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1 Introduction

Nowadays, linear mixed models (LMMs) are widely used in data analysis that is
obtained by repeating measurements, such as longitudinal data. Also, these data can
be used in many fields of physical, biological, medical and social sciences. Linear mixed
models are generalized simple linear models that provide the possibility of random and
fixed effects with each other. Moreover, independent variables are often measured with
unavoidable errors in statistical models. Using the maximum likelihood (ML) method
to estimate the parameters of fixed and random effects in LMMs, without considering
the effect of measurement errors, leads to inconsistent estimates. For solving this
problem, Zhong et al. (2002) the method of corrected score, introduced by Nakamura
(1990), and obtained estimates of fixed and random effects parameters. Also, Zare et
al. (2012) introduced the corrected score estimates of variance components in these
models.

Here, we consider the linear mixed measurement error model as follows:

y = Zβ + Ub + ε,
X = Z + L, (1.1)

where y is an n × 1 vector of observations, U = [U1, ...,Ul] with Ui is an n × qi design
matrix corresponding to the i-th random effect factor, such that q =

∑l
i=1 qi, Z is an n× p

matrix of regressor of the fixed effects. β is a p × 1 parameter vector of unknown fixed
effects, b = [b′1, ..., b

′

l ]
′ is a q × 1 unobservable vector of random effects from N(0, σ2Σ),

where Σ is a block diagonal matrix with the i-th block being γiIqi for γi = σi
2/σ2,

i = 1, ..., l. Besides, ε is an n × 1 unobservable vector of random errors from N(0, σ2In)
and X is the matrix of observed value of Z with the measurement error L, where L is
an n × p random matrix from MN(0, In ⊗Λ). Also Λ is a p × p matrix of known values.
b, ε and L are mutually independent. Under model (1.1), y has a multivariate normal
distribution with E(y) = Zβ and Var(y) = σ2V where V = In + UΣU′. The conditional
distribution of b/y is N(ΣU′V−1(y−Zβ), σ2ΣT), where T = (Iq + U′UΣ)−1. The corrected
score estimators of β, b, σ2 and σ2

i are given by

β̃ = (X′V−1X − tr(V−1)Λ)−1X′V−1y,

b̃ = ΣU′V−1(y − Xβ̃),

σ̃2 =
1
n

[(y − Xβ̃)′V−1(y − Xβ̃) − tr(V−1)β̃′Λβ̃],
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σ̃2
i =

[b̃′i b̃i − tr(D̃′i D̃i)β̃′Λβ̃]

qi − tr(Tii)
, i = 1, ..., l,

where b̃i = D̃i(y − Xβ̃) and D̃i = γ̃iU′i V
−1 is the i j-th block of matrix T (see Zhong et al.

2002 and Zare et al. 2012).

In linear regression, we usually assume that the matrix of explanatory variables
is linearly independent. However, in practice, there may be strong or near to strong
linear relationships among the variables, which causes the problem of multicollinearity.
To reduce the effects of multicollinearity, Hoerl and Kennard (1970) and Liu (1993)
proposed the ridge estimator and the Liu estimator, respectively. Ozkale and Kaçıranlar
(2007) introduced the restricted and unrestricted two parameter estimators. Also,
Yang and Chang (2010) obtained another two parameter estimator, "Using the mixed
estimation technique introduced by Theil and Goldberger (1961) and Theil (1963). They
considered the prior information about β in the restricted form of (d − k)β̂(k) = β + ε0
, where k, d and β̂(k) are respectively the ridge and Liu parameters and the ridge
estimator". In LMMs, authors such as Gilmour et al. (2004), Jiang (2007) and Searl et
al. (1992) considered a state where the matrix Z′V−1Z is singular. Eliot et al. (2011) and
Liu and Hu (2013) inquired the ridge prediction. Kuran and Ozkale (2016) obtained
the mixed and stochastic restricted ridge predictors by using Gilmour approach. They
introduced stochastic linear restriction as

r = Rβ + e, (1.2)

where r is an m × 1 vector, R is an m × p known matrix of rank m ≤ p and e is an
m × 1 random vector with E(e) = 0 and Var(e) = σ2W. Also, e and ε are assumed to be
independent. Ozkale and Can (2017) proposed ridge estimation of fixed and random
effects in the context of Henderson’s mixed model equations. In the linear mixed
measurement error models, Ghapani (2019) assumed that the vector of parameters
is subject to the stochastic linear restrictions r = Rβ + e and obtained the stochastic
restricted estimator and the stochastic restricted Liu estimator. Also, Yavarizadeh et
al. (2019) obtained the ridge estimator and the stochastic restricted ridge estimator,
respectively, as

β̃(k) = (X′V−1X + kIp − tr(V−1)Λ)−1X′V−1y,

β̃r(k) = (X′V−1X + kIp + R′W−1R − tr(V−1)Λ)−1(X′V−1y + R′W−1r).

Our primary aim in this article is to obtain a new stochastic restricted and unrestricted
two-parameter estimators in linear measurement error mixed models. In Section 2, we
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follow Nakamura’s approach in LMMs with the measurement error to obtain the two
parameter estimator. In Section 3, by setting stochastic linear restrictions on the vector of
fixed effects parameters, we derive the stochastic restricted two parameter estimation.
The asymptotic properties of the proposed estimators are obtained in Section 4. In
Section 5, under the mean square error matrix (MSEM) sense, we offer comparisons
of new two parameter estimators. In Section 6, the proposed methods are used for
estimating of the biasing parameters. The simulation results are discussed in Section 7
and a real data analysis is given in Section 8. Finally, summary and some conclusions
are mentioned in Section 9.

2 The Two Parameter Estimator

In this section, we obtain a two parameter estimator in the LMM with the measurement
error. For this purpose, we move the restriction (d − k)β̃(k) = β + ε0 used by Yang and
Ghang (2010) in linear regression to the LMMs with the measurement error and produce
the two parameter estimator using "penalized term" idea. In restriction (d − k)β̃(k) =
β + ε0, 0 < d < 1, k > 0 and ε0 ∼ N(0, σ2Ip). So, the new model is

y = Zβ + Ub + ε; X = Z + L subject to
(d − k)β̃(k) = β + ε0.

(2.1)

The log-likelihood for model (1.1) is given by

l(θ; Z, y) =
−1
2σ2 {(y − Zβ)′V−1(y − Zβ)} −

n
2

ln(2πσ2) −
1
2

ln | V |,

where θ = (β, σ2, γ). Following Ozkale and Kuran (2018), The penalized log-likelihood
function for model (2.1) is define as

lP(θ, k, d; Z, y) = l(θ; Z, y) −
1

2σ2 ((d − k)β̃(k) − β)′((d − k)β̃(k) − β).

The estimators obtained from lP(θ, k, d; Z, y) are not consistent (see Zare et al. 2012 for
more details), to correct this using Nakamura’s approach (1990), we define the corrected
penalized log-likelihood function for lP(θ, k, d; Z, y) as

l∗P(θ, k, d; X, y) =
−1
2σ2 {(y − Xβ)′V−1(y − Xβ)

+((d − k)β̃(k) − β)′((d − k)β̃(k) − β) − tr(V−1)β′Λβ}
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−
n
2

ln(2πσ2) −
1
2

ln | V | .

Let E∗ denotes the conditional mean with respect to X given y . The l∗P(θ, k, d; X, y)
satisfies

E∗[
∂
∂β

l∗P(θ, k, d; X, y)] =
∂
∂β

lP(θ, k, d; Z, y),

E∗[
∂

∂σ2 l∗P(θ, k, d; X, y)] =
∂

∂σ2 lP(θ, k, d; Z, y),

E∗[
∂
∂γi

l∗P(θ, k, d; X, y)] =
∂
∂γi

lP(θ, k, d; Z, y), i = 1, ..., l.

From l∗P(θ, k, d; X, y), we get the partial derivative with respect to β and σ2, then set the
equations to zero and by using β̃(k, d) and σ̃2(k, d) to denote the solutions give

(X′V−1X + Ip)β̃(k, d) − tr(V−1)Λβ̃(k, d) = X′V−1y + (d − k)β̃(k),

n
σ̃2(k, d)

=
1

σ̃4(k, d)
{(y − Xβ̃(k, d))′V−1(y − Xβ̃(k, d)) − tr(V−1)β̃′(k, d)Λβ̃(k, d)

+((d − k)β̃(k) − β̃(k, d))′((d − k)β̃(k) − β̃(k, d))}.

By solving these equations, we obtain the two parameter estimator of β and σ2 as

β̃(k, d) = (X′V−1X + Ip − tr(V−1)Λ)−1(X′V−1y + (d − k)β̃(k)), (2.2)

σ̃2(k, d) =
1
n
{(y − Xβ̃(k, d))′V−1(y − Xβ̃(k, d)) − tr(V−1)β̃′(k, d)Λβ̃(k, d)

+((d − k)β̃(k) − β̃(k, d))′((d − k)β̃(k) − β̃(k, d))}. (2.3)

By putting β̃(k) = (X′V−1X + kIp − tr(V−1)Λ)−1X′V−1y in equation (2.2), β̃(k, d) is obtained
as

β̃(k, d) = H(k, d)(X′V−1y),

where
H(k, d) = (X′V−1X + Ip − tr(V−1)Λ)−1(X′V−1X+dIp−tr(V−1)Λ)×(X′V−1X + kIp − tr(V−1)Λ)−1.
In addition, the two parameter predictor of b is given by

b̃(k, d) = ΣU′V−1(y − Xβ̃(k, d)). (2.4)
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If the elements of γ are unknown, their two parameter estimator, given by γ̃i(k, d), will
be substituted back into Σ to obtain β̃(k, d), σ̃2(k, d) and b̃(k, d). For the two parameter
estimator of γ̃i(k, d) , we consider the two parameter estimator of σ̃2

i (k, d) as

σ̃2
i (k, d) =

[b̃′i (k, d)b̃i(k, d) − tr(D̃′i (k, d)D̃i(k, d))β̃′(k, d)Λβ̃(k, d)]

qi − tr(Tii)
, i = 1, ..., l,

where b̃i(k, d) = D̃i(k, d)(y − Xβ̃(k, d)), D̃i(k, d) = γ̃i(k, d)U′i V
−1 and Ti j is the ij-th block of

matrix T.

3 The Stochastic Restricted Two Parameter Estimator

In this section, we obtain the stochastic restricted two parameter estimation. By
unifying the model (1.1) with stochastic linear restrictions model (1.2), we have[

y
r

]
=

[
Z
R

]
β +

[
U
0

]
b +

[
ε
e

]
,

or

yr = Zrβ + Urb + εr. (3.1)

Also b and yr are jointly distributed as[
b
yr

]
∼ N

([
0
Zrβ

]
, σ2

[
Σ ΣU′r

UrΣ Vr

])
,

where Vr =

[
V 0
0 W

]
. Therefore, the conditional distribution of b

/
yr is N(ΣU′r V−1

r (yr−

Zrβ), σ2ΣTr), where Tr = (Iq + U′rUrΣ)−1, and the log-likelihood of model (3.1) is given
by

l(θ; Z, y, r) =
−1
2σ2 {(y − Zβ)′V−1(y − Zβ) + (r − Rβ)′W−1(r − Rβ)}

−
n + m

2
ln(2πσ2) −

1
2

ln | V | −
1
2

ln |W | .

The penalized log-likelihood function for model (3.1) with (d− k)β̃r(k) = β+ ε0 is define
as follows:

lP(θ, k, d; Z, y, r) = l(θ; Z, y, r) −
1

2σ2 ((d − k)β̃r(k) − β)′((d − k)β̃r(k) − β).
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Due to better performance in the results of the simulation study, we used the restricted
ridge estimator instead of the unrestricted one. The corrected function for lP(θ, k, d; Z, y, r)
is

l∗P(θ, k, d; X, y, r) =
−1
2σ2 {(y − Xβ)′V−1(y − Xβ)

+((d − k)β̃r(k) − β)′((d − k)β̃r(k) − β) + (r − Rβ)′W−1(r − Rβ) − tr(V−1)β′Λβ}

−
n + m

2
ln(2πσ2) −

1
2

ln | V | −
1
2

ln |W | .

If W and V are known, by solving the equations ∂l∗P(θ, k, d; X, y, r)/∂β = 0 and
∂l∗P(θ, k, d; X, y, r)/∂σ2 = 0, we have

(X′V−1X + R′W−1R + Ip − tr(V−1)Λ)β̃r(k, d) = X′V−1y + (d − k)β̃r(k) + R′W−1r,

(n + m)
σ̃2

r (k, d)
=

1
σ̃4

r (k, d)
{(y − Xβ̃r(k, d))′V−1(y − Xβ̃r(k, d)) − tr(V−1)β̃′r(k, d)Λβ̃r(k, d)

+(r − Rβ̃r(k, d))′W−1(r − Rβ̃r(k, d)) + ((d − k)β̃r(k) − β̃r(k, d))′((d − k)β̃r(k) − β̃r(k, d))}.

So the stochastic restricted two parameter estimator of β and σ2 will be

β̃r(k, d) = (X′V−1X + R′W−1R + Ip − tr(V−1)Λ)−1

×(X′V−1y + (d − k)β̃r(k) + R′W−1r), (3.2)

σ̃2
r (k, d) =

1
n + m

{(y − Xβ̃r(k, d))′V−1(y − Xβ̃r(k, d))

−tr(V−1)β̃′r(k, d)Λβ̃r(k, d) + (r − Rβ̃r(k, d))′W−1(r − Rβ̃r(k, d))

+((d − k)β̃r(k) − β̃r(k, d))′((d − k)β̃r(k) − β̃r(k, d))}.

If we put β̃r(k) = (X′V−1X + kIp + R′W−1R − tr(V−1)Λ)−1(X′V−1y + R′W−1r) in equation
(3.2), the stochastic restricted two parameter estimator of β is given by

β̃r(k, d) = HR(k, d)(X′V−1y + R′W−1r), (3.3)

where HR(k, d) = (X′V−1X + R′W−1R + Ip − tr(V−1)Λ)−1(X′V−1X + R′W−1R + dIp
− tr(V−1)Λ)(X′V−1X + R′W−1R + kIp − tr(V−1)Λ)−1.

Finally, the stochastic restricted two parameter predictor of b is given by

b̃r(k, d) = ΣU′V−1(y − Xβ̃r(k, d)).
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If the elements ofγ are unknown, their stochastic restricted two parameter estimator,
denoted by γ̃ri(k, d), will be substituted back into Σ to obtain β̃r(k, d), σ̃2

r (k, d) and
b̃r(k, d). For the stochastic restricted two parameter estimator of γ̃ri(k, d), we consider
the stochastic restricted two parameter estimator of σ̃2

ri(k, d) as

σ̃2
ri(k, d) =

[b̃′ri(k, d)b̃ri(k, d) − tr(D̃′ri(k, d)D̃ri(k, d))β̃′r(k, d)Λβ̃r(k, d)]

qi − tr(Tii)
, i = 1, ..., l,

where b̃ri(k, d) = D̃ri(k, d)(y−Xβ̃r(k, d)), D̃ri(k, d) = γ̃ri(k, d)U′i V
−1 and Ti j is the ij-th block

of matrix T.

4 Asymptotic Properties of Fixed Effect Estimators

In this section, using the large sample asymptotic approximation theory, we study
the asymptotic properties of the proposed estimators. We assume the parameter β
is identifiable. It is also assumed that as n tends to infinity, the limits of n−1tr(V−1),
n−1(Z′V−1Z+R′W−1R+kIp), n−1(Z′V−1Z+R′W−1R+dIp) and n−1(Z′V−1Z+R′W−1R+ Ip)
exist.

Theorem 1. β̃r(k, d) has an asymptotic normal distribution with mean vector E(β̃r(k, d)) �
MR(k, d)M−1

R β and covariance matrix AVar(β̃r(k, d)) �MR(k, d)(B+σ2M−1
R )×MR(k, d), where

MR = (Z′V−1Z + R′W−1R)−1, MR(k, d) = (Z′V−1Z+R′W−1R + Ip)−1(Z′V−1Z + R′W−1R +

dIp)(Z′V−1Z + R′W−1R + kIp)−1 and B = (β′Z′V−2Zβ + σ2tr(V−1))Λ.

Proof. Since E(X′V−1X) = Z′V−1Z + tr(V−1)Λ, by Fung et al. (2003), we have
X′V−1X = Z′V−1Z + tr(V−1)Λ + Op(n1/2), so β̃r(k, d) can be written as follows

β̃r(k, d) = (n−1(Z′V−1Z + R′W−1R + Ip) + Op(n−1/2))−1

×(n−1(Z′V−1Z + R′W−1R + dIp) + Op(n−1/2))
× (n−1(Z′V−1Z + R′W−1R + kIp) + Op(n−1/2))−1n−1(X′V−1y + R′W−1r)

= (Ip + Op(n−1/2))−1(n−1(Z′V−1Z + R′W−1R + Ip))−1(Ip + Op(n−1/2))
× (n−1(Z′V−1Z + R′W−1R + dIp))(Ip + Op(n−1/2))−1

× (n−1(Z′V−1Z + R′W−1R + kIp))−1n−1(X′V−1y + R′W−1r).

Using Taylor series expansion, we have (Ip + Op(n−1/2))−1 = (Ip + Op(n−1/2)), so

√
nβ̃r(k, d) � (Ip + Op(n−1/2))Fd(n−1(Z′V−1Z + R′W−1R + kIp))−1

×n−1/2(X′V−1y + R′W−1r),
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where Fd = (Z′V−1Z + R′W−1R + Ip)−1(Z′V−1Z + R′W−1R + dIp) .The limit of C−1 =
(n−1(Z′V−1Z + R′W−1R + kIp))−1 and FdC−1 exist, therefore

√
nβ̃r(k, d) can be written as

√
nβ̃r(k, d) � FdC−1h + Op(n−1/2),

where h = n−1/2(X′V−1y + R′W−1r) . Since E(h) = n−1/2M−1
R β, so we have

√
n(β̃r(k, d) −

MR(k, d)M−1
R β) � FdC−1(h − E(h)) + Op(n−1/2), which indicates that

√
n(β̃r(k, d) − β) is

asymptotically normal with E(
√

n(β̃r(k, d) − β)) � 0. Therefore, AVar(
√

nβ̃r(k, d)) �
FdC−1Var(h)C−1Fd and the variance of h can be obtained by

Var(h) = Eyr[Var(h
/
yr)] + Varyr[E(h

/
yr)]

= n−1Eyr(y′V−2y)Λ + n−1Varyr(Z′V−1y + R′W−1r),

where Eyr and Varyr denote the expectation and variance with respect to the random
vector y′r = (y′, r′), respectively. Since Eyr(y′V−2y) = β′Z′V−2Zβ + σ2tr(V−1) and
Varyr(Z′V−1y + R′W−1r) = σ2M−1

R , therefore Var(h) = n−1(B + σ2M−1
R ) , whose limit

exists as n tends to infinity. Thus, AVar(β̃r(k, d)) � MR(k, d) ×(B + σ2M−1
R )MR(k, d) and

this theorem is proved.

Corollary 1. β̃(k, d) has an asymptotic normal distribution with mean vector E(β̃(k, d)) �
M(k, d)M−1β and covariance matrix AVar(β̃(k, d)) = M(k, d) × (B + σ2M−1)M(k, d), where
M = (Z′V−1Z)−1 and M(k, d) = (Z′V−1Z + Ip)−1

× (Z′V−1Z + dIp)(Z′V−1Z + kIp)−1.

Corollary 2. β̃ has an asymptotic normal distribution with mean vector β and covariance
matrix AVar(β̃) = M(B + σ2M−1)M, where M = (Z′V−1Z)−1 .

Corollary 3. β̃r has an asymptotic normal distribution with mean vector β and covariance
matrix AVar(β̃r) = MR(B + σ2M−1

R )MR, where MR = (Z′V−1Z + R′W−1R)−1.

5 Comparison of Estimators

In this section, we compare the estimator β̃(k, d) with β̃ , the estimator β̃r(k, d) with β̃r,
and the estimator β̃r(k, d) with β̃(k, d) using the asymptotic mean squares error matrix
(AMSEM). The mean-square error matrix for the estimators β̃(k, d) is given by

AMSEM(β̃(k, d), β) = AVar(β̃(k, d)) + bias(β̃(k, d))bias(β̃(k, d))′,

where bias(β̃(k, d)) = E(β̃(k, d) − β) = (M(k, d)M−1
− Ip)β.

Then, AMSEM(β̃(k, d), β) = M(k, d)(B+σ2M−1)M(k, d)+(M(k, d)M−1
−Ip)ββ′(M(k, d)M−1

−

Ip)′ (Ghapani and Babadi 2020). Also, we obtain the asymptotic mean square error
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matrices of β̃r(k, d), β̃r and β̃ as follows

AMSEM(β̃r(k, d), β) = MR(k, d)(B + σ2M−1
R )MR(k, d)

+(MR(k, d)M−1
R − Ip)ββ′(MR(k, d)M−1

R − Ip)′,

AMSEM(β̃r, β) = MR(B + σ2M−1
R )MR,

AMSEM(β̃, β) = M(B + σ2M−1)M.

According to Rao and Toutenburg (1995), if two estimators β̃1 and β̃2 of β are given,
the estimator β̃2 is superior to β̃1 with respect to the MSEM sense, if and only if
∆(β̃1, β̃2) = MSEM(β̃1) − MSEM(β̃2) > 0, that is, ∆(β̃1, β̃2) is a positive definite (pd)
matrix.

5.1 Comparison of β̃(k, d) with β̃

In order to compare β̃(k, d) with β̃ in the MSEM sense, we consider the asymptotic
MSEM difference as

∆1 = AMSEM(β̃, β) − AMSEM(β̃(k, d), β) = D1 − b1b′1,

where D1 = M(B + σ2M−1)M −M(k, d)(B + σ2M−1)M(k, d) and b1 = (M(k, d)M−1
− Ip)β.

Thus, we have the following theorem.

Theorem 2. For 0 < d < 1 and k > 0, the estimator β̃(k, d) is superior to the estimator β̃
under the MSEM sense, if and only if b′1D1

−1b1 ≤ 1.

Proof . According to Farebrother (1976), if D1> 0, then the necessary and sufficient
condition for β̃(k, d) to be superior to β̃ is b′1D1

−1b1 ≤ 1. So we must prove D1 is a pd
matrix. We can write D1 as

D1 = MBM −M(k, d)BM(k, d) + σ2[M −M(k, d)M−1M(k, d)].

Since Z′V−1Z is a pd matrix, then M, M(k, d) and B are pd matrices. By Theorem A.52
of Rao et al.(2008) and Theorem 2 of Ghapani (2019), MBM −M(k, d)BM(k, d) is always
a pd matrix. Besides, we can write σ2[M −M(k, d)M−1M(k, d)] as

σ2[M −M(k, d)M−1M(k, d)] = σ2S{2(k + 1 − d)M−1M−1+
+(4k + k2 + 1 − d2)M−1 + k2M + 2kIp + 2k2Ip}S,

where S = (M−1 + Ip)−1(M−1 + kIp)−1. Since M−1 = Z′V−1Z is a pd matrix and (Z′V−1Z)′

(Z′V−1Z) = (Z′V−1Z)(Z′V−1Z) then, M−1M−1 and S are pd matrices. For 0 < d < 1 and
k > 0, we can write (k− d + 1) > 0 and (4k + k2 + 1− d2) > 0 so, σ2[M−M(k, d)M−1M(k, d)]
is a pd matrix. Consequently, D1 is a pd and the proof is completed.
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5.2 Comparison of β̃r(k, d) with β̃r

The asymptotic MSEM difference between β̃r(k, d) and β̃r is

∆2 = AMSEM(β̃r, β) − AMSEM(β̃r(k, d), β) = D2 − b2b′2,

where D2 = MR(B+σ2M−1
R )MR−MR(k, d)(B+σ2M−1

R )MR(k, d) and b2 = (MR(k, d)M−1
R −Ip)β.

The comparison between β̃r(k, d) and β̃r is stated in the following theorem .

Theorem 3. For 0 < d < 1 and k > 0, the estimator β̃r(k, d) is superior to the estimator β̃r
under the MSEM sense, if and only if b′2D2

−1b2 ≤ 1.

Proof . According to Farebrother (1976), if D2 > 0, then the necessary and sufficient
condition for ∆2 to be pd is b′2D2

−1b2 ≤ 1. So, it must be proved that D2 is pd matrix.
We note that, since Z′V−1Z and R′W−1R are pd matrices, then M−1

R = Z′V−1Z+R′W−1R,
MR and MR(k, d) are pd matrices, too. Also, MRBMR −MR(k, d)BMR(k, d) is always a pd
matrix. We can write

σ2[MR −MR(k, d)M−1
R MR(k, d)] = σ2SR{2(k + 1 − d)M−1

R M−1
R

+(4k + k2 + 1 − d2)M−1
R + k2MR + 2kIp + 2k2Ip}SR,

where SR = (M−1
R + Ip)−1(M−1

R + kIp)−1. Because M−1
R is a pd and (M−1

R )′M−1
R = M−1

R M−1
R

then, M−1
R M−1

R and SR are pd matrices. Therefore, σ2[MR −MR(k, d)M−1
R ×MR(k, d)] and

D2 are pd.

5.3 Comparison of β̃r(k, d) with β̃(k, d)

The asymptotic MSEM difference between β̃(k, d) and β̃r(k, d) is equal to

∆3 = AMSEM(β̃(k, d), β) − AMSEM(β̃r(k, d), β) =

M(k, d)(B + σ2M−1)M(k, d) −MR(k, d)(B + σ2M−1
R )MR(k, d) + b1b′1 − b2b′2.

Theorem 4. If the maximum eigenvalue of MR(k, d)(B + σ2M−1
R )MR(k, d)

×[M(k, d)(B + σ2M−1)M(k, d)]−1 is less than 1, the estimator β̃r(k, d) is superior to the estimator
β̃(k, d) in the MSEM sense, if and only if

b′2[M(k, d)(B + σ2M−1)M(k, d) −MR(k, d)(B + σ2M−1
R )MR(k, d) + b1b′1]−1b2 ≤ 1.

Proof . To show that ∆3 ≥ 0, a requirement is that M(k, d)(B+σ2M−1)M(k, d)−MR(k, d)(B+
σ2M−1

R )MR(k, d) be a pd matrix. Because M(k, d)(B+σ2M−1)×M(k, d) > 0 and MR(k, d)(B+

σ2M−1
R )MR(k, d) > 0, based on Lemma 2.1 of Güler and Kaçıranlar (2009), M(k, d)(B +
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σ2M−1)M(k, d) > MR(k, d)(B + σ2M−1
R )MR(k, d) if and only if λ < 1, where λ is the

maximum eigenvalue of MR(k, d)(B + σ2M−1
R )MR(k, d)[M(k, d)(B + σ2M−1)M(k, d)]−1. So,

M(k, d)× (B+σ2M−1)M(k, d)−MR(k, d)(B+σ2M−1
R )MR(k, d) is pd if and only if λ < 1, and,

using Theorem 2 of Trenkler and Toutenburg (1990), ∆3 is a pd matrix if and only if

b′2[M(k, d)(B + σ2M−1)M(k, d) −MR(k, d)(B + σ2M−1
R )MR(k, d) + b1b′1]−1b2 ≤ 1.

6 Selection of Parameters k and d

In this section, based on the MSEM sense, we propose methods for estimating the
biasing parameters k and d. In the linear mixed measurement error models, Yavarizadeh
et al. (2019) and Ghapani (2019) used the MSEM difference to estimate k and d in the
Ridge and Liu estimators, respectively. In addition, since MSE(β̃(k, d)) = tr[MSEM(β̃(k, d))],
non-diameter elements of the matrix are ignored and for this reason we did not use
the MSE minimization method, which is a common method. We obtain the parameters
k and d so that ∆1 is the maximum possible of a pd matrix. Consider ∆1 as follows

∆1 = MBM −M(k, d)BM(k, d) + σ2M

−[σ2M(k, d)M−1M(k, d) + (M(k, d)M−1
− Ip)ββ′(M(k, d)M−1

− Ip)].

In ∆1, the MBM − M(k, d)BM(k, d) + σ2M is always a pd matrix, therefore if we get
k and d so that σ2M(k, d)M−1M(k, d) + (M(k, d)M−1

− Ip)ββ′(M(k, d)M−1
− Ip) takes the

minimum values then ∆1 is most likely to be a pd matrix. Let α = P′β, so we can write
σ2M(k, d)M−1M(k, d) + (M(k, d)M−1

− Ip)ββ′(M(k, d)M−1
− Ip) = PTP′ = Pdiag(τ1, ..., τp)P′,

where τi =
σ2λi(λi+d)2

(λi+1)2(λi+k)2 +
((k+1−d)λi+k)2α2

i

(λi+1)2(λi+k)2 and λ1 ≥ λ2 ≥ ... ≥ λp > 0 are the ordered

eigenvalues of Z′V−1Z (Ghapani 2019). Let d be fixed, and we get the estimate k by
minimizing τi. Therefore, by settin ∂

∂kτi = 0 , we have

k =
σ2(λi + d) − λiα2

i (1 − d)

α̃2
i (λi + 1)

, (6.1)

since in equation (6.1), k depends on unknown α and σ2, we can get the estimate of k
by substituting α̃ and σ̃2 as follows:

k̃ =
σ̃2(λi + d) − λiα̃2

i (1 − d)

α̃2
i (λi + 1)

. (6.2)
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Based on the estimator of k, proposed by Kibria (2003) and Hoerl and Kennard (1970),
the harmonic mean value of k in (6.2) is

k̃HM =
p

p∑
i=1

α̃2
i (λi+1)

σ̃2(λi+d)−λiα̃2
i (1−d)

. (6.3)

Following Ozkale and Kaçıranlar (2007), we now get the estimate of d according
to equation (6.1) so that the estimate of k is always positive. In equation (6.1), if
σ2(λi+d)−λiα2

i (1−d)
α2

i (λi+1)
> 0 then the values of k are positive. Since α2

i (λi + 1) > 0, σ2(λi +

d) − λiα2
i (1 − d) must be positive for all i. Then we get d >

1−σ2/α2
i

1+σ2/(λiα2
i )

and, because

this lower bound depends on the unknown parameters α2
i and σ2, so α̃i and σ̃2 are

replaced. Therefore, k̃HM is always positive if d̃ is selected as d̃ > max
{

1−σ̃2/α̃2
i

1+σ̃2/(λiα̃2
i )

}
.

Note that
1−σ̃2/α̃2

i
1+σ̃2/(λiα̃2

i )
is always less than one and since d must be between zero and one,

we consider

max

 1 − σ̃2/α̃2
i

1 + σ̃2/(λiα̃2
i )
, o

 < d̃ < 1. (6.4)

In practice we obtain d̃ first and then k̃HM. Also, unknown parameters are replaced
with appropriate estimates.

7 A Simulation Study

We perform a simulation study in order to inquire the performance of β̃, β̃(k, d), β̃r and
β̃r(k, d). For this purpose, we calculate the estimated mean square error (EMSE) with
various values of sample size, variance and degree of collinearity. Following McDonald
and Galarneau (1975), we generate the explanatory variables as

zi jt = (1 − ρ2)1/2wi jt + ρwi j,p+1, i = 1, ..., l, j = 1, ...,ni, t = 1, ..., p, (7.1)

where wi jt are independent standard normal pseudo-random numbers and ρ2 is the
correlation between any two fixed effects. The value of ρ2 is set to be 0.75, 0.85 and
0.95. We generate the j-th set of simulated data as

y j = Zβ + Ub j + ε j,X j = Z + L j,
r j = Rβ + e j, j = 1, ..., 1000,
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where y j = (y11 j, ..., y1n1 j, y21 j, ..., y2n2 j, ..., yl1 j, ..., ylnl j), b j = (b1 j, b2 j, ..., bl j)′, Z = (z(1), ..., z(p))
and z(t) = (z(t)

11, ..., z
(t)
1n1
, z(t)

21, ..., z
(t)
2n2
, ..., z(t)

l1 , ..., z
(t)
lnl

)′, t = 1, ..., p, U = 1ni ⊕ 1ni ⊕ ... ⊕ 1ni

is a n × q matrix and 1ni is a ni × 1 vector with all elements 1. In this dataset,
n =

∑l
i=1 ni is the total size and l and ni are the number of independent groups

and the group size, respectively. The random error ε j and the random effects b j are
generated from the normal distribution N(0, σ2Ini) and N(0, σ1

2Iq), respectively. In
addition, r j = (r1 j, r2 j, ..., rmj)′, R = (R(1), ...,R(p)), R(t) = (R1 j, ...,Rmj)′, R(t)

i j ∼ N(0, 1) and

e j ∼ N(0, σ2Im) where W = Im (see Ghapani 2019). We consider two designs that in the
first design ni = 3 and in the second design ni = 7. Also, the same value l = 9, p = 3,
m = 2 and q = 9 are taken in both designs. Following Ozkale and Can (2017), "The
β vector was chosen as the eigenvector corresponding to the largest eigenvalue of the
X′V−1X matrix". We consider σ2 = 0.5, 1, σ2

1 = 0.5, 1 and use two case of the matrix Λ as
Λ1 = diag(0.01, 0.01, 0.01) and Λ2 = diag(0.05, 0.05, 0.05). The trial was replicated 1000
times by generating new error terms. For each simulated dataset, we derived β̃, σ̃2, k̃HM,
d̃ and Z̃. An estimate of Z can be obtained as Z̃ = X + σ̃−2

v ṽβ̃′Λ, where ṽi = yi − x′i β̃− u′i b̃
and σ̃2

v = σ̃2 + β̃′Λβ̃ (see , Zare et al. 2012 ). We calculate the estimated mean squared
error (EMSE) of all estimators as follows:

EMSE(β̃) =
1

1000

1000∑
i=1

(β̃(i) − β)′(β̃(i) − β),

where β̃(i) is the estimates of β in the i-th replication of the experiment. For relative
comparison of β̃ with β̃∗, we calculated the relative mean square (RMSE) as

RMSE(β̃ : β̃∗) =
EMSE(β̃)

EMSE(β̃∗)
.

When RMSE is greater than one, it indicates that the estimator β̃∗ is superior to the
estimator β̃. In Tables 1 to 3, we replace unknown parameters by suitable estimates
and obtain the values of EMSE and RMSE for β̃, β̃(k, d), β̃r and β̃r(k, d). The following
results are based on the values in Tables 1-3:

• In all Tables, the EMSE values of β̃(k, d) is less than β̃ . Also, the EMSE values
of β̃r(k, d) is less than β̃r . In general, the EMSE values of β̃r(k, d) is less than all
estimators.

• As ρ2, Λ, σ2
1 and σ2 increase, the EMSE values of the estimators increase.
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Table 1: Estimated MSE and RMSE values with k̃HM , d̃ and l = 9 at ρ = 0.75

(Λ, σ2, σ1
2) (Λ1,0.5,0.5) (Λ1,0.5,0.5) (Λ1,1,1) (Λ1,1,1)

ni 3 7 3 7
EMSE(β̃) 0.0001315 7.2129e-05 0.0002654 0.0001400
EMSE(β̃r) 0.0001047 5.9267e-05 0.0002124 0.0001156
EMSE(β̃(k, d)) 0.0001072 6.1887e-05 0.0001697 0.0001064
EMSE(β̃r(k, d)) 8.9682e-05 5.2487e-05 0.0001510 9.2901e-05
RMSE(β̃ : β̃(k, d)) 1.2269 1.1654 1.5635 1.3151
RMSE(β̃r : β̃r(k, d)) 1.1685 1.1654 1.4065 1.2448
RMSE(β̃(k, d) : β̃r(k, d)) 1.1954 1.1790 1.1240 1.1459
(Λ, σ2, σ1

2) (Λ2,0.5,0.5) (Λ2,0.5,0.5) (Λ2,1,1) (Λ2,1,1)
ni 3 7 3 7
EMSE(β̃) 0.0001327 8.9629e-05 0.0002679 0.0001621
EMSE(β̃r) 0.0001010 7.0613e-05 0.0002076 0.0001297
EMSE(β̃(k, d)) 0.0001128 7.6994e-05 0.0001876 0.0001235
EMSE(β̃r(k, d)) 8.9401e-05 6.2641e-05 0.0001586 0.0001044
RMSE(β̃ : β̃(k, d)) 1.1760 1.1640 1.4277 1.3122
RMSE(β̃r : β̃r(k, d)) 1.1303 1.1272 1.3087 1.2415
RMSE(β̃(k, d) : β̃r(k, d)) 1.2624 1.2291 1.1829 1.1825

• In all Tables, the values of RMSE are greater than one. Also, with increasing
values of ρ2, σ2 and σ2

1, the values of RMSE increased.

• As ρ2 increases, the difference between the EMSE values of β̃(k, d) and β̃ and the
difference between the EMSE values of β̃r(k, d) and β̃r increase. This indicates
an increase in the performance improvement of the two-parameter estimator in
reducing the EMSE compared to other estimators.

• As n =
∑t

i=1 ni increases from 27 to 63 for fixed ρ2, Λ, σ2
1 and σ2, the EMSE values

of the estimators decrease.
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Table 2: Estimated MSE and RMSE values with k̃HM , d̃ and l = 9 at ρ = 0.85

(Λ, σ2, σ1
2) (Λ1,0.5,0.5) (Λ1,0.5,0.5) (Λ1,1,1) (Λ1,1,1)

ni 3 7 3 7
EMSE(β̃) 0.0002144 0.0001262 0.0004259 0.0002395
EMSE(β̃r) 0.0001507 9.1531e-05 0.0003025 0.0001758
EMSE(β̃(k, d)) 0.0001530 9.7718e-05 0.0002064 0.0001535
EMSE(β̃r(k, d)) 0.0001191 7.6053e-05 0.0001821 0.0001269
RMSE(β̃ : β̃(k, d)) 1.4014 1.2922 2.0631 1.5606
RMSE(β̃r : β̃r(k, d)) 1.2649 1.2035 1.6605 1.3855
RMSE(β̃(k, d) : β̃r(k, d)) 1.2845 1.2848 1.1333 1.2093
(Λ, σ2, σ1

2) (Λ2,0.5,0.5) (Λ2,0.5,0.5) (Λ2,1,1) (Λ2,1,1)
ni 3 7 3 7
EMSE(β̃) 0.0002329 0.0001675 0.0004479 0.0002882
EMSE(β̃r) 0.0001525 0.0001149 0.0003029 0.0002031
EMSE(β̃(k, d)) 0.0001819 0.0001320 0.0002579 0.0001901
EMSE(β̃r(k, d)) 0.0001283 9.6536e-05 0.0002063 0.0001490
RMSE(β̃ : β̃(k, d)) 1.2801 1.2690 1.7365 1.5156
RMSE(β̃r : β̃r(k, d)) 1.1883 1.1907 1.4679 1.3624
RMSE(β̃(k, d) : β̃r(k, d)) 1.4172 1.3674 1.2499 1.2755

8 Real Data Analysis

We consider the Boston Housing data collection to illustrate the behavior of proposed
estimators. For this dataset, Harrison and Rubinfeld (1978) considered ways for "using
housing mart information to assessment the tendency to payment for clean air". Zhong
et al. (2002) collected the data of 132 census tract in the 15 areas of the Boston city
(as a part of 506 observations on census tracts in the Boston Standard Metropolitan
Statistical Area (SMSA) in 1970). They considered the dependent variable as the
(logarithm) median value of the houses occupied by the owner in the census tract,
and the fixed effects variables considered as Average number of rooms per dwelling
(RM), proportions of owner-occupied units built prior to 1940 (AGE), the variable
1000(b-0.63)2, where b is the proportion of Blacks (B), a percentage of lower status
population (LSTAT), crime rate per capita (CRIM), a dummy variable with two levels,
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Table 3: Estimated MSE and RMSE values with k̃HM , d̃ and l = 9 at ρ = 0.95

(Λ, σ2, σ1
2) (Λ1,0.5,0.5) (Λ1,0.5,0.5) (Λ1,1,1) (Λ1,1,1)

ni 3 7 3 7
EMSE(β̃) 0.0007086 0.0004244 0.0013256 0.0007602
EMSE(β̃r) 0.0003199 0.0002177 0.0006237 0.0004051
EMSE(β̃(k, d)) 0.0003637 0.0002076 0.0003680 0.0002443
EMSE(β̃r(k, d)) 0.0002193 0.0001416 0.0003095 0.0002050
RMSE(β̃ : β̃(k, d)) 1.9483 2.0441 3.6023 3.1113
RMSE(β̃r : β̃r(k, d)) 1.4586 1.5369 2.0149 1.9762
RMSE(β̃(k, d) : β̃r(k, d)) 1.6581 1.4657 1.1888 1.1918
(Λ, σ2, σ1

2) (Λ2,0.5,0.5) (Λ2,0.5,0.5) (Λ2,1,1) (Λ2,1,1)
ni 3 7 3 7
EMSE(β̃) 0.0007998 0.0004484 0.0013922 0.0007246
EMSE(β̃r) 0.0003473 0.0002517 0.0006444 0.0004219
EMSE(β̃(k, d)) 0.0005442 0.0003251 0.0006323 0.0004342
EMSE(β̃r(k, d)) 0.0002744 0.0002033 0.0004083 0.0003060
RMSE(β̃ : β̃(k, d)) 1.4696 1.3794 2.2017 1.6685
RMSE(β̃r : β̃r(k, d)) 1.2655 1.2381 1.5782 1.3787
RMSE(β̃(k, d) : β̃r(k, d)) 1.9828 1.5988 1.5486 1.4191

1 if tract border to Charles River and 0 otherwise (CHAS) and levels of nitrogen oxides
concentration (parts per 10 million) per town (NOX). All independent variables can
be measured precisely except the pollution variable NOXSQ which is taken to have
measurement errors. Therefore, we fit the dataset by model (1.1), which is a linear
mixed measurement error model. In this model, y is the 132 × 1 vector of response
variables and X and U are regression matrix with dimensions 132 × 8 and 132 × 15,
respectively. Note that X is the matrix of observed value of Z. First, we estimated
the variance components by considering σ1

2 = 0.5 and σ2 = 0.5. Then, by calculating
the eigenvalues of X′V−1X , the condition number 354.25 is obtained, which indicate
severe multicollinearity. Following Ghapani (2019), we considered the stochastic linear
restrictions as r = Rβ + e, e ∼ N(0, σ2I5) where W = Im and selected 5 available data
from nearby Boston. Using the method introduced in section 6, estimates k and d are
calculated as k̃HM = 7.99881e−08 and d̃ = 0.9149, respectively. In Table 4, the estimated
MSE values of the estimators are obtained by replacing in the corresponding theoretical
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MSE equations. We can see the estimated MSE values of β̃(k, d) is less than β̃. Also, the
estimated MSE values of β̃r(k, d) is less than β̃r. In general, the estimated MSE values
of β̃r(k, d) is less than all estimators. So, we conclude that the stochastic restricted
two-parameter estimators performs better than the other estimators. In section 6, we
obtained the parameters k and d such that the ∆1 is a pd matrix. ∆1 eigenvalues
are 3.338933e-03, 1.674830e-03, 2.927536e-04, 1.982075e-05, 2.653215e-09, 1.167239e-10,
5.571947e-11 and 1.587284e-11, all of which are positive, indicating that ∆1 is pd matrix.
In Figure 1, a plot of the estimated MSE values of the estimators against k in the interval
[0,0.5] with fixed d̃ = 0.9149 is drawn. In this Figure, we can see that the estimated MSE
values of β̃r is always less than β̃. Also in the interval [0,0.18) the estimated MSE values
of β̃r(k, d) is less than the other estimators. In addition, Figure 2 shows another plot
of the estimated MSE values of the estimators against d in the interval (0,1) with fixed
k̃HM = 7.99881e−08 . Figure 2, demonstrates that estimated MSE values of the β̃r(k, d)
is less than the other estimators when d is selected in interval (0.6, 1). Altogether, it
is obvious that the two parameter estimators can perform better than the β̃ in MSEM
criterion under conditions.

Table 4: Parameter estimates and MSE values of the proposed estimators (the t test
statistics are in parentheses).

β̃ β̃(k, d) β̃r β̃r(k, d)
RM -0.00119(-0.46) -0.00106(-0.41) -0.00989 (-1.61) -0.00912 (-1.48)
AGE 0.00127(0.68) 0.00119 (0.64) 0.02579 (6.69) 0.02595 (6.71)
DIS 0.56280 (2.80) 0.53389(2.77) 3.05560 (8.69) 2.93664 (8.33)
B 0.54819(3.43) 0.52794 (3.42) 0.14965 (0.38) 0.14280 (0.38)
LSTAT -0.47691(-7.14) -0.47488 (-7.22) -1.17260 (-8.34) -1.18214 (-8.53)
CRIM -0.00626 (-4.56) -0.00633 (-4.61) -0.00374 (-1.11) -0.00389 (-1.15)
CHAS -0.08809(-0.98) -0.08757 (-0.99) -0.01633 (-0.07) -0.02704 (-0.12)
NOX -0.00848 (-1.66) -0.00858 (-1.69) 0.06969 (7.41) 0.07057 (7.50)
σ2 0.02695 0.0260 0.1704 0.1645
σ2

1 75.6890 76.318 1.2691 1.2293
EMSE 0.07827427 0.07294793 0.06110634 0.05750057
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Figure 1: The estimated mean square error values of the estimators versus k with d̃.
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Figure 2: The estimated mean square error values of the estimators versus d with k̃HM.

9 Conclusion

In this study, the Nakamura’s approach is used to obtain the two parameter estimator
and the stochastic restricted two parameter estimator in linear mixed measurement
error models. Also, the asymptotic properties of the fixed effect estimators are obtained
and then comparisons between proposed estimators and other estimators are made
using MSEM sense. Therefore, the methods for estimating biasing parameters were
proposed. Furthermore, a simulation study is provided and it is found that the
stochastic restricted two parameter estimator has the smallest MSE value compared to
other estimators. Finally, a data example has been given to illustrate the performance of
the new estimators. Both the numerical example results and simulation study indicate
that the use of stochastic linear restrictions is useful when there is collinearity in the
dataset. Also, the performance of the stochastic restricted two parameter estimator is
better than the other estimators under certain conditions in the MSEM sense.
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Appendix

In the following, for the convenience of the reader, we repeat some theorems and
lemmas from other researches without proofs, thus making our exposition self-contained.

Lemma 1 (Farebrother, 1976). Let A be a positive definite matrix, namely A > 0 and
α be some vector, then A − αα′ ≥ 0 if and only if α′Aα ≤ 1 .

Lemma 2 (Rao et al. 2008, Theorem A. 52). Let A > 0 and B > 0 , Then B − A > 0 if
and only if A−1

− B−1 > 0 .

Lemma 3 (Ghapani, 2019, Theorem 2). When B > 0 and GdBGd > 0, where Gd =
(Z′V−1Z + Ip)−1(Z′V−1Z + dIp) ; that is B and GdBGd are positive definite (p.d.) matrix,
we have B − GdBGd > 0 .

Lemma 4 (Güler and Kaçıranlar. 2009, Lemma 2.1). Let A > 0 and B > 0 , Then
B − A > 0 if and only if λB

i (A) < 1.

Lemma 5 (Trenkler and Toutenburg. 1990, Theorem 2). Let, β̂ j = A jy, j = 1, 2 be two
competing estimators of β. Suppose that D = Cov(β̂1) − Cov(β̂2) > 0 , where Cov(β̂ j), j =

1, 2 denote the covariance matrix of β̂ j . Then ∆(β̂1, β̂2) = MSEM(β̂1) −MSEM(β̂2) ≥ 0
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if and only if b′2(D + b1b′1)−1b2 ≤ 1, where MSEM(β̂ j) and b j denote the mean squared
error matrix and bias vector of β̂ j, respectively.


