
JIRSS (2021)

Vol. 20, No. 02, pp 117-128

DOI:10.52547/jirss.20.2.117

Preservation of Stochastic Orderings of Interdependent Series
and Parallel Systems by Componentwise Switching to Exponent-
iated Models

Hossein Nadeb 1, and Hamzeh Torabi 1

1 Department of Statistics, Yazd University, Yazd, Iran.

Received: 22/02/2021, Revision received: 02/07/2021, Published online: 29/09/2021

Abstract. This paper discusses the preservation of some stochastic orders between
two interdependent series and parallel systems when the survival and distribution
functions of all components switch to the exponentiated model. For the series systems,
the likelihood ratio, hazard rate, usual, aging faster, aging intensity, convex transform,
star, superadditive and dispersive orderings, and for the parallel systems the reversed
hazard, usual, convex transform, star, superadditive and dispersive orderings are
studied. Also, we present a necessary and sufficient condition for being finiteness
of the moments of the switched series and switched parallel systems.

Keywords. Exponentiated Models, Max-stable Copulas, Parallel System, Series System,
Stochastic Ordering

MSC: 60E15, 62G30.

Corresponding Author: Hossein Nadeb (honadeb@yahoo.com)
Hamzeh Torabi (htorabi@yazd.ac.ir)



118 H. Nadeb and H. Torabi

1 Introduction

The topic of order statistics is one of the most attractive topics in statistics. They
play an important role in applied probability, reliability theory, operations research,
actuarial science, auction theory, hydrology and many other areas. For more details in
applications of the order statistics, one may refer to Barlow and Proschan (1996), David
and Nagaraja (2003), Li (2005), and Arnold et al. (2008).

Let X1:n ≤ . . . ≤ Xn:n denote the order statistics arising from random variables
X1, . . . ,Xn. The random variables X1:n and Xn:n are the lifetimes of series and parallel
systems, respectively. Many researchers have worked on the stochastic comparisons for
the lifetimes of series and parallel systems in the literature. For a comprehensive review
on this topic, one may refer to Dykstra et al. (1997), Khaledi and Kochar (2000), Kochar
and Xu (2007, 2009), Zhao and Balakrishnan (2011, 2012, 2013, 2015), Balakrishnan et al.
(2018), Patra et al. (2018), Nadeb and Torabi (2018), Das and Kayal (2020), and Nadeb
et al. (2021).

Now, we recall some notions of stochastic orderings. Throughout the paper, we
use the notations R = (−∞,+∞) and R+ = (0,+∞). Also, the term increasing means
nondecreasing and decreasing means nonincreasing.

Let X and Y be two continuous and non-negative random variables with distribution
functions F and G, density functions f and g, the survival functions F̄ = 1 − F and Ḡ =
1 −G, the right continuous inverses1 F−1 and G−1 of F and G, the hazard rate functions
rX = f/F̄ and rY = g/Ḡ, the reversed hazard rate functions r̃X = f/F and r̃Y = g/G, and
the aging intensity functions LX(x) = xrX(x)/

∫ x
0 rX(t)dt and LY(x) = xrY(x)/

∫ x
0 rY(t)dt,

respectively. The following definition deals with some various orderings of random
variables.

Definition 1.1. The random variable X is said to be smaller than Y in the

(i) usual stochastic ordering, denoted by X ≤st Y, if F̄(x) ≤ Ḡ(x) for all x ∈ R;

(ii) up proportional hazard rate order, denoted by X ≤phr↑ Y, if for all t ≥ 0 and
0 < α ≤ 1, Ḡ(αx)/F̄(x + t) is increasing in x ∈ R+,

(iii) down proportional hazard rate order, denoted by X ≤phr↓ Y, if for all t ≥ 0 and
0 < α ≤ 1, Ḡ(αx + t)/F̄(x) is increasing in x ∈ R+,

1The right continuous inverse of an increasing function h is defined as h−1(u) = sup{x ∈ R : h(x) ≤ u}
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(iv) up proportional reversed hazard rate order, denoted by X ≤prh↑ Y, if for all t ≥ 0
and 0 < α ≤ 1, G(αx)/F(x + t) is increasing in x ∈ R+,

(v) likelihood ratio ordering, denoted by X ≤lr Y, if g(x)/ f (x) is increasing in x ∈ R+;

(vi) aging faster ordering, denoted by X ≤AF Y, if rX(x)/rY(x) is increasing in x ∈ R+;

(vii) aging intensity ordering, denoted by X ≤AI Y, if LY(x) ≤ LX(x) for all x ∈ R+;

(viii) convex transform ordering, denoted by X ≤c Y, if G−1F(x) is convex in x ∈ R+;

(ix) star ordering, denoted by X ≤∗ Y, if G−1F(x)/x is increasing in x ∈ R+;

(x) superadditive ordering, denoted by X ≤su Y, if G−1F(x + y) ≥ G−1F(x) + G−1F(y)
for all x, y ∈ R+;

(xi) dispersive ordering, denoted by X ≤disp Y, if G−1F(x) − x is increasing in x ∈ R+.

It is necessary to recall that, the cases (ii)-(vi) include some important orderings.
Whenα = 1, they imply the shifted stochastic orderings; i.e. (ii)-(vi) imply the up hazard
rate ordering, denoted by X ≤hr↑ Y, down hazard rate ordering, denoted by X ≤hr↓ Y,
and up reversed hazard rate ordering, denoted by X ≤rh↑ Y, respectively. When t = 0,
they imply the proportional stochastic orders; i.e. (ii) and (iii) imply the proportional
hazard rate ordering, denoted by X ≤phr Y, and (iv) implies the proportional reversed
hazard rate ordering, denoted by X ≤prh Y. When α = 1 and t = 0, they imply the
common stochastic orderings; i.e. (ii) and (iii) imply the hazard rate ordering, denoted
by X ≤hr Y and (iv) implies the reversed hazard rate ordering, denoted by X ≤rh Y.

For more details on the shifted stochastic orders, one may refer to Nakai (1995),
Brown and Shanthikumar (1998), Shanthikumar and Yao (1986), Keilson and Sumita
(1982) and Lillo et al. (2001). More discussions on the proportional stochastic orders
can be found in Ramos Romero and Díaz (2001) and Belzunce et al. (2002). For
comprehensive discussions on the aging faster ordering we refer to Sengupta and
Deshpande (1994), and for the aging intensity functions and their orderings, one may
refer to Jiang et al. (2003) and Nanda et al. (2007). The others can be found in Shaked
and Shanthikumar (2007).

There are some researches in the study of the preservation of some stochastic
orderings under the transformation of the distributions. For instance, one may refer to
Abbasi et al. (2016) and Nadeb and Torabi (2020).

A way of developing a model is exponentiating its distribution or survival function.
We say that a random variable follows the exponentiated model if its distribution
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function can be expressed as Fλ(x) or if its survival function can be expressed as F̄λ(x);
where λ > 0, and F(x) and F̄(x) are the baseline distribution and survival functions,
respectively. This model includes some important distributions in statistics.

Generally, let X1, . . . ,Xn be continuous random variables with the joint distribution
function [survival function] H(x1, . . . , xn) = P(X1 ≤ x1, . . . ,Xn ≤ xn) [H̄(x1, . . . , xn) =
P(X1 > x1, . . . ,Xn > xn)], and marginal distribution functions [survival functions]
F1, . . . ,Fn [F̄1, . . . , F̄n]. In this setting, the joint distribution function [survival function]
and the marginal distribution functions [survival functions] are linked through the
relation H(x1, . . . , xn) = C

(
F1(x1), . . . , Fn(xn)

)
[H̄(x1, . . . , xn) = Ĉ

(
F̄1(x1), . . . , F̄n(xn)

)
] in

view of the Sklar’s Theorem; see Nelsen (2006). In this notation, the function C is
called a copula and Ĉ is called a survival copula. In this paper, we consider the class of
max-stable copulas with the following definition.

Definition 1.2. A copula C is max-stable if for every r > 0 and u ∈ [0, 1]n,

C(u) = Cr
(
u1/r

1 , . . . ,u1/r
n

)
.

There are some ways to construct a max-stable copula. Here, we provide the
proposed way by Pickands (1981). Suppose that a function A : [0,∞)n

→ [0,∞)
satisfies the following properties:

• A(0, . . . , 0, xi, 0, . . . , xn) = xi, i = 1, . . . ,n;

• A(sx1, . . . , sxn) = sA(x1, . . . , xn), for every s ≥ 0;

• A is convex;

• max(x1, . . . , xn) ≤ A(x1, . . . , xn) ≤
∑n

i=1 xi,

then
C(u) = exp {−A (− ln u1, . . . ,− ln un)} , (u1, . . . ,un) ∈ [0, 1]n, (1.1)

is a max-stable copula.

Considering A(x) =
(∑n

i=1 xθi
)1/θ

, θ ≥ 1, we get the Gumbel-Hougaard copula,
which was introduced by Gumbel (1960). For A(x) =

∑n
i=1 xi the independence copula

and for A(x) = max(x1, . . . , xn) the copula M(u) = min(u1, . . . ,un) are obtained. Each
random variable in a set is almost surely a strictly increasing function of any of the
others if and only if the corresponding copula is M. Based on Theorems 3.3.5 and 4.5.2
of Nelsen (2006), the Gumbel-Hougaard copula is the only Archimedean max-stable
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copula. There are several other max-stable copulas based on structure (1.1) such as the
Galambos copula, Hüsler-Reiss copula, and t-copula, and some other structures. For
more details on this topic, one may refer to Joe (2014).

Suppose that we have two series [parallel] systems, say I and II. System I consists of n
components whose lifetimes are X1, . . . ,Xn with corresponding absolutely continuous
survival [distribution] functions F̄1, . . . , F̄n [F1, . . . ,Fn], which are linked through an
arbitrary max-stable survival copula [copula]. Similarly, system II consists of n compon-
ents whose lifetimes are Y1, . . . ,Yn with corresponding absolutely continuous survival
[distribution] functions Ḡ1, . . . , Ḡn [G1, . . . ,Gn], which are linked through an equal
survival copula [copula] to system I. Also, consider the survival [distribution] functions
F̄λ1 , . . . , F̄

λ
n [Fλ1 , . . . ,F

λ
n] are linked through an equal survival copula [copula] to system

I. Now, consider two new series [parallel] systems, one consisting of the component
lifetimes X∗1, . . . ,X

∗
n with the survival [distribution] functions F̄λ1 , . . . , F̄

λ
n [Fλ1 , . . . ,F

λ
n],

and another with the component lifetimes Y∗1, . . . ,Y
∗
n with the survival [distribution]

functions Ḡλ
1 , . . . , Ḡ

λ
n [Gλ

1 , . . . ,G
λ
n], and the unchanged survival copula [copula].

Recently, Balakrishnan et al. (2020) discussed the preservation of the usual, hazard
rate, reversed hazard rate, star and dispersive orderings of these series and parallel
systems under exponentiation procedure with independence structure. Here, we
generalize the obtained results by Balakrishnan et al. (2020) under the exponentiation
procedure and unchanging the dependence structure for the case that the dependence
structure is a max-stable copula. Further, we discuss more stochastic orderings than
Balakrishnan et al. (2020) such as the up hazard rate, down hazard rate, proportional
hazard rate, up proportional hazard rate, down proportional hazard rate, up reversed
hazard rate, up proportional reversed hazard rate, aging faster, aging intensity, convex
transform, and superadditive orderings. Hereafter the series [parallel] systems I and II
are called the original series (OS) [original parallel (OP)] systems, and the systems after
componentwise exponentiation are called the switched series (SS) [switched parallel
(SP)] systems.

The rest of this paper is organized as follows. In Section 2, we discuss on preservation
the orderings of series system by componentwise switching to the exponentiated
model with unchanged survival copula. Section 3 considers the preservation of some
orderings of a parallel system by componentwise switching to the exponentiated model
with unchanged copula. Finally, in Section 4, we investigate the being finiteness of the
moments of the SS and SP systems based on some characterizations on the hazard rate
functions of the OS and OP systems.
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2 Preservation of Stochastic Orderings of Series Systems

In this section, we discuss the preservation of some stochastic orderings of series
systems. First, we state the following lemma of Balakrishnan et al. (2020) which is
useful in proving some of the main results.

Lemma 2.1. For λ ≥ 1, the function h : (0, 1) −→ (0,∞) given by h(x) = xλ−1
−xλ

1−xλ is increasing
in x ∈ (0, 1).

It is easily seen that the survival functions of two OS systems are given by

F̄X1:n(x) = C
(
F̄1(x), . . . , F̄n(x)

)
, ḠY1:n(x) = C

(
Ḡ1(x), . . . , Ḡn(x)

)
,

and the survival functions of two SS systems are given by

F̄X∗1:n
(x) = C

(
F̄λ1 (x), . . . , F̄λn(x)

)
, ḠY∗1:n

(x) = C
(
Ḡλ

1 (x), . . . , Ḡλ
n(x)

)
.

Consequently, after some simple calculations, we get the following relations:

F̄X∗1:n
(x) = F̄λX1:n

(x), ḠY∗1:n
(x) = Ḡλ

Y1:n
(x), (2.1)

rX∗1:n
(x) = λ rX1:n(x), rY∗1:n

(x) = λ rY1:n(x), (2.2)

r̃X∗1:n
(x) = λ r̃X1:n(x)h

(
F̄X1:n(x)

)
, r̃Y∗1:n

(x) = λ r̃Y1:n(x)h
(
ḠY1:n(x)

)
, (2.3)

where the function h was introduced in Lemma 2.1.

Now, the two following theorems consider some stochastic orderings between
two SS systems based on comparing the OS systems. These theorems indicate that
many well-known orders are preserved between two SS systems after componentwise
exponentiation of the OS systems.

Theorem 2.1. Let ≤ordering stands for any of the orderings ≤st,≤hr,≤hr↑,≤hr↓,≤phr,≤phr↑
,≤phr↓,≤AF,≤AI,≤c,≤∗,≤su,≤disp. Then, X∗1:n ≤ordering Y∗1:n if and only if X1:n ≤ordering Y1:n.

Proof. The result immediately follows from (2.1) for the orderings ≤st,≤hr,≤hr↑,≤hr↓
,≤phr,≤phr↑,≤phr↓,≤AF,≤AI. On the other hand, using (2.1) we can see that G−1

Y∗1:n
(x) =

G−1
Y1:n

(
1 − (1 − x)1/λ

)
. Thus, we have G−1

Y∗1:n
FX∗1:n

(x) = G−1
Y1:n

FX1:n(x). Hence, Definition 1.1
(viii)-(xi) complete the proof for the orderings ≤c,≤∗,≤su,≤disp. �

Theorem 2.2. For λ ≥ 1, if X1:n ≤rh Y1:n, then X∗1:n ≤rh Y∗1:n.
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Proof. Based on the assumption, we have r̃X1:n(x) ≤ r̃X1:n(x) for all x ≥ 0, and consequently
we conclude that F̄X1:n(x) ≤ ḠY1:n(x). On the other hand Lemma 2.1 implies that
h
(
F̄X1:n(x)

)
≤ h

(
ḠY1:n(x)

)
. So, we have r̃X1:n(x)h

(
F̄X1:n(x)

)
≤ r̃X1:n(x)h

(
ḠY1:n(x)

)
, and the

desired result is obtained by (2.3). �

The following theorem provides the likelihood ratio ordering between two SS
systems based on the comparison of the OS systems.

Theorem 2.3. If X1:n ≤hr Y1:n and Y1:n ≤AF X1:n, then X∗1:n ≤lr Y∗1:n.

Proof. By (2.1) and (2.2) we can write

gY∗1:n
(x)

fX∗1:n
(x)

=
rY1:n(x)
rX1:n(x)

(
ḠY1:n(x)
F̄X1:n(x)

)λ
.

Hence, the assumption clearly imply the increasingness property of
gY∗1:n

(x)

fX∗1:n
(x) , which

completes the proof. �

Note that the assumptions of Theorem 2.3 can be satisfied. For instance, suppose
that F̄X1:n(x) = exp

{
−

∑n
i=1 βixα

}
, x > 0, and F̄Y1:n(x) = exp

{
−

∑n
i=1 γixα

}
, x > 0. It is

easily seen that, by assuming
∑n

i=1 γi ≤
∑n

i=1 βi, the two comparisons X1:n ≤hr Y1:n and
Y1:n ≤AF X1:n are jointly satisfied.

3 Preservation of Stochastic Orderings of Parallel Systems

In this section, we discuss the preservation of some stochastic orderings of parallel
systems.

It is easily seen that the distribution functions of two OP systems are given by

FXn:n(x) = C (F1(x), . . . ,Fn(x)) , GYn:n(x) = C (G1(x), . . . ,Gn(x)) ,

and the survival functions of two SP systems are given by

FX∗n:n(x) = C
(
Fλ1 (x), . . . ,Fλn(x)

)
, GY∗n:n

(x) = C
(
Gλ

1 (x), . . . ,Gλ
n(x)

)
.

Consequently, after some simple calculations we get the following relations:
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FX∗n:n(x) = FλXn:n
(x), GY∗n:n

(x) = Gλ
Yn:n

(x),
r̃X∗n:n(x) = λ r̃Xn:n(x), r̃Y∗n:n

(x) = λ r̃Yn:n(x),
rX∗n:n(x) = λ rXn:n(x)h

(
FXn:n(x)

)
, rY∗n:n

(x) = λ rYn:n(x)h
(
GYn:n(x)

)
. (3.1)

The following theorems discuss the orderings of the SP systems based on the
orderings of the OP systems. These theorems indicate that many well-known orders
are preserved between two SP systems after componentwise exponentiation of the OP
systems. The proofs are almost the same as the proofs in the previous section and thus
are omitted.

Theorem 3.1. Let ≤ordering stands for any of the orderings ≤st,≤rh,≤rh↑,≤prh↑,≤c,≤∗,≤su
,≤disp. Then, X∗n:n ≤ordering Y∗n:n if and only if Xn:n ≤ordering Yn:n.

Theorem 3.2. For λ ≥ 1, if Xn:n ≤hr Yn:n, then X∗n:n ≤hr Y∗n:n.

4 Being Finiteness of the Moments

Main problem in this section is evaluating the being finiteness of the moments of the
SS and SP systems by knowing some information of the OS and OP systems. With
this goal, this section investigates being finiteness of the moments of the SS and SP
systems based on some characterizations on the hazard rate functions of the OS and
OP systems, respectively. The two following theorems deal with this problem.

Theorem 4.1. Let xrX1:n(x) be an increasing function in x ≥ 0 and lim
x→∞

xrX1:n(x) = l, where l

is possibly infinite. Then for each λ > 0, E[X∗k1:n], k > 0, is finite if and only if, k < λl.

Proof. Under the assumptions and using (2.2) it is easily seen that xrX∗1:n
(x) is increasing

in x ≥ 0 and lim
x→∞

xrX∗1:n
(x) = λl. Thus, Theorem 2 in Lariviere (2006) implies that E[X∗k1:n]

is finite if and only if k < λl. �

Theorem 4.2. Let xrXn:n(x) be an increasing function in x ≥ 0 and lim
x→∞

xrXn:n(x) = l, where l

is possibly infinite. Then for each λ ≥ 1, E[X∗kn:n], k > 0, is finite if and only if, k < l.

Proof. Under the assumptions and using (3.1) and Lemma 2.1, it is easily seen that for
λ ≥ 1, the function xrX∗n:n(x) is increasing in x ≥ 0 and lim

x→∞
xrX∗n:n(x) = l. Thus, Theorem

2 in Lariviere (2006) implies that E[X∗kn:n] is finite if and only if k < l. �
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Discussion and Conclusions

In this paper the preservation of some stochastic orderings between two interdependent
series and parallel systems when the survival and distribution functions of all compone-
nts have a max-stable copula dependence structure and switch to the exponentiated
model, were discussed. Also, a necessary and sufficient condition for being finiteness
of the moments of the switched series and switched parallel systems was presented.
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