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Abstract. Finding new families of distributions has become a popular tool in statistical
research. In this article, we introduce a new flexible four-parameter discrete model
based on the Marshall-Olkin approach, namely, the discrete Kumaraswamy Marshall-
Olkin exponential distribution. The proposed distribution can be viewed as another
generalization of the geometric distribution and enfolds some important distributions
as special cases. Some properties of the new distribution are derived. The model
parameters are estimated by the maximum likelihood method, with validation through
a complete simulation study. The usefulness of the new model is illustrated via count-
type real data sets.
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1 Introduction

The Marshall-Olkin family of distributions, introduced by Marshall and Olkin (1997),
has appeared and reappeared in the statistical literature for two decades. As of
now, a substantial part of the literature has proposed various univariate distributions
belonging to the Marshall-Olkin family of distributions. This family often provides a
better fit than other generalized families with the same baseline distribution, and the
generated distributions have wider applications than the baseline distribution itself.
For more details, one can refer to a review study by Tahir and Nadarajah (2015) which
provides a list of statistical distributions derived through the Marshall-Olkin technique.

A part from that, researchers have concentrated on new families that generalize the
Marshall-Olkin family of distributions. There is a strong need to introduce such useful
new models, because they have a strong potential for modeling data in many areas, such
as economics, biological studies, environmental sciences, physics, computer science,
insurance, public health, medical, engineering, biology, industry, communications,
life-testing, and many others. For this purpose, Alizadeh et al. (2015) proposed the
Kumaraswamy Marshall-Olkin family. It uses the scheme of the Kumaraswamy
generalized family by Cordeiro and de Castro (2011). The survival function of the
Kumaraswamy Marshall-Olkin family is given by

Ḡ(x;α, a, b) =

{
1 −

[
F(x)

1 − ᾱF̄(x)

]a}b

; x ∈ R;α, a, b, > 0, (1.1)

which enfolds a wider family of continuous distributions. When a = 1 and b = 1,
equation (1.1) reduces to the Marshall-Olkin family. Whenα = 0, equation (1.1) becomes
the exponentiated Marshall-Olkin family of distributions (Jayakumar and Thomas,
2008). This family includes the Kumaraswamy family of distributions (Cordeiro and de
Castro, 2011) when α = 0, the proportional reversed hazard rate distribution by Gupta
and Gupta (2007) (when a = 1, α = 0) and the proportional hazard rate distribution
(when b = 1, α = 0) by Gupta et al. (1998).

In life testing experiments, there are many situations where it is impossible or



A Discrete Kumaraswamy Marshall-Olkin Exponential Distribution 131

inconvenient to quantify the lifespan of a component or a device on a continuous
scale. Discretized statistical models have been used to handle discrete lifetime data
and also count data in a wide variety of disciplines such as biological and medical
sciences, physical sciences, engineering, agriculture, and so on. The classical discrete
distributions have constricted applicability as models for reliability, failure times,
counts, etc. This has led to the evolution of some discrete distributions based on
popular continuous models. For example, Lisman and van Zuylen (1972) pioneered
the discrete version of the continuous normal distribution. A discrete analogue of the
two parameter continuous Weibull distribution has been introduced by Nakagawa and
Osaki (1975). Stein and Dattero (1984) devised a new discrete Weibull distribution by
treating lifetime as the integer component of the continuous Weibull distribution. Sato
et al. (1999) proposed a discrete exponential distribution and applied it to model defect
count in a semiconductor deposition equipment as well as defect count distribution
per chip. Krishna and Pundir (2009) introduced the discrete Burr distribution, which
together with Chakraborty and Chakravarty (2016), invented the discrete gamma
distribution. However, there is still a need to develop new discretized distributions
that are desirable under diverse scenarios. In this paper, we use the Kumaraswamy
Marshall-Olkin scheme to introduce a new discrete family of distributions and focus
on a new model as its particular case.

The first motivation for introducing the new distribution is based on the fact that,
compared to the volume of literature in the continuous case, only a few papers have
been inscribed about the discrete version of the continuous family of distributions. The
second motivation is related to the flexibility of the proposed distribution to model
complex positive real data sets; that is, the new distribution can deliver decreasing,
increasing, unimodal, and bathtub-shaped hazard rate functions (hrfs). In addition
to this, the distribution proposed here can be considered as a generalization of many
existing distributions in the literature. Also, the performance of the model is examined
by using three examples from real data sets. As it can be seen later, the new distribution
introduced in this manuscript produces a better fit to data than the well-known
geometric and an extension of the geometric distributions previously considered.
Finally, due to its ability to model monotone as well as non-monotone hrfs, which
are quite common in reliability and biological studies, the new distribution becomes
very important.

The rest of the article is organized as follows: Section 2 presents the discrete
Kumaraswamy Marshall-Olkin family. Section 3 provides an elaborated study of
a special case of the derived new discrete discrete distribution and its probabilistic
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properties. Maximum likelihood estimation of the unknown parameters is presented
in Section 4, completed by a simulation procedure. Utilization of the newly developed
model is discussed in Section 5. The paper is concluded in Section 6.

2 Discrete Kumaraswamy Marshall-Olkin Family

In this section, we introduce a new discrete family of distributions, namely, the
discrete Kumaraswamy Marshall-Olkin family of distributions. Some new discrete
distributions have appeared in the literature by using the continuous Marshall-Olkin
scheme. For example, we can cite the works of Jayakumar and Sankaran (2017a) and
Jayakumar and Sankaran (2017b). A detailed survey of the methods and constructions
of discrete analogs of continuous distributions is discussed in Chakraborty (2015). If
the underlying continuous life time X has the survival function K̄(x) = P(X > x), the
pmf of the discrete random variable associated with that continuous distribution can
be written as

P(X = x) = K̄(x) − K̄(x + 1); x = 0, 1, 2 . . . . (2.1)

Alizadeh et al. (2015) proposed a generalization of the Marshall-Olkin family of distribu-
tions by adding parameters a > 0 and b > 0 in the Marshall-Olkin scheme with the
survival function given as (1.1). The new family is generated by discretizing the
continuous survival function of the Kumaraswamy Marshall-Olkin family using (2.1).
We obtain a new family of discrete distributions with the pmf g(x) given by

g(x) =

{
1 −

[
F(x)

1 − ᾱF̄(x)

]a}b

−

{
1 −

[
F(x + 1)

1 − ᾱF̄(x + 1)

]a}b

; x = 0, 1, 2 . . . . (2.2)

The survival function of the discrete random variable having the pmf (2.2) is given by

Ḡ(x) =

{
1 −

[
F(x + 1)

1 − ᾱF̄(x + 1)

]a}b

; x = 0, 1, 2 . . . .

We explore one member of this family, namely, the discrete Kumaraswamy Marshall-
Olkin exponential (DKMOE) distribution in the next section and present its properties
in detail. The exponential distribution was chosen because it is the simplest and widely
used model. In practice, other distributions can be used to model real data.
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3 Discrete Kumaraswamy Marshall-Olkin Exponential
Distribution

3.1 Definition

Let the parent distribution be exponential with parameter λ > 0 and survival function
F̄(x) = e−λx. We set p = e−λ, satisfying 0 < p < 1. Then, the pmf of the new model using
(2.2) is given by

g(x) =

{
1 −

[
1 − px

1 − ᾱpx

]a}b

−

1 −
[

1 − px+1

1 − ᾱpx+1

]ab

; x = 0, 1, 2 . . . , (3.1)

where a > 0 is a location parameter, b > 0 is a scale parameter, and α > 0 is a
shape parameter (for the sake of conciseness, we will note g(x) instead of g(x; a, b, α, p),
the same for all the coming functions). We call this new distribution the discrete
Kumaraswamy Marshall-Olkin exponential (DKMOE) distribution with parameters a,
b, α, and p. Note that, when a = 1 and b = 1, the distribution with pmf (3.1) reduces to
discrete Marshall-Olkin distribution discussed in Supanekar and Shirke (2015), when
b = 1, the distribution with pmf (3.1) reduces to discrete generalized Marshall-Olkin
distribution given by Jayakumar and Sankaran (2017a) and when a = 1, b = 1 and α = 1,
(3.1) becomes geometric distribution. Also note that, if x → ∞, then lim

x→∞
g(x) = 0, and

if x→ 0, then lim
x→∞

g(x) = 0 when p→ 1 or a→∞. The corresponding survival function
is given by

Ḡ(x) =

1 −
[

1 − px+1

1 − ᾱpx+1

]ab

; x = 0, 1, 2 . . . ,

and the hrf corresponding to the cdf is given by

h(x) =

{
1 −

[ 1−px

1−ᾱpx

]a}b
−

{
1 −

[
1−px+1

1−ᾱpx+1

]a}b

{
1 −

[
1−px+1

1−ᾱpx+1

]a}b
.

Figure 1 shows the plots of the pmf of the DKMOE distribution for various values of a, b,
α and p. The pmf can be increasing, decreasing, or upside-down bathtub shaped. Also,
Figure 2 illustrates some of the possible shapes of the hrf of the DKMOE distribution
for selected values of the parameters a, b, α, and p, respectively. From this figure, it
is clear that the hrf can be increasing, decreasing, bathtub, or upside-down bathtub
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shaped. Indeed, the DKMOE distribution can be suitable for modeling various data
sets.
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Figure 1: Pmfs of the DKMOE distribution for some parameter values

Some well-known discrete distributions arise as special cases of the DKMOE(α,
a, b, p) distribution, such as the geometric distribution, Kumaraswamy-geometric
distribution and other sub-families. We provide special models of the DKMOE distribution
in Table 1.

Table 1: Some special distributions

a b α Reduced Model

1 1 0 geometric distribution
1 - 0 geometric distribution (with probability of success pb)
- 1 0 geometric distribution (with probability of success as 1 − pa)
- - 0 Kumaraswamy-geometric (KG) distribution (Akinsete et al. , 2014)
- 1 0 exponentiated-exponential-geometric distribution (Alzaatreh et al. , 2012)
1 1 - discrete Marshall-Olkin exponential distribution (Gómez-Déniz, 2010)
1 - - discrete generalized Marshall-Olkin exponential distribution (Jayakumar and Sankaran, 2017a)
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Figure 2: Hrfs of the DKMOE distribution for some parameter values

In the rest of the section, we study some general properties of the DKMOE distribution.

3.2 Quantiles, Probability Generating Function, Mean and Variance

Suppose that X follows the DKMOE distribution with cdf G(x) = 1 − Ḡ(x). Then, the
corresponding quantile function Q(u), 0 < u < 1 is given as

Q(u) =

{
1

log p
log

[
(1 − ū1/b)1/a

− 1
ᾱ(1 − ū1/b)1/a − 1

]}
− 1, (3.2)

where ū = 1−u. Equation (3.2) can be used to simulate values from X. First, simulate a
random variable u following the uniform distribution on the unit interval and compute
the value of Q(u) in (3.2), which is not necessarily an integer. A DKMOE random
variate x is the largest integer inferior or equal to Q(u), denoted as [x].

In particular, the median M is presented by

M =

{
1

log p
log

[
[1 − (1/2)1/b]1/a

− 1
ᾱ[1 − (1/2)1/b]1/a − 1

]}
− 1.
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The probability generating function (pgf) of the DKMOE distribution is given by

P(s) = 1 + (s − 1)
∞∑

x=1

sx−1
{

1 −
[

1 − px

1 − ᾱpx

]a}b

.

The mean and variance of the DKMOE distribution do not have compact forms, but
can be set as

E(X) =

∞∑
x=1

{
1 −

[
1 − px

1 − ᾱpx

]a}b

,

and

V(X) =

∞∑
x=1

(2x − 1)
{

1 −
[

1 − px

1 − ᾱpx

]a}b

−

 ∞∑
x=1

{
1 −

[
1 − px

1 − ᾱpx

]a}b
2

.

Using statistical software, the mean and variance of the DKMOE distribution for
different values of α, a, b and p are calculated in Table 2. From this, we can say that
the mean increases with p and α for different values of a and b. Moreover, depending
on the values of α and p, the mean of the distribution can be smaller or greater than its
variance. Therefore, the parameters of the DKMOE distribution can be used to model
different data sets.

3.3 Infinite Divisibility

Infinite divisibility has a close relationship to the Central Limit Theorem and waiting
time distributions. According to Steutel and van Harn (2004), pp.56, if p(x), x ∈ N0,
is infinitely divisible, then p(x) < e−1 for all x ∈ N. For the DKMOE distribution with
parameters a = 10, b = 0.1, α = 10 and p = 0.002, we can see that g(1) = 0.3851099 >
e−1 = 0.367. Hence, we can conclude that the DGMOE distribution is not infinitely
divisible. In addition, since the classes of self decomposable and stable distributions,
in their discrete concepts, are subclasses of infinitely divisible distributions, we can
conclude that the DKMOE distribution can be neither self-decomposable nor stable, in
general.

3.4 Shannon Entropy

In a probabilistic context, Shannon entropy is a measure of the variation of uncertainty,
with higher entropy corresponding to less information. For further details in this
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Table 2: The mean(variance) of the DKMOE distribution for different values of
parameters

p −→ 0.25 0.5 0.75
α
↓

a = 0.5 0.25 0.0016(0.0017) 0.0131(0.0177) 0.0886(0.1859)
b = 2 0.50 0.0058(0.0063) 0.0406(0.0569) 0.2242(0.5180)

0.75 0.0117(0.0129) 0.0739(0.10572) 0.3594(0.8858)
a = 2 0.25 0.7422 (1.6148) 1.8539(6.8015) 5.1011(39.8962)
b = .5 0.50 1.0173(1.9875) 2.4760(8.0756) 6.6505(46.7974)

0.75 1.2109(2.1908) 2.8933(8.7451) 7.6686(50.5051)
a = 2 0.25 0.0230(0.0249) 0.1574(0.2041) 0.7969(1.5060)
b = 2 0.50 0.0747(0.0782) 0.4009(0.483) 1.5728(2.9167)

0.75 0.0746(0.0782) 1.5727(2.916) 1.5727(2.9169)
a = 0.5 0.25 0.3775(0.9482) 0.9602(4.2549) 2.7074(26.1278)
b = 0.5 0.50 0.5252(1.2559) 1.3155(5.514) 3.6432(33.4067)

0.75 0.6336(1.4624) 1.5677(6.3341) 4.2915(38.0939)
a = 4 0.25 0.0056(0.0056) 0.1274(0.1238) 0.9200(0.8603)
b = 4 0.50 0.0451 (0.0435) 0.4632(0.3533) 1.8707(1.6287)

0.75 0.1225(0.1095) 0.7720(0.4756) 2.5916(2.2269)

regard, we refer the reader to Amigo et al. (2018). For a discrete random variable X
with pmf g(x), the Shannon entropy is defined as

S(x) = −

∞∑
x=0

g(x) log2 g(x). (3.3)

Combining (3.3) and (3.1), it gives

S(x) = −

∞∑
x=0

{1 −
[

1 − px

1 − ᾱpx

]a}b

−

1 −
[

1 − px+1

1 − ᾱpx+1

]ab×
log2

{
1 −

[
1 − px

1 − ᾱpx

]a}b

−

1 −
[

1 − px+1

1 − ᾱpx+1

]ab

.



138 J. Gillariose et al.

Now, consider the another representation of pmf of the DKMOE distribution:

g(x) =

{
1 −

[
1 − px

1 − ᾱpx

]a}b

1 −


1 −

[
1−px+1

1−ᾱpx+1

]a

1 −
[ 1−px

1−ᾱpx

]a


b .

Note that when b→∞ and p→ 0 then S(x)→ 0. This indicates that smaller values of b
increase the uncertainty in the distribution, while higher values of b increase the amount
of information measured in terms of the probability when b > 1. The numerical values
of the entropies for different values of parameters are given in Table 3. It is understood
that 0.0000 represents a value < 0.0001.

Table 3: The entropy of the DKMOE distribution for different values of parameters

p −→ 0.2 0.4 0.6 0.8 0.9
b
↓

a = 2 2 0.2089 0.5909 1.1505 2.3086 3.2807
α = 0.5 5 0.0045 0.0966 0.4471 1.2379 2.3794

10 0.0000 0.0031 0.1102 0.7061 1.5826
20 0.0000 0.0000 0.0000 0.3329 0.9743

a = 0.2 2 0.1306 0.3212 0.5877 1.063 1.4974
α = 5 5 0.0010 0.0106 0.0424 0.1411 0.2941

10 0.0000 0.0000 0.0004 0.0046 0.0197
20 0.0000 0.0000 0.0000 0.0000 0.0000

a = 2 2 0.8416 1.7214 2.7153 3.9254 3.9708
α = 5 5 0.5536 1.0490 2.0367 3.3834 3.9276

10 0.3517 0.6970 1.5471 2.9416 2.9255
20 0.0778 0.5482 1.0890 2.4872 2.0837

a = 2 0.2 3.7464 3.6515 2.8747 1.3622 0.3946
α = 5 0.4 2.3150 3.2627 3.8911 3.0142 1.1416

0.6 1.8574 2.8369 3.6997 3.4990 1.5080
0.9 1.4486 2.4312 3.3752 3.8541 1.9514
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4 Estimation

4.1 Maximum Likelihood Method

In order to estimate α, a, b and p, assume that X1,X2, . . . ,Xn is a random sample of size
n from a DKMOE distribution, and consider the corresponding observations denoted
by x1, x2, . . . , xn. We can write the log likelihood of the DKMOE model in the following
form:

log l =

n∑
i=1

log
{

1 −
[

1 − pxi

1 − ᾱpxi

]a}b

−

1 −
[

1 − pxi+1

1 − ᾱpxi+1

]ab

.

Differentiating the log-likelihood function with respect to the parameters, we get

∂ log l
∂a

=

n∑
i=1

Bi −Ai{
1 −

[ 1−pxi

1−ᾱpxi

]a}b
−

{
1 −

[
1−pxi+1

1−ᾱpxi+1

]a}b
,

∂ log l
∂b

=

n∑
i=1

Ci −Di{
1 −

[ 1−pxi

1−ᾱpxi

]a}b
−

{
1 −

[
1−pxi+1

1−ᾱpxi+1

]a}b
,

∂ log l
∂α

=

n∑
i=1

Ei − Fi{
1 −

[
1−px

i
1−ᾱpxi

]a}b
−

{
1 −

[
1−pxi+1

1−ᾱpxi+1

]a}b
,

and
∂ log l
∂p

=

n∑
i=1

Gi −Hi{
1 −

[
1−px

i
1−ᾱpxi

]a}b
−

{
1 −

[
1−pxi+1

1−ᾱpxi+1

]a}b
,

where

Ai = b
{

1 −
[

1 − pxi

1 − ᾱpxi

]a}b−1 [
1 − pxi

1 − ᾱpxi

]a

log
[

1 − pxi

1 − ᾱpxi

]
,

Bi = b
1 −

[
1 − pxi+1

1 − ᾱpxi+1

]ab−1 [
1 − pxi+1

1 − ᾱpxi+1

]a

log
[

1 − pxi+1

1 − ᾱpxi+1

]
,
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Ci =

{
1 −

[
1 − pxi

1 − ᾱpxi

]a}b

log
{

1 −
[ 1 − px

i

1 − ᾱpxi

]a}
,

Di =

1 −
[

1 − pxi+1

1 − ᾱpxi+1

]ab

log
1 −

[
1 − pxi+1

1 − ᾱpxi+1

]a ,
Ei = ab

{
1 −

[
1 − pxi

1 − ᾱpxi

]a}b−1 [
1 − pxi

1 − ᾱpxi

]a pxi

1 − ᾱpxi
,

Fi = ab
1 −

[
1 − pxi+1

1 − ᾱpxi+1

]ab−1 {
1 − pxi+1

1 − ᾱpxi+1

}a pxi+1

1 − ᾱpxi+1
,

Gi =
abαxipxi−1

1 − ᾱpxi

{
1 −

[
1 − pxi

1 − ᾱpxi

]a}b−1 [
1 − pxi

1 − ᾱpxi

]a−1

,

and

Hi =
abα(xi + 1)pxi

1 − ᾱpxi

1 −
[

1 − pxi+1

1 − ᾱpxi+1

]ab−1 {
1 − pxi+1

1 − ᾱpxi+1

}a−1

.

The maximum likelihood estimate (MLE) of the parameter vector ξ = (a, b, p, α)T, say
ξ̂ = (â, b̂, p̂, α̂)T, can be numerically obtained by solving ∂ log l/∂a = 0, ∂ log l/∂b = 0,
∂ log l/∂α = 0 and ∂ log l/∂p = 0. These equations can be solved using statistical
software.

To perform asymptotic inference for the parameter vectorξ, the normal approximati-
on of the MLE of ξ can be used. Indeed, under some regular conditions stated in Cox
and Hinkley (1974), we have a ξ̂ that is approximately normally distributed with a
mean of ξ and an asymptotic variance-covariance matrix Σξ. The asymptotic behavior
remains valid if Σξ is approximated by I−1, the inverse of the matrix I, which is given
as

I = −



∂2 log l
∂a2

∂2 log l
∂a∂b

∂2 log l
∂a∂p

∂2 log l
∂a∂α

∂2 log l
∂b∂a

∂2 log l
∂b2

∂2 log l
∂b∂p

∂2 log l
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∂2 log l
∂p∂a

∂2 log l
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∂2 log l
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∂2 log l
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∂2 log l
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∂2 log l
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∂2 log l
∂α∂p

∂2 log l
∂α2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ξ=ξ̂

.

From I−1, we get the asymptotic variances and covariances of the MLEs â, b̂, α̂
and p̂. Also, the multivariate normal N4(04, I−1) distribution can be used to construct
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approximate confidence intervals for the parameters a, b, p and α whose lower and
upper bounds are given, respectively, by â ± zη/2 × [ ˆVar(â)]

1
2 , b̂ ± zη/2 × [ ˆVar(b̂)]

1
2 , p̂ ±

zη/2 × [ ˆVar(p̂)]
1
2 and α̂ ± zη/2 × [ ˆVar(α̂)]

1
2 , where ˆVar(â) is the diagonal element of I−1

corresponding to the parameter a, the same for the other parameters, and η/2 is the
quantile 100(1 − η/2)% of the standard normal distribution.

4.2 Simulation

We now examine the performance of the MLEs using a Monte Carlo simulation study.
The following sets of target parameters are considered: Set I (a = 4.5, b = 10, α = 9.5,
p = 0.8), Set II (a = 5, b = 3, α = 10, p = 0.6) and Set III (a = 8, b = 10, α = 5, p = 0.9).
Also, we take into account the following different sample sizes n = 50, 100, 150, 200,
250 and 300, and the process of value generation is repeated N = 1000 times for each
value of n.

Then, we consider the following measures. The average estimate (AEs) defined as

AEn(ξ) =
1
N

N∑
k=1

ξ̂k,

where ξ̂k denotes the MLE of ξwith ξ = a, b, α or p, obtained at the k-th repetition with
the sample size of n, the bias is defined as

Biasn(ξ) =

 1
N

N∑
k=1

ξ̂k

 − ξ,
and the mean squared error (MSE) is specified by

MSEn(ξ) =
1
N

N∑
k=1

(ξ̂k − ξ)2.

The calculations are performed via the R software. The obtained numerical results
are listed in Tables 4, 5 and 6 for Sets I, II and III, respectively. From these tables,
we note that, as the sample size increases, the biases and the MSEs decrease. That is,
the considered estimation method performs well for estimating the parameters of the
DKMOE model. Figures 3 and 4 illustrate this claim graphically by plotting the biases
and MSEs of the model parameters with respect to n for the three sets of parameters.
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Table 4: Average estimates, biases and MSEs for the parameters of the DKMOE model
at Set I (a = 4.5, b = 10, α = 9.5, p = 0.8)

Set I (a = 4.5, b = 10, α = 9.5, p = 0.8)
n AEs Biases MSEs
50 7.0915 1.0915 4.1617

19.4726 1.4726 6.5296
12.0229 1.0229 3.8967
0.7851 -0.0149 0.0086

100 5.0972 0.3972 2.0602
15.0237 1.0237 5.1462
11.2768 1.0768 3.6440
0.7948 -0.0052 0.0047

150 5.3061 0.3061 1.9459
14.8374 0.8374 2.8372
8.9247 0.9247 1.0586
0.7936 -0.0064 0.0050

200 4.6982 0.3018 1.2246
11.1761 0.1761 1.8667
10.1263 0.1263 0.8996
0.7857 -0.0043 0.0054

250 4.5052 0.1948 0.8355
10.4367 0.2367 0.6592
9.7691 0.1691 0.7498
0.7847 -0.0053 0.0045

300 4.5009 -0.1591 0.7371
10.0095 0.0595 0.3293
9.0510 0.0510 0.4189
0.7997 -0.0025 0.0023
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Table 5: Average estimates, biases and MSEs for the parameters of the DKMOE model
at Set II (a = 5, b = 3, α = 10, p = 0.6)

Set II (a = 5, b = 3, α = 10, p = 0.6)
n AEs Biases MSEs
50 6.2772 1.2772 4.0050

8.6686 1.1686 5.7415
16.9710 1.4701 4.6330
0.4839 -0.1161 0.0684

100 4.1563 0.8437 2.2870
7.1396 0.6396 2.0304

14.0247 0.9247 4.0079
0.5130 -0.0870 0.0490

150 5.0920 0.6920 1.1088
4.7607 0.3607 1.5062

10.5322 0.7322 2.5191
0.6423 -0.0423 0.0322

200 5.9597 0.4597 0.9356
3.4524 0.1476 1.4437
9.8940 0.6940 1.9899
0.6969 -0.0231 0.0315

250 5.9683 0.3683 0.9157
2.7971 -0.1029 0.9959

10.3272 0.2272 0.8023
0.5900 -0.0100 0.0277

300 5.0339 0.1339 0.2467
3.0592 -0.0408 0.7152

10.0823 0.1823 0.6203
0.6053 -0.0047 0.0236
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Table 6: Average estimates, biases and MSEs for the parameters of the DKMOE model
at Set III (a = 8, b = 10, α = 5, p = 0.9).

Set III (a = 8, b = 10, α = 5, p = 0.9)
n AEs Biases MSEs
50 11.3061 1.9061 3.8637

14.5514 1.5514 2.5878
7.7942 0.2942 1.0430
0.8754 -0.0246 0.0049

100 9.8854 1.8854 3.9637
12.9366 0.9366 1.7521
5.7678 0.2678 0.9740
0.8927 -0.0073 0.0017

150 8.7045 0.7045 3.7028
13.6911 0.6911 1.6143
5.4014 0.1914 0.5535
0.8907 -0.0093 0.0019

200 8.9095 0.7095 2.6514
10.9972 0.3972 1.2700
6.1110 0.1610 0.3607
0.8843 -0.0157 0.0022

250 8.2654 0.5654 2.1727
10.1669 0.1669 0.6530
5.4111 0.1011 0.1546
0.8904 -0.0096 0.0014

300 8.1883 -0.2117 1.1373
10.0709 0.1009 0.1759
5.0850 0.0850 0.1272
0.8977 -0.0023 0.0012
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Figure 3: Plots for the biases of the parameters of the DKMOE model for Sets I, II and
III.
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Figure 4: Plots for the MSEs of the parameters of the DKMOE model for Sets I, II and
III.

5 Application

In this section, we present three data sets to assess the performance of a newly
proposed DKMOE model. For comparing the superiority of the DKMOE model
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over the KG and geometric models, we estimated the values of unknown parameters
by the maximum likelihood method, standard error (SE), −log likelihood (−logL),
Akaike information criterion (AIC), Bayesian information criterion (BIC), Kolmogorov-
Smirnov (K-S) statistic, and K-S p-value. The three considered data sets are presented
below.

Data set 1 : The first data set represents the number of shocks received prior to the
failure being reported in Murthy et al. (2004, p.245). The data set is:

1 3 3 4 4 4 4 5 5 6 6 7 10 11 12 14

Data set 2: The second data set consists of the number of inspections between the
discovery of defects in an industrial process and is taken from Xie and Goh (1993). The
data set is:

1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 5 7 9 11 13 14 14 17 18 26 29

Data set 3: The third data set contains the integer part of the lifetime of fifty devices
in weeks which is given by Aarset (1987). The data set is:

0 0 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18 21 32 36 40 45 46 47 50 55
60 63 63 67 67 67 67 72 75 79 82 82 83 84 84 84 85 85 85 85 85 86 86

Tables 7, 8 and 9 list the values of the descriptive study for the fitted DKMOE,
KG and geometric models for Data set 1, 2 and 3 respectively. The smallest −logL,
AIC, BIC, K-S statistic and the highest p-values are achieved for the DKMOE model.
Thus, it is the best model compared to the others. Therefore, it should be preferred for
fitting the current data sets. In Figures 6a, 6b and 6c, we give the estimated pmfs for
Data set 1, 2 and 3, respectively. It clearly shows that the DKMOE model captures the
general pattern of the histograms. On the other hand, Figures 5a, 5b and 5c show the
comparison of the cdfs for each model with the empirical distribution function. These
plots also indeed affirm that the DKMOE model is clearly a competitive model for the
considered data sets. Thus, the new model may be an interesting alternative to the
geometric and KG models for modeling positive real data.
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Table 7: Estimated values, −logL, AIC, BIC, K-S statistics and p-value for Data set 1

Distribution Estimates(SE) −logL AIC BIC K-S p-value
DKMOE â = 5.7053(9.9333) 41.2162 90.4323 93.5227 0.1890 0.6173

b̂ = 2.2710(9.4137)
p̂ = 0.8594(0.5445)
α̂ = 0.3859(1.4609)

KG â = 0.9732(0.0349) 43.7760 93.5520 95.8697 0.2747 0.1786
b̂ = 0.0599(0.0155)
p̂ = 0.0808(0.0013)

geometric p̂ = 0.13910.0322 46.3889 94.7778 95.5504 0.3883 0.0160

Table 8: Estimated values, −logL, AIC, BIC, K-S statistics and p-value for Data set 2

Distribution Estimates(SE) −logL AIC BIC K-S p-value
DKMOE â = 1.9348(0.0192) 81.7253 171.4507 171.7795 0.1513 0.5415

b̂ = 0.1163(0.0231)
p̂ = 0.27880(0.0039)
α̂ = 2.5008(1.1022)

KG â = 0.9375(0.0095) 83.17498 172.35 176.3466 0.17853 0.334
b̂ = 0.0964(0.0186)
p̂ = 0.2776(0.0062)

geometric p̂ = 0.1212(0.0215) 85.31595 172.6319 173.9641 0.22773 0.1096
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Table 9: Estimated values, −logL, AIC, BIC, K-S statistics and p-value for Data set 3

Distribution Estimates(SE) −logL AIC BIC K-S p-value
DKMOE â = 0.6137(0.1498) 233.3173 474.6346 482.2827 0.1716 0.1054

b̂ = 1.4944(0.9124)
p̂ = 0.9679(0.0102)
α̂ = 9.8793(5.3413)

KG â = 0.4987(0.3082) 240.1928 486.3855 492.1216 0.18549 0.06409
b̂ = 0.1129(0.1299)
p̂ = 0.8367(0.1758)

geometric p̂ = 0.02142(0.0030) 241.6264 485.2527 487.1647 0.19310 0.048
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Figure 5: Plots of estimated cdfs of models for (a) Data set 1 (b) Data set 2 and (c) Data
set 3
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Figure 6: Plots of estimated pmfs of models for (a) Data set 1 (b) Data set 2 and (c) Data
set 3
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6 Conclusions

In this paper, we introduced a new discrete family of distributions and proposed a
new discrete model as its particular case. This new distribution is really another
generalization of the geometric distribution and also unfolds a number of existing
distributions as sub-models. We have discussed explicit mathematical expressions for
some of its basic statistical properties, such as the pmf, cdf, hrf, mean, variance, quantile
function, order statistics and the entropy measure. The method of maximum likelihood
estimation is used in estimating the parameters of the new DMOE model. Real data
applications show the tractability of the proposed distribution in data modeling.

Acknowledgement

The authors are thankful to the associate editor and anonymous reviewers for the
constructive comments.

References

Aarset, M. V. (1987), How to identify a bathtub hazard rate. IEEE Transactions on
Reliability, 36(1), 106-108.

Akinsete, A., Famoye, F., and Lee, C. (2014), The Kumaraswamy-geometric distribution.
Journal of Statistical Distributions and Applications, 1, 1-21.

Alizadeh, M. Tahir, M. H., Cordeiro, G. M., Zubair, M., and Hamedani, G. G. (2015),
The Kumaraswamy Marshall-Olkin family of distributions. Journal of the Egyptian
Mathematical Society, 23(3), 546-557.

Alzaatreh, A., Lee, C., and Famoye, F. (2012), On the discrete analogues of continuous
distributions. Statistical Methods, 9(6), 589-603.

Amigo, J. M., Balogh, S. G., and Hernandez, S. (2018), A brief review of generalized
entropies. Entropy, 20, 813.

Chakraborty, S. (2015), A new discrete distribution related to generalized gamma
distribution and its properties. Communication in Statistics-Theory and Methods, 44(8),
1691-1705.



A Discrete Kumaraswamy Marshall-Olkin Exponential Distribution 151

Chakraborty, S., and Chakravarty, D. (2016), A new discrete probability distribution
with integer support on (−∞,∞). Communication in Statistics-Theory and Method, 45(2),
492-505.

Cordeiro, G. M., and de Castro, M. (2011), A new family of generalized distributions.
Journal of Statistics Computation and Simulation, 81(7), 883-893.

Cox, D. R., and Hinkley, D. V. (1974), Theoretical Statistics, London: Chapman & Hall.

Gómez-Déniz, E. (2010), Another generalization of the geometric distribution. Test,
19(2), 399-415.

Gupta, R. C., and Gupta, R. D. (2007), Proportional reversed hazard rate model and its
applications. Journal of Statistics and Planning Inference, 137(11), 3525-3536.

Gupta, R. C., Gupta, P. L., and Gupta, R. D. (1998), Modeling failure time data by
Lehman alternatives. Communications in Statistics-Theory Methods, 27(4), 887-904.

Jayakumar, K., and Thomas, M. (2008), On a generalization of Marshall-Olkin scheme
and its application to Burr type XII distribution. Statistical Papers, 49(3), 421-439.

Jayakumar, K., and Sankaran, K. K. (2017a), A discrete generalization of Marshall-Olkin
scheme and its application to geometric distribution. Journal of the Kerala Statistical
Association, 28, 1-21.

Jayakumar, K., and Sankaran, K. K. (2017b), A generalization of discrete Weibull
distribution. Communications in Statistics-Simulation and Computation, 47(24), 6064-
6078.

Krishna, H., and Pundir, P. S. (2009), Discrete Burr and discrete Pareto distributions.
Statistical Methodology, 6(2), 177-188.

Lisman, J. H. C., and van Zuylen, M. C. A. (1972), Note on the generation of the most
probable frequency distribution. Statistica Neerlandica, 26(1), 19-23.

Marshall, A. W., and Olkin, I. (1997), A new method for adding a parameter to a family
of distributions with application to the exponential and Weibull families. Biometrica,
84(3), 641-652.

Murthy, D. N. P., Xie, M., and Jiang, R. (2004), Weibull models. New Jersey: John Wiley
and Sons.



152 J. Gillariose et al.

Nakagawa, T., and Osaki, S. (1975), The discrete Weibull distribution. IEEE Transactions
on Reliability, 24(5), 300-301.

Sato, H., Ikota, M., Aritoshi, S., and Masuda, H. (1999), A new defect distribution
meteorology with a consistent discrete exponential formula and its applications.
IEEE Transactions on Semiconductor Manufacturing, 12(4), 409-418.

Stein, W. E., and Dattero, R. (1984), A new discrete Weibull distribution. IEEE
Transactions on Reliability, 33(2), 196-197.

Steutel, F. W., and van Harn, K. (2004), Infinite Divisibility of Probability Distributions on
the Real Line. New York: Marcel Dekker.

Supanekar, S. R., and Shirke, D. T. (2015), A new discrete family of distributions.
ProbStat Forum, 8, 83-94.

Tahir, M. H., and Nadarajah, S. (2015), Parameter induction in continuous univariate
distributions: Well established G families. Annals of the Brazilian Academy of Sciences,
87(2), 539-568.

Xie, M., and Goh, T. N. (1993), Improvement detection by control charts for high yield
processes. International Journal of Quality & Reliability Management, 10(7), 24-31.


