2 = 1.3, β3=3.7, β∗2 = 1.2, β∗3=3.

• β2 = 0.4, β3=1.4, β∗2 = 0.4, β∗3=1.2.

• β2 = 0.6, β3=1.5, β∗2 = 0.9, β∗3=2.3.

Maximum Likelihood Approach

Simulation results are obtained using R package with 5000 replications. The results
are explained in Tables 1 and 2. Absolute Bias (ABias), mean square error (MSE),
confidence width (CW) and coverage probability (CP) are obtained in each table. For
simplicity, β1, β∗1, α and α∗ are considered to be known.

Bayesian Approach

Using Bayesian approach, we need to obtain the posterior mean. However, it is hard
to obtain it theoretically as we have four parameters to estimate. One can use MCMC
simulation technique to obtain it numerically. MCMC method uses simulation tech-
niques to obtain a Markov sequence such that they have a limiting distribution. Here,
MCMC method can be used to set up a Markov chain of parameters θwith distribution
P(θ|(X)). Therefore, the mean of the sequence can be considered as the posterior mean.

To perform MCMC, we used WinBugs package. Gamma prior is used with the
same sample sizes and usage rate used in ML approach. WinBugs is used with 1000
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replications to generate the sequence of Markov chain. Absolute bias (ABias), mean
square error (MSE) and credible interval width (CW) are obtained and presented in
Tables 3 and 4. For analyzing the results,

First we consider the case when n = m = 50. Let k = r
n+m be the rate of used data

from the whole sample, we have the following values of k for Table 1.

• Set 1: k = 0.95, r = 95. • Set 2: k = 0.9, r = 90.

• Set 3: k = 0.85, r = 85. • Set 4: k = 0.8, r = 80.

• Set 5: k = 0.75, r = 75.

For ML approach, it can be seen that for all four schemes and for all four different
parameters, as k (r) increases, the ABias and MSE decrease and CP increases. Also for
the majority of cases, as k (r) increases CW deceases. For example, in Table 1 , using
the first scheme (β2 = 0.9, β3=2.6, β∗2 = 0.8, β∗3=1.9.), it can be seen that ABias for β2
decreases from 0.209 at k =0.75 (r = 75) to 0.006 at k =0.95 (r = 95). Also, MSE decreases
from 0.168 at k =0.75 (r = 75) to 0.095 at k =0.95 (r=95). Moreover, the CP increases from
95.7% at k =0.75 (r = 75) to 99% at k =0.95 (r = 95). Finally, CW decreases from 1.380 at
k = 0.75 (r = 75) to 1.208 at k = 0.95 (r = 95). Also, using the same example, it can be
seen that ABias for β∗3 decreases from 0.201 at k = 0.75 (r = 75) to 0.036 at k = 0.95 (r =
95). MSE defreases from 0.348 at k =0.75 (r = 75) to 0.318 at k = 0.95 (r = 95). The CP
increases from 93.2 % at k =0.75 (r = 75) to 97.7 % at k =0.95 (r = 95). Similarly, the same
conclusion can be obtained for β3 and β∗2.

For Bayesin approach, it can be noticed that for all four different used schemes and
for all four different parameters, in more than half of the cases as k (r) increases, the
ABias, MSE, CW decrease and CP increases. For example, in Table 3, using the third
scheme (β2 = 1.3, β3=3.7, β∗2 = 1.2, β∗3=3.), it can be seen that ABias for β3 decreases from
0.051 at k =0.75 (r = 75) to 0.001 at k =0.95 (r = 95). Also, MSE decreases from 0.010 at
k =0.75 (r = 75) to 0.007 at k =0.95 (r=95). Finally, CW decreases from 0.344 at k = 0.75
(r = 75) to 0.340 at k = 0.95 (r = 95). Also, using the same example, it can be seen that
ABias for β∗2 decreases from 0.072 at k = 0.75 (r = 75) to 0.047 at k = 0.95 (r = 95) and
MSE defreases from 0.009 at k =0.75 (r = 75) to 0.006 at k = 0.95 (r = 95). Finally, CW
decreases from 0.241 at k = 0.75 (r = 75) to 0.232 at k = 0.95 (r = 95)

Second, we consider the case when n and m are different (i.e. n = 40 and m = 30),
Table 2, the following values for k are considered
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• Set 1: k = 0.93, r = 65. • Set 2: k = 0.86, r = 60.

• Set 3: k = 0.77, r = 55. • Set 4: k = 0.71, r = 50.

• Set 5: k = 0.64, r = 45.
For ML approach, it can be noticed that for all used different populations, as k increases,
the ABias and MSE decrease, CP increases and for majority of the cases CW decreases.
For example, in Table 2, when β∗3 = 3, the ABias decreases from 0.706 at k = 0.64 to 0.198
at k =0.93. Also, MSE decreases from 1.447 at k = 0.64 to 0.918 at k = 0.93. Moreover,
the CP increases from 82.9 % at k = 0.64 to 94.3 % at k = 0.93. Finally, CW decreases
from 3.818 to 3.676 at k = 0.64 and k =0.93, respectively. Also, using the same example,
it can be seen that ABias for β2 decreases from 0.423 at k = 0.64 (r =45 ) to 0.050 at k =
0.93 (r = 65). MSE defreases from 1 at k = 0.64 (r =45 ) to 0.183 at k = 0.93 (r = 65). The
CP increases from 94.7 % at k = 0.64 (r =45 ) to 98.3 % at k =0.93 (r = 93). Similarly, the
same conclusion can be reached for β3 and β∗2.

For Bayesin approach, it can be observed that for all four different used schemes
and for all four different parameters, in more than half of the cases as k (r) increases, the
ABias, MSE, CW decrease and CP increases. For example, in Table 4, using the fourth
scheme (β2 = 0.6, β3=1.5, β∗2 = 0.9, β∗3=2.2.), it can be seen that ABias for β3 decreases
from 0.116 at k =0.64 (r = 45) to 0.069 at k =0.93 (r = 65). Also, MSE decreases from
0.017 at k =0.64 (r = 45) to 0.008 at k =0.93 (r=65). Finally, CW decreases from 0.222 at k
= 0.64 (r = 45) to 0.212 at k = 0.93 (r = 65). Besides, using the same example, it can be
seen that ABias for β∗3 decreases from 0.158 at k = 0.64 (r = 45) to 0.119 at k = 0.93 (r =
65). MSE defreases from 0.030 at k =0.64 (r = 45) to 0.019 at k = 0.93 (r = 65).

Third, for analyzing the effect of increasing the total sample size N = n + m with
approximately the same value of k, the following sets are considered:

• Set 1: k = 0.95, r = 95.

• Set 3: k = 0.85, r = 85.

• Set 5: k = 0.8, r = 80.

• Set 2: k = 0.93, r = 65.

• Set 4: k = 0.86, r = 60.

• Set 6: k = 0.79, r = 55.

We compared set 1 with set 2, set 3 with set 4 and set 5 with set 6 for all different
initial values assumed. It can be seen that as N increases MSE and CW decrease. For
example, from Table 1 (set 1) and Table 2 (set 2), MSE for β3 decreases from 1.324 to
0.751. Also, CW decreases from 4.488 to 3.394. Also, from Table 3 (set 1) and Table 4
(set 2), MSE for β3 decreases from 0.040 to 0.012 and CW decreases from 0.360 to 0.315.
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Fourth, for analyzing the effect of changing the parameters, the following sets are
considered:

• Set 1: β2 and β∗2 < 0.5. (i.e. β2 = 0.4, β3=1.4, β∗2 = 0.4, β∗3=1.2).

• Set 2: 0.5 < β2 and β∗2 < 1. (i.e. β2 = 0.9, β3=2.6, β∗2 = 0.8, β∗3=1.9. and β2 = 0.6,
β3=1.5, β∗2 = 0.9, β∗3=2.3).

• Set 3: β2 and β∗2 > 1. (i.e. β2 = 1.3, β3=3.7, β∗2 = 1.2, β∗3=3).

Comparing set 1, set 2 and set 3 for all different values of r, n and m. It can be seen
that as the values of β2 and β∗2 decrease MSE and CW decrease. For example, comparing
set 1 and 3 in Table 1 (n=m =50) at r = 95, MSE for β∗2 decreases from 0.134 to 0.019
and CW decreases from 1.264 to 0.540. Also, comparing set 1 and 3 in Table 2 (n=40, m
=30) at r = 65 MSE for β∗2 decreases from 0.170 to 0.025 and CW decreases from 1.424 to
0.620. Similarly, same conclusion can be reached for β2, β3 and β∗3 for different values
of r and different sets (i.e. comparing set 1 and 3 or set 2 and set 3).

To summarize, it is observed that for majority of cases coverage probability is above
90 %.

5.2 An example

In this subsection, an example is explained to illustrate the applicability of joint Type-II
censoring with dependent competing risk model.

Here, data presents the lifetime from two different production lines with two de-
pendent causes of failures. Data are generated from bivariate inverted Kumaraswamy
distribution using R package with n=100, m=90 and r=170, 150. Maximum likeli-
hood estimates are illustrated in Table 5 and it can be seen that Joint type-II censoring
provides results close to that in complete case but with lower cost and shorter time.
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Table 1: The results of MLE (n=m=50).

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
0.9 2.6 0.8 1.9 0.4 1.4 0.4 1.2

r=95
ABias 0.006 0.023 0.109 0.036 0.039 0.394 0.007 0.089
MSE 0.095 0.751 0.056 0.318 0.017 0.239 0.019 0.137
CW 1.208 3.394 0.822 2.208 0.480 1.136 0.540 1.408
CP 99.0 97.4 94.8 97.7 95.6 84.1 98.9 93.9

r=90
ABias 0.066 0.194 0.125 0.024 0.055 0.433 0.030 0.153
MSE 0.101 0.800 0.059 0.310 0.018 0.270 0.020 0.151
CW 1.220 3.467 0.812 2.180 0.480 1.130 0.630 1.402
CP 98.2 95.0 93.7 96.9 94.2 80.0 98.1 91.0

r=85
ABias 0.116 0.342 0.142 0.085 0.069 0.471 0.049 0.200
MSE 0.116 0.877 0.063 0.312 0.020 0.304 0.022 0.171
CW 1.258 3.418 0.812 2.164 0.480 1.122 0.554 1.418
CP 97.4 93.2 92.6 95.9 92.3 75.9 97.3 88.1

r=80
ABias 0.163 0.467 0.161 0.144 0.083 0.504 0.067 0.244
MSE 0.136 0.977 0.069 0.325 0.023 0.337 0.025 0.193
CW 1.294 3.416 0.812 2.162 0.496 1.130 0.568 1.430
CP 96.8 90.8 91.0 94.5 90.6 71.9 95.9 85.3

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
0.9 2.6 0.8 1.9 0.4 1.4 0.4 1.2

r=75
ABias 0.209 0.575 0.181 0.201 0.097 0.537 0.084 0.283
MSE 0.168 1.098 0.076 0.348 0.025 0.372 0.031 0.216
CW 1.380 3.434 0.812 2.176 0.496 1.136 0.608 1.446
CP 95.7 88.2 89.2 93.2 88.9 66.9 95.4 82.2

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
1.3 3.7 1.2 3 0.6 1.5 0.9 2.2

r = 95
ABias 0.042 0.155 0.173 0.173 0.071 0.015 0.090 0.026
MSE 0.183 1.289 0.134 0.707 0.033 0.214 0.074 0.474
CW 1.668 4.408 1.264 3.226 0.656 1.814 1.008 2.696
CP 98.8 96.3 93.9 95.5 96.2 97.3 97.0 96.8

r = 90
ABias 0.112 0.357 0.209 0.283 0.094 0.089 0.124 0.138
MSE 0.196 1.397 0.148 0.747 0.037 0.221 0.081 0.487
CW 1.676 4.418 1.264 3.202 0.656 1.810 1.008 2.682
CP 97.1 93.4 91.9 92.8 94.8 95.7 95.9 95.4

r = 85
ABias 0.174 0.505 0.244 0.387 0.114 0.149 0.159 0.137
MSE 0.218 1.576 0.164 0.807 0.041 0.232 0.091 0.489
CW 1.700 4.506 1.264 3.178 0.656 1.796 1.008 2.688
CP 97.0 91.7 91.0 90.8 93.4 93.9 94.1 93.0

r = 80
ABias 0.228 0.642 0.279 0.475 0.132 0.198 0.192 0.324
MSE 0.252 1.789 0.182 0.890 0.046 0.253 0.105 0.583
CW 1.754 4.600 1.270 3.194 0.668 1.814 1.022 2.710
CP 96.0 88.8 89.1 88.3 91.9 92.2 92.5 90.9

r = 75
ABias 0.284 0.767 0.312 0.555 0.148 0.242 0.225 0.407
MSE 0.304 2.005 0.205 0.997 0.052 0.277 0.122 0.658
CW 1.852 4.666 1.288 3.254 0.678 1.830 1.044 2.750
CP 94.9 86.2 86.6 85.3 90.4 90.3 90.0 88.1
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Table 2: The results of MLE (n=40, m=30).

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
0.9 2.6 0.8 1.9 0.4 1.4 0.4 1.2

r = 65
ABias 0.050 0.115 0.113 0.034 0.044 0.365 0.014 0.092
MSE 0.183 1.324 0.069 0.430 0.030 0.314 0.025 0.184
CW 1.664 4.488 0.928 2.568 0.656 1.668 0.620 1.644
CP 98.3 96.6 94.2 98.0 95.1 86.4 97.9 94.6

r = 60
ABias 0.144 0.374 0.139 0.061 0.067 0.430 0.043 0.175
MSE 0.244 1.361 0.075 0.421 0.035 0.354 0.028 0.203
CW 1.852 4.332 0.928 2.532 0.690 1.612 0.632 1.626
CP 98.0 94.3 92.8 96.4 94.0 82.5 97.1 91.6

r = 55
ABias 0.234 0.610 0.168 0.148 0.090 0.491 0.071 0.242
MSE 0.360 1.492 0.084 0.435 0.044 0.401 0.037 0.231
CW 2.164 4.148 0.928 2.520 0.744 1.568 0.702 1.626
CP 96.6 91.3 90.8 95.0 91.7 78.9 96.0 87.8

r = 50
ABias 0.324 0.793 0.200 0.219 0.112 0.536 0.097 0.304
MSE 0.592 1.759 0.099 0.472 0.057 0.451 0.049 0.263
CW 2.736 4.168 0.952 2.552 0.822 1.588 0.606 1.622
CP 95.6 87.7 89.6 93.5 90.5 76.5 95.7 85.2

r = 45
ABias 0.423 0.940 0.235 0.307 0.139 0.590 0.125 0.362
MSE 1.000 2.129 0.117 0.515 0.082 0.516 0.077 0.310
CW 3.552 4.374 0.976 2.544 0.984 1.606 0.968 1.658
CP 94.7 85.0 86.5 90.8 89.5 73.0 94.2 82.1

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
1.3 3.7 1.2 3 0.6 1.5 0.9 2.2

r = 65
ABias 0.098 0.256 0.194 0.198 0.082 0.016 0.103 0.744
MSE 0.337 2.195 0.170 0.918 0.318 0.414 0.097 1.184
CW 2.242 5.720 1.424 3.676 0.876 2.522 1.150 3.112
CP 97.7 96.0 94.1 94.3 95.7 97.0 96.2 97.3

r = 60
ABias 0.197 0.505 0.247 0.348 0.116 0.125 0.153 0.192
MSE 0.393 2.438 0.194 0.994 0.066 0.398 0.110 0.661
CW 2.332 5.792 1.430 3.662 0.902 2.422 1.156 3.096
CP 96.6 93.5 91.4 92.2 94.5 95.3 94.2 95.0

r = 55
ABias 0.289 0.739 0.298 0.478 0.145 0.213 0.202 0.319
MSE 0.490 2.693 0.226 1.116 0.080 0.410 0.132 0.729
CW 2.498 5.744 1.450 3.694 0.952 2.368 1.182 3.104
CP 95.8 90.6 88.4 89.2 92.7 93.5 92.4 92.3

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
1.3 3.7 1.2 3 0.6 1.5 0.9 2.2

r = 50
ABias 0.384 0.987 0.347 0.588 0.172 0.284 0.249 0.436
MSE 0.609 2.976 0.263 1.267 0.099 0.441 0.167 0.835
CW 2.664 5.546 1.482 1.267 1.030 2.352 1.270 3.148
CP 94.5 88.1 85.5 86.0 90.6 91.4 90.7 89.0

r = 45
ABias 0.480 1.222 0.392 0.706 0.203 0.356 0.302 0.568
MSE 0.822 3.372 0.317 1.447 0.133 0.480 0.224 0.965
CW 3.016 5.374 1.582 3.818 1.188 2.330 1.430 3.140
CP 93.7 85.6 84.1 82.9 89.7 89.5 87.5 85.2
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Table 3: The results of Bayesian (n=m=50).

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
0.9 2.6 0.8 1.9 0.4 1.4 0.4 1.2

r=95
ABias 0.056 0.240 0.127 0.023 0.029 0.073 0.034 0.211
MSE 0.005 0.063 0.019 0.005 0.001 0.012 0.002 0.049
CW 0.143 0.298 0.195 0.274 0.063 0.315 0.098 0.246

r=90
ABias 0.060 0.229 0.128 0.046 0.029 0.121 0.013 0.142
MSE 0.005 0.059 0.019 0.006 0.001 0.022 0.0007 0.024
CW 0.145 0.321 0.203 0.238 0.069 0.319 0.091 0.229

r=85
ABias 0.053 0.247 0.126 0.038 0.029 0.068 0.027 0.043
MSE 0.004 0.067 0.018 0.006 0.001 0.011 0.001 0.006
CW 0.147 0.301 0.195 0.251 0.063 0.321 0.096 0.248

r=80
ABias 0.057 0.217 0.090 0.080 0.030 0.067 0.025 0.060
MSE 0.005 0.053 0.010 0.011 0.001 0.011 0.001 0.008
CW 0.153 0.301 0.182 0.266 0.065 0.327 0.091 0.256

r=75
ABias 0.056 0.226 0.122 0.030 0.031 0.063 0.017 0.108
MSE 0.005 0.057 0.017 0.005 0.001 0.011 0.0008 0.015
CW 0.146 0.296 0.196 0.251 0.064 0.346 0.086 0.249

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
1.3 3.7 1.2 3 0.6 1.5 0.9 2.2

r = 95
ABias 0.041 0.001 0.047 0.038 0.046 0.065 0.134 0.124
MSE 0.004 0.007 0.006 0.087 0.003 0.004 0.021 0.020
CW 0.188 0.340 0.232 0.353 0.111 0.215 0.226 0.266

r = 90
ABias 0.034 0.007 0.018 0.023 0.053 0.017 0.135 0.123
MSE 0.003 0.008 0.004 0.007 0.004 0.003 0.021 0.020
CW 0.095 0.353 0.245 0.325 0.109 0.217 0.219 0.285

r = 85
ABias 0.034 0.011 0.058 0.066 0.060 0.008 0.139 0.126
MSE 0.003 0.009 0.007 0.011 0.004 0.003 0.023 0.021
CW 0.182 0.369 0.225 0.304 0.113 0.224 0.224 0.142

r = 80
ABias 0.052 0.050 0.011 0.079 0.039 0.056 0.135 0.125
MSE 0.005 0.010 0.004 0.013 0.002 0.006 0.022 0.021
CW 0.185 0.364 0.238 0.315 0.108 0.232 0.235 0.282

r = 75
ABias 0.031 0.051 0.072 0.078 0.016 0.141 0.156 0.106
MSE 0.003 0.010 0.009 0.014 0.001 0.023 0.028 0.016
CW 0.187 0.344 0.241 0.336 0.107 0.208 0.231 0.280
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Table 4: The results of Bayesian (n=40,m=30).

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
0.9 2.6 0.8 1.9 0.4 1.4 0.4 1.2

r=65
ABias 0.056 0.245 0.121 0.044 0.027 0.178 0.013 0.153
MSE 0.005 0.066 0.017 0.006 0.001 0.040 0.0007 0.027
CW 0.149 0.301 0.213 0.250 0.068 0.360 0.094 0.218

r=60
ABias 0.060 0.215 0.128 0.042 0.031 0.072 0.018 0.090
MSE 0.005 0.052 0.019 0.006 0.001 0.012 0.0008 0.012
CW 0.147 0.313 0.220 0.256 0.066 0.341 0.094 0.253

r=55
ABias 0.064 0.199 0.114 0.058 0.029 0.157 0.011 0.165
MSE 0.005 0.046 0.016 0.007 0.001 0.032 0.0007 0.031
CW 0.142 0.317 0.208 0.255 0.067 0.331 0.096 0.228

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
0.9 2.6 0.8 1.9 0.4 1.4 0.4 1.2

r=50
ABias 0.070 0.071 0.090 0.071 0.031 0.069 0.016 0.131
MSE 0.006 0.009 0.010 0.009 0.001 0.012 0.0008 0.021
CW 0.153 0.254 0.184 0.254 0.063 0.320 0.090 0.243

r=45
ABias 0.035 0.186 0.106 0.073 0.032 0.078 0.014 0.137
MSE 0.003 0.040 0.014 0.010 0.001 0.013 0.0009 0.022
CW 0.147 0.309 0.204 0.259 0.064 0.329 0.101 0.231

β2 β3 β∗2 β∗3 β2 β3 β∗2 β∗3
1.3 3.7 1.2 3 0.6 1.5 0.9 2.2

r = 65
ABias 0.030 0.005 0.008 0.034 0.036 0.069 0.137 0.119
MSE 0.003 0.008 0.004 0.008 0.002 0.008 0.022 0.019
CW 0.175 0.351 0.224 0.303 0.113 0.212 0.224 0.282

r = 60
ABias 0.040 0.039 0.016 0.026 0.024 0.129 0.170 0.079
MSE 0.004 0.010 0.004 0.007 0.001 0.020 0.032 0.011
CW 0.180 0.359 0.236 0.308 0.114 0.222 0.231 0.287

r = 55
ABias 0.031 0.012 0.031 0.010 0.022 0.130 0.159 0.097
MSE 0.003 0.007 0.005 0.007 0.001 0.020 0.029 0.014
CW 0.174 0.325 0.231 0.330 0.102 0.199 0.229 0.278

r = 50
ABias 0.026 0.022 0.004 0.041 0.021 0.134 0.103 0.151
MSE 0.003 0.008 0.004 0.008 0.001 0.021 0.014 0.028
CW 0.178 0.342 0.238 0.314 0.103 0.214 0.230 0.261

r = 45
ABias 0.033 0.003 0.007 0.074 0.028 0.116 0.117 0.158
MSE 0.003 0.008 0.004 0.012 0.001 0.017 0.017 0.030
CW 0.178 0.334 0.252 0.324 0.098 0.222 0.239 0.276
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Table 5: The results of MLE for production lines data.

β2 β3 β∗2 β∗3
Complete data estimates 0.987 2.052 0.697 1.776

Joint type II cencoring (r=170) estimates 0.944 1.796 0.613 1.587
Joint type II cencoring (r=150) estimates 0.758 1.747 0.562 1.458

5.3 Real Life Data Set

In this subsection, two real dataset are analyzed to show the applicability of joint type-II
censoring with dependent competing risk model.

1) Diabetic Retinopathy Dataset

Data come from a multicenter clinical trials sponsored by the national eye institute
to test the effect of laser treatment in delaying blindness in patients with diabetic
retinopathy. The data consists of failure time for 71 patients. For each patient, one eye
was randomly selected for treatment, while the other eye received no treatment. (For
more details see, Csorgo and Welsh (1985)).

It was mentioned that data come from different centers but no other variable or
indicator was given to illustrate different groups. Here, we divide the data randomly
to two groups (see the Appendix) such that

• Group 1: patients from center A with 35 patients.

• Group 2: patients from center B with 36 patients.

For each patient in groups one and two, minimum time to blindness (i.e. x∗ and y∗) is
recorded. Now, we describe our data in a similar way to that illustrated in section 3.

zk =

{
1, if failures from group 1
0, if failures from group 2. , δk1 =

{
1, Treated eyes firstly failed
0, otherwise. ,

δk2 =

{
1, Untreated eyes firstly failed
0, otherwise. , δk0 =

{
1, both eyes failed together
0, otherwise. .

Besides, k = 1, . . . , r, r =46, 54 and 65 and data , data are divided by 365 to be
recorded in years.
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For each group, Cramer-Von Mises test is applied and we found that inverted
Kumaraswamy distribution fitted the data well. Maximum likelihood and Bayesian
estimates are illustrated in Table 6 for different values of r. It can be seen that when 92%
of the data is used (r=65), joint Type-II censoring provides results close to the complete
case but with lower cost and shorter time. Also, when 76 % and 66% of the data is used
in the analysis (r =54 and 47, respectively) the results are still quite welll.

Table 6: The results of MLE for Diabetic Retinopathy data.

β2 β3 β∗2 β∗3
Complete sampling estimates 3.069 15.603 4.955 16.771

Joint type II cencoring (MLE) r=65 estimates 3.086 13.945 3.793 16.572
r=54 estimates 2.157 11.349 3.174 16.444
r=47 estimates 1.482 10.148 2.587 16.235

Joint type II cencoring (Bayesian) r=65 estimates 3.016 14.401 4.085 15.56
r=54 estimates 2.957 11.85 4.57 17.48
r=47 estimates 2.932 11.63 4.873 15.17

2) Cancer Dataset

The data consists of 506 patients as illustrated in Andrews and Herzberg (1985). Here,
we restrict our study to 338 patients with three causes of failures: prostatic cancer, cere-
brovascular accident and other causes of death(heart or vascular disease, pulmonary
embolus, another cancer, respiratory disease, specific non-cancer cause, unspecified
non-cancer cause and unknown causes). We have two main groups;

• Group 1: patients with history of cardiovascular disease, number of patients is
163.

• Group 2: patients with no history of cardiovascular disease, number of patients
is 175.

Since both groups enter the study with no cardiovascular disease, we can analyze both
groups together.

For each group, the causes are combined as follows (for more details, see Feizjava-
dian and Hashemi (2015));

• Prostatic cancer or other causes. • cerebrovascular or other causes.

Clearly, the causes are dependent because when the cause of death is other causes,
the two risks occur simultaneously. Hence, bivariate inverted Kumaraswamy distribu-
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tion can be used to analyze this data. Now, we will describe our data in a similar way
to that illustrated in Section 3:

zk =

{
1, if failures from group 1
0, if failures from group 2. , δk1 =

{
1, if failure from prostatic cancer
0, otherwise. ,

δk2 =

{
1, if failure from cerebrovascular
0, otherwise. , δk0 =

{
1, if failure from other causes
0, otherwise. ,

where k = 1, ..., r.

For each group, Cramer-Von Mises test is applied and we found that inverted Ku-
maraswamy distribution fit the data well. Maximum likelihood and Bayesian estimates
are illustrated in Table 7. It can be seen that, for different values of r and different esti-
mation methods, joint type-II censoring provides results close to that in complete case
but with lower cost and shorter time.

Table 7: The results of MLE for cancer data.

β2 β3 β∗2 β∗3
Complete sampling estimates 0.449 0.784 0.369 0.762

Joint type II cencoring (MLE) r=320 estimates 0.408 0.604 0.379 0.883
r=300 estimates 0.411 0.574 0.361 0.849
r=237 estimates 0.361 0.542 0.323 0.743
r=169 estimates 0.306 0.531 0.289 0.606

Joint type II cencoring (Bayesian) r=320 estimates 0.459 0.787 0.374 0.745
r=300 estimates 0.474 0.862 0.369 0.734
r=237 estimates 0.459 0.809 0.354 0.694
r=169 estimates 0.300 0.312 0.441 0.991

6 Conclusion
In this paper, the likelihood function is derived for the bivariate Marshall-Olkin family
under joint type-II censoring in the presence of dependent competing risk model.
The derived likelihood function is applied on the Marshall-Olkin bivariate inverted
Kumaraswamy lifetime distribution. Maximum likelihood and Bayesian approaches
are used to obtain the estimates of the unknown parameters. A simulation study is
performed, an example and two real data sets are analyzed. The results after applying
joint type-II censoring are compared with the case of complete sampling. It is found
that joint type-II censoring provided similar estimates but with lower cost and shorter
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time. Hence, we recommend the use of joint Type-II censoring in the bivariate case to
save time and cost.
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Appendix

a) Here, derivatives of the log-likelihood with respect to the unknown parameters are
illustrated.

∂logL
∂α

=

∑r
k=1(δk0 + δk1 + δk2)zk

α
−

r∑
k=1

(δk0 + δk1 + δk2)zklog(1 + wk)

+

r∑
k=1

δk0zk(β1 + β2 + β3 − 1)
1 − (1 + wk)−α

(1 + wk)−αlog(1 + wk)

+

r∑
k=1

δk1zk(β1 − 1)
1 − (1 + wk)−α

(1 + wk)−αlog(1 + wk)

+

r∑
k=1

δk2zk(β2 − 1)
1 − (1 + wk)−α

(1 + wk)−αlog(1 + wk)

−

r∑
k=1

δk1zk(β2 + β3)(1 − (1 + wk)−α)β2+β3−1(1 + wk)−αlog(1 + wk)
1 − (1 − (1 + wk)−α)β2+β3

−

r∑
k=1

δk2zk(β1 + β3)(1 − (1 + wk)−α)β1+β3−1(1 + wk)−αlog(1 + wk)
1 − (1 − (1 + wk)−α)β1+β3

.

∂logL
∂β1

=

∑r
k=1 zkδk1

β1
+

r∑
k=1

δk0zklog(1 − (1 + wk)−α)

+

r∑
k=1

δk1zklog(1 − (1 + wk)−α)

−

r∑
k=1

δk2zk(1 − (1 + wk)−α)β1+β3 log(1 − (1 + wk)−α)
1 − (1 − (1 + wk)−α)β1+β3

.

∂logL
∂β2

=

∑r
k=1 zkδk2

β2
+

r∑
k=1

δk0zklog(1 − (1 + wk)−α)

+

r∑
k=1

δk2zklog(1 − (1 + wk)−α)

−

r∑
k=1

δk1zk(1 − (1 + wk)−α)β2+β3 log(1 − (1 + wk)−α)
1 − (1 − (1 + wk)−α)β2+β3

.

∂logL
∂β3

=

∑r
k=1 zkδk0

β3
+

r∑
k=1

δk0zklog(1 − (1 + wk)−α)

−

r∑
k=1

δk1zk(1 − (1 + wk)−α)β2+β3 log(1 − (1 + wk)−α)
1 − (1 − (1 + wk)−α)β2+β3

−

r∑
k=1

δk2zk(1 − (1 + wk)−α)β1+β3 log(1 − (1 + wk)−α)
1 − (1 − (1 + wk)−α)β1+β3

.
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∂logL
∂α∗

=

∑r
k=1(δk0 + δk1 + δk2)zk

α∗
−

r∑
k=1

(δk0 + δk1 + δk2)zklog(1 + wk)

+

r∑
k=1

δk0zk(β∗1 + β∗2 + β∗3 − 1)

1 − (1 + wk)−α∗
(1 + wk)−α

∗

log(1 + wk)

+

r∑
k=1

δk1zk(β∗1 − 1)

1 − (1 + wk)−α∗
(1 + wk)−α

∗

log(1 + wk)

+

r∑
k=1

δk2zk(β∗2 − 1)

1 − (1 + wk)−α∗
(1 + wk)−α

∗

log(1 + wk)

−

r∑
k=1

δk1zk(β∗2 + β∗3)(1 − (1 + wk)−α
∗

)β
∗

2+β∗3−1(1 + wk)−α
∗

log(1 + wk)

1 − (1 − (1 + wk)−α∗)β
∗

2+β∗3

−

r∑
k=1

δk2zk(β∗1 + β∗3)(1 − (1 + wk)−α
∗

)β
∗

1+β∗3−1(1 + wk)−α
∗

log(1 + wk)

1 − (1 − (1 + wk)−α∗)β
∗

1+β∗3
.

∂logL
∂β∗1

=

∑r
k=1 zkδk1

β∗1
+

r∑
k=1

δk0zklog(1 − (1 + wk)−α
∗

)

+

r∑
k=1

δk1zklog(1 − (1 + wk)−α
∗

)

−

r∑
k=1

δk2zk(1 − (1 + wk)−α
∗

)β
∗

1+β∗3 log(1 − (1 + wk)−α
∗

)

1 − (1 − (1 + wk)−α∗)β
∗

1+β∗3
.

∂logL
∂β∗2

=

∑r
k=1 zkδk2

β∗2
+

r∑
k=1

δk0zklog(1 − (1 + wk)−α
∗

)

+

r∑
k=1

δk2zklog(1 − (1 + wk)−α
∗

)

−

r∑
k=1

δk1zk(1 − (1 + wk)−α
∗

)β
∗

2+β∗3 log(1 − (1 + wk)−α
∗

)

1 − (1 − (1 + wk)−α∗)β
∗

2+β∗3
.
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∂logL
∂β∗3

=

∑r
k=1 zkδk0

β∗3
+

r∑
k=1

δk0zklog(1 − (1 + wk)−α
∗

)

−

r∑
k=1

δk1zk(1 − (1 + wk)−α
∗

)β
∗

2+β∗3 log(1 − (1 + wk)−α
∗

)

1 − (1 − (1 + wk)−α∗)β
∗

2+β∗3

−

r∑
k=1

δk2zk(1 − (1 + wk)−α
∗

)β
∗

1+β∗3 log(1 − (1 + wk)−α
∗

)

1 − (1 − (1 + wk)−α∗)β
∗

1+β∗3
.

b) Diabetic Retinopathy Dataset

Group 1 Group 2 Group 1 Group 2
266 1653 272 503
91 427 1137 423

154 699 1484 285
285 36 315 315
583 667 287 727
547 588 1252 210
79 471 717 409

622 126 642 584
707 350 141 355
469 663 407 1302
93 567 356 277

1313 966
805 203
344 84
790 392
125 1140
777 901
306 1247
415 448
307 904
637 276
577 520
178 485
517 248


