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Abstract. The two main goals in model selection are firstly introducing an approach
to test homogeneity of several rival models and secondly selecting a set of reasonable
models or estimating the best rival model to the true one. In this paper we extend
Vuong’s method for several models to cluster them. Based on the working paper of
Katayama (2008), we propose an approach to test whether rival models have expected
relations. The multivariate extension of Vuong’s test gives the opportunity to examine
some hypotheses about the rival models and their relations with respect to the unknown
true model. On the other hand, the standard method of model selection provides an
implementation of Occam’s razor, in which parsimony or simplicity is balanced against
goodness of fit. Therefore, we are interested in clustering the rival models based on
their divergence from the true model to select a suitable set of rival models. In this
paper we have introduced two approaches to select suitable sets of rival models based
on the multivariate extension of Vuong’s test and quasi clustering approach.
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1 Introduction

Vuong (1989) has presented a test based on the likelihood ratio to compare two proposed
models. Katayama (2008) has provided an extension of Vuong’s model selection test for
the multivariate case. Lorestani and Sayyareh (2017) have extended the Vuong’s (1989)
model selection test to three models in accordance to the union-intersection principle.
They have shown that the distribution of the test statistic is asymptotically equal to
the distribution of the maximum of dependent random variables with bivariate folded
standard normal distribution. As a part of the Vuong’s test, he demonstrated that two
competing models are equally close to the true data generating model. Consider the
simplest case where we have two non-nested rival moedels, denoted asM1,M2.

We may test the equivalence of the two rival models or test wether one model is
better than the other one. The selected set of reasonable models will be either {M1},{M2}

or {M1,M2}. The standardized differences of the expected Kullbal-Leibler, EKL’s, of
the two rival models will be used as the criterion to select between the rival models. See
Vuong (1989) and Commenges et al. (2008). We have developed analogous procedures
based on the Katayama’s extention to more general null hypothesis testing problem. It
is not difficult to extend Linhart’s (1988) test to the case where we haveM1,M2, ...Mw
as non-nested rival models, see, Shimodaira (1997). For eachMi, i = 1, 2, ...,w, we will
decide whether the rival modelMi is equivalent to the modelM j, i , j = 1, 2, ...,w or
not. If we find two equivalent rival models, we will set these models at the same subset
of models and we will continue our search to achieve k sets of equivalent models in
KL sense.

In the literature there are many criteria to evaluate the best model. The well known
criterion is Kullback-Leibler (1951), say KL , risk or divergence. This criterion has an
estimator as Akaike (1973) information criterion, AIC. Commenges et al. (2008) have
recently considered the differences of the KL risks between two rival models and
Sayyareh et al. (2011) and Sayyareh (2012) compare some tests and criteria to model
selection.

This paper examines a common scenario in which there is more than one candidate
model. The literature on non-nested hypothesis testing in statistics was pioneered by
Cox (1961, 1962) and Atkinson (1970), this which was applied by Pesaran (1974) and
Pesaran and Deaton (1978). Shimodaira (1998, 2001) has considered the sampling error
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of AIC in multiple comparisons and has constructed a set of good models rather than
choosing a single model. The asymptotic distribution of AIC in linear regression models
and the bias correction of this statistics are discussed by Yanagihara and Ohomoto
(2005). Recently, Commenges et al. (2008) has considered the normalized difference
of AIC as an estimate of a difference of Kullback-Leibler risks between two models.
Cox (1961, 1962) has modified the classical hypothesis testing to test the non-nested
hypotheses, Vuong (1989) tested the equivalence of two models, and the information
criterion (AIC), Akaike (1973), is introduced to select the best model under parsimony.
An essential problem in model selection arises from the phenomenon that Zucchini
(2000) refers to as selection bias. If one begins with a very large collection of rival
models, then he can be sure that the reasonable model will have accidentally high
maximum likelihood term. The selection bias can be expected to be less if we begin
with a small set of rival models. But we faced with a problem: how to select the few
models that go into this set? After selecting the admissible set of rival models, the
problem is simplified to finding the best model in this set. One problem with AIC is
that its value has no intrinsic meaning and values of AIC depend on the number of
observations. If the specific structure of the models is of interest, it may be interesting
to measure how far from the truth each model is. This may not be possible, but we can
quantify the difference of risks between two models. Estimating the difference of risks
will be informative only if we have an idea of what a large or a small difference is. It is
shown that a normalized difference of AIC’s is an estimate of a difference of Kullback-
Leibler (KL ) criterion,(Kullback-Leibler (1968)), see Commenges et al. (2008). Some
recent investigations have made to extend the model selection tests and criteria.

In this paper we have considered a subset model selection approach which is an
open problem in model selection. The subset selection leads to the consideration of
multivariate extension of Vuong’s test which gives the opportunity to examine some
hypotheses about the rival models and their relations with respect to the unknown
true model. Therefore, we are interested in clustering the rival models based on its
divergence from the true model to select a suitable set of rival models. We have
considered an approach to test whether competing models have expected relations.
We have extended Vuong’s (1989) results to various cases in non-nested situations. In
many situations, we have a few rival models. For each model we could compute the
mean corrected losses which is equal to 1/(2n)AIC of each rival model. Katayama
(2008), has considered a deep mathematical and asymptotic study on the extension of
Vuong’s (1989) model selection test. As a part of this work Katayama considered the
equality of all rival models. In this work we have considered a statistical test which
is a little different from Katayama’s work, so that we could discuss many models
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and different tests. Also, we have proposed an approach which helps us answer this
unsolved problem in statistics: How can we select an admissible set of models which
are more reasonable to consider as a rival set of models? This set of rival models leads
us to decrease the risk in model selection. This approach lets us consider a large set
of models as the candidate set and return out some of them because of their large
divergence from the true model.

A few articles have examined the selection of an admissible set of rival models.
Barmalzan and Sayyareh (2011) have supposed a random sample of a population with
true but unknown density h(.). In general, the true density is unknown and we have
to consider a parametric model, say, f (.;θ) as an approximation of h(.). Clearly, f (.;θ)
should be close to the true density. The suggestion of a model as an approximation
or estimation of the true density might result in a great risk in model selection. For
this reason, they consider k nonnested rival models and investigate the model which
is closer to the true model. In fact, they have considered this main question in model
selection that how it is possible to gain a collection of approximate models for the
estimation of the true model. Pho et al. (2019) have compared Akaike information
criterion, Bayesian information criterion and Vuong’s test in model selection. Sayyareh
(2017) has considered the sample and the non-nested rival models as blocks and
treatments, respectively, and introduce the extended Friedman test version to compare
with the results of the test based on the linear sign rank test. Clarke and Signorino (2010)
have considered the problem of choosing rival statistical models that are non-nested
in terms of their functional forms. They assess the ability of two tests, one parametric
and one distribution free, to discriminate between such models.

The rest of this paper is organized as follow: Section 2 presents the basic framework,
models and assumptions. Section 3 addresses the Kullback-Leibler risks. Section 4,
which describes the normalized difference of AIC′s as an estimate of the difference
of Kullback-Leibler risk. In Section 5, we illustrate the extension of Vuong’s test. In
Section 6, we propose a cluster approach to construct a suitable set of models which are
close to the true one. We also present a simulation study in the framework of densities
which makes it possible to illustrate our approach.

2 Basic Framework

Suppose the focus of the analysis is to be used instead of the M = {M1,M2, ...Mw}

as w parametric rival models. They are candidates to use instead the data generating
model (the true model). If the specific structure of the models is of interest, as it tell us
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something about the observed phenomena, it would be important to measure how far
from the truth each model is. The models are considered as the conditional models,
which are all based on the same conditioning variables, xt, and differ only insofar as
they are based upon different p.d.fs. According to Vuong (1989) and Katayama (2008)
we consider, following assumptions:

Assumption A1 (a) The p-dimensional random vectors W′t = (Y′t ,X
′

t), t = 1, 2, ... are
independent and identically distributed (i.i.d.) with common true distribution H0

W(W, σ).

(b) For HX-almost all x, HY|X(y|x) has a Radon-Nikodym density h0(y|x) relative to vY,
which is strictly positive for vY-almost all y.

Considering w parametric families of conditional distributions defined on σY×X for
Yt given Xt: Mi =

{
gβi

i (y|x), βi ∈ Bi ⊂ <
pi
}

= (gi)βi∈Bi , i = 1, 2, ...w, where pis are positive
integers such that pi ≤ p j, i < j and βi is the parametric space for modelMi.

Assumption A2 1. For a every βi ∈ Bi and for HX-almost all x, the conditional
distribution Gi

Y|X has a Radon-Nikodym density gβi
i relative to vY, which is strictly

positive for Vy-almost all y. (b) Bi is a compact subset of <pi , and the conditional
density gβi

i (y|x) is continuous in βi for HW-almost all (y, x).

2. For HW-almost all (y, x), | log gβi
i (y|x)| is dominated by an HW-integrable function

independent of βi ∈ Bi. 2.(b) The function xg =
∫

log gβi
i (y|x)H0

W(dx) has a unique
maximum on β∗i ∈ Bi.

3. For HW-almost all (y, x), | log gβi
i (y|x)| is twice continuously differentiable onBi. (b) For

HW-almost all (y, x), | 5βi log gβi
i (y|x). 5β′j log g

β j

j (y|x)|, | 52
βiβ′i

log gβi
i (y|x)| and | log gβi

i (y|x)|
are dominated by HW-integrable functions independent of βi ∈ Bi and β j ∈ B j.

4.(a) βi∗ is an interior point of Bi.

(b) βi∗ is a regular point of Ai(βi), where, Ai(βi) = Eh

[
5

2
βiβ′i

log gβi
i (Y|x)

]
and Eh denotes

the expectation with respect to HW.

Definition 2.1. The parametric family (i) (gi)βi∈βi is nested in (g j)β j∈β j if (gi) ⊂ (g j);

(ii) (gi) is well specified if there is value β0 ∈ Bi such that gβi
i (y|x) = h(y|x); otherwise it

is mis-specified.
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3 Kullback-Leibler Risk and Likelihood Function

In decision theory, estimators are chosen as minimizing some risk function. The most
important risk functions are based on the Kullback-Leibler, (1951), KL , divergence.
Let a probability P′ be absolutely continuous with respect to a probability P, F1 be a
sub-σ-field of F , the loss of using P′ instead of P is theLP/P′

F
= log dP

dP′|F . Its expectation

is EP{L
P/P′

F
} = KL (P,P′;F ). This is the Kullback-Leibler risk. If F is the largest sigma-

field on the space, then we omit it in the notation. If Y is random variable with p.d.f. fY
and gY under P and P′, respectively, then we dP

dP′|F =
h0(y|x)

gβi
i (y|x)

and the divergence of the

distribution P′ relative to P can be written as KL(P,P′) =
∫

log h(y|x)

gβi
i (y|x)

d(y). We know

that KL (P,P′;F ) = KL(P,P′) if F is the σ-field generated by y on (Ω,F ). Base on
continuity arguments, we take 0 log 0

r = 0 for all r ∈ IR and t log t
0 = ∞ for all non-

zero t. Hence, KL divergence takes its value in [0,∞] and KL(h(y|x), gβi
i (y|x)) = 0

implies that h(y|x) = gβi
i (y|x). The KL divergence is not a metric, but it is additive

over marginals of product measures. We assume that there is a value βi∗ ∈ Bi which
minimizes KL(h(.), gβi

i (y|x)). If the model is well specified βi0 = βi∗. The MLE β̂in is
a consistent estimator for β∗. If the model is well specified β∗ = β0; if the model is
misspecified, KL(h, gβ) > 0. The Quasi Maximum Likelihood Estimator (QMLE), β̂n,
is a consistent estimator of β∗, see White (1982a, 1982b).

4 Differences of AIC Criteria

Consider a sample of independently distributed random variables Yn = (Y1, ...,Yn)
having probability distribution function, pd f , h = h(·). Let us consider k rival models:
(gi) = (g

β j

i (.))β j∈B j ,B j ⊂ <
p j , i = 1, ..., k and j = 1, ..., Ji.

Definition 4.1. (i) (gi) is nested in (g j) if (gi) ⊂ (g j); (ii) (g j) is well specified if there is a
value β? j ∈ B j such that gβ? j = h; otherwise it is misspecified.

Kullback-Leibler divergence, is the log-likelihood loss of the rival model gβ j relatively
to h for observation Y, is the expectation of log h(Y)

gβ j (Y)
; officially defined as

KL (h, gβ j) = Eh

{
log

h(Y)
gβ j(Y)

}
.
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This criterion is nonnegative and is zero when h = gβ j , that is, β j = β? j . The Kullback-
Leibler divergence is not a distance between the two probability measures, because it
is not symmetric, but generally it is not a drawback: there is no symmetry between
h, the true pd f and gβ j a possible pd f . This indicates that we may think about the
Kullback-Leibler divergence as a an expected loss rather than a distance. We also
assume that there is a β0 ∈ B which minimizeKL (h, gβ j). If the model is well specified,
β0 = β∗; if not,KL (h, gβ? j ) > 0. White (1982) has shown that the MLE β̂n is a consistent
estimator of β∗ and β0.We shall say (gi) is closer to h than (g j) ifKL (h, gβi) < KL (h, gβ j).

ConsideringKL (h, gβ j) = Eh

{
log h(Y)

}
−Eh

{
log gβ j(Y)

}
, we can estimate the difference

of risks 4(gβ0 j , gβ0i ) = KL (h, gβ0 j )−KL (h, gβ0i ) by − 1
n (Lgβ̂ jn

Yn
−Lgβ̂in

Yn
),where L denotes the

log-likelihood function. As an estimation, we use gβ̂ jn instead of gβ0 j . Thus we consider
Eh

{
log h(Y)

gβ̂ jn (Y)

}
, the expected Kullback-Leibler loss, and that we denote byEhKL (h, gβ̂ jn),

which is introduced by Akaike (1973). Linhart and Zucchini (1986) have show that

EhKL (h, gβ̂ jn) = KL (h, gβ j) +
1
2

n−1Tr(I−1
g j

Jg j) + o(n−1),

where

Ig j = −Eh

{∂2 log gβ j(Y)
∂β2 |β0

}
,

and

Jg j = Eh

{[∂ log gβ j(Y)
∂β

|β0

][∂ log gβ j(Y)
∂β

|β0

]T}
.

Two essential terms in EhKL (h, gβ̂ jn) are interpreted as the misspecification risk and
the statistical risk, respectively. We also have

EhKL (h, gβ̂ jn)

= −Eh(n−1Lgβ̂ jn

Yn
) + Eh

{
log h(Y)

}
+ n−1Tr(I−1

g j
Jg j) + op(n−1). (4.1)

Akaike criterion as AIC(gβ̂ jn) = −2Lgβ̂ jn

Yn
+ 2p, follows from (4.1) as EhKL (h, gβ̂ jn). Our

interest is 4(gβ̂nj , gβ̂ni) = EhKL (h, gβ̂ jn) − EhKL (h, gβ̂in). Using (4.1), we obtain

Eh

{
−

1
n

[
(Lgβ̂ jn

Yn
− Lgβ̂in

Yn
) − [Tr(I−1

g j
Jg j) − Tr(I−1

gi
Jgi)]

]}
(4.2)

= 4(gβ̂nj , gβ̂ni) + op(n−1).
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Akaike in his suggestion has noted that if Tr(I−1
g j

Jg j) ≈ p j, then Tr(I−1
gi

Jg j) ≈ pi. Using

these approximations, we obtain a simple estimator of 4(gβ̂nj , gβ̂ni) as

4̂(gβ̂nj , gβ̂ni) =
1
2

n−1
{
AIC(gβ̂nj) − AIC(gβ̂ni)

}
= −n−1

{
Lgβ̂ jn

Yn
− Lgβ̂in

Yn
− (p j − pi)

}
. (4.3)

Note that the precise value of AIC has no clear interpretation, but the expectation of
4̂(gβ̂nj , gβ̂ni) tracks the quantity of main interest4(gβ̂nj , gβ̂ni). In fact, the bias of 4̂(gβ̂nj , gβ̂ni)
is of order op(n−1). All that has been said can be extended to regression models by
directly defining theKL divergence in terms of conditional densities.

5 Extension of Vuong’s Test

From now on, we use conditional density, gβi
i (Y|·), based on the Vuong’s paper. Consider

the case where we have k possibly non-nested models to be compared. Sometimes, we
only need to say that some models are equivalent as a candidate for the true model.
This equivalence inKL sense means that

KL (h, gβi
i ) = KL (h, g

β j

j ),

or
Eh (log gβi

i (Y|x)) = Eh (log g
β j

j (Y|x)).

Let g
β j

j (·|·) , gβi
i (·|·) and define the maximum log-likelihood function for model (g) as

LLn(i) =

n∑
t=1

log gβ̂in
i (Yt|·).

In general, we say that (gi) is closer to h than (g j) ifKL (h, gβi∗
i ) < KL (h, g

β j∗

j ). We cannot

estimate KL (h, gβi
i ) because the entropy of h, which is equal to Eh(log h(·)), cannot be

correctly estimated. Whereas, the second term of theKL risk has a known estimation
as Akaike information criterion as AIC, which is given by

AIC( j) = −2LLn( j) + 2p j,
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where p j = dim β j. Then it is more relevant to consider the risk E{log h(Y|·)

g
β̂ jn
j (Yt|·)

} that we

may call the expected Kullback-Leibler risk and that we denote it by EKL (h, gβ̂in
i ). AIC

was revisited by Linhart and Zucchini (1986) who showed that

EKL (h, gβ̂in
i ) = EKL (h, gβi∗) +

1
2n

Tr(BgiA
−1
gi

) + o(n−1), (5.1)

where

Bgi = Eh{[
∂ log gβi (Y|·)

∂β
].[
∂ log gβi (Y|·)

∂β′
]|βi∗},

and

Agi = −{Eh[
∂2 log gβi (Y|·)

∂β∂β′
|βi∗]}.

We also have

EKL (h, gβ̂in
i ) = F(h) − Eh{n−1LLn(i)} +

1
n

Tr(BgiA
−1
gi

) + op(n−1). (5.2)

Akaike information criterion follows from (5.2) by multiplying by 2n, deleting constant
term F(h), replacing second term in the right by n−1LLn(i) and replacing Tr(BgiA

−1
gi

) by
pi. The term 1

n Tr(BgiA
−1
gi

) is the sum of the mis-specification risk and the statistical risk.
Note that if (gi) is well-specified, the mis-specification risk is zero and Bg = Ag, and

thus, EKL (h, gβ̂in
i ) = pi/2n + o(n−1). Define

LLwn = (LLn(1),LLn(2), ...,LLn(w)),

LL∗(i) =

n∑
t=1

log gβi∗
i (Yt|·),

β̂n = (β̂′1n, β̂
′

2n, ..., β̂
′

wn),

and
β∗ = (β′1∗, β̂

′

2∗, ..., β̂
′

w∗).

In misspecified case, β̂in is referred to as quasi maximum likelihood estimator, QMLE,
and its probability limit under the true model, which we denote by βi0, is known as
pseudo true value of parameter. These pseudo true values are defined by

βi∗ = arg max
βi∈Bi
Eh{

1
n

n∑
t=1

log gβi
i (Yt|·)}.
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To ensure global identifiability of the pseudo true value, it will be assumed that
βi∗ provides the unique maxima of Egi{

1
n
∑n

t=1 log gβi
i (Yt|·)}. We prepare the notation

as: µw = Eh{log gβi∗
i (Yt|·)}, E∗w = (µ1, µ2, ..., µw). For more detail about the following

theorem, see Katayama (2008).

Theorem 5.1. Under Assumptions A1 and A2 the vector

Zn =
√

n
(
(β̂n − β∗)′, (

1
n

LLwn − E∗w)′
)′
,

converges to a standard normal distribution:

Zn
L
−→ N(0,Σ),

where

Σ =

(
Σββ ΣβL
Σ′βL ΣLL

)
,

Σββ =
(
A−1

i (βi∗)Ci j(βi∗, β j∗)A−1
j (β j∗)

)
,

Bi j(βi, β j) = E
[
∇βi log gβi

i (Yt|·)∇β′j log g
β j

j (Yt|·)
]
,

Ai(βi) = E
[
∇

2
βiβ′i

log gβi
i (Yt|·)

]
,

Ci j(βi, β j) = A−1
i (βi)Bi j(βi, β j)A−1

j (β j),

ΣβL =

Cov(−A−1
i (βi∗)(

∂ log gβi∗
i (Yt|·)

∂βi∗
), log g

β j+1∗

j+1 (Yt|·))

 ,
ΣLL =

(
Cov(log gβi∗

i (Yt|·), log g
β j∗

j (Yt|·))
)
.

Proof. From the fact that,

n1/2(β̂in − βi∗)
L
−→ N(0, I−1

g j
Jg j),

we have n1/2(β̂in − βi∗) and −A−1
i (βi∗)n−1/2

∇βi∗(LL∗( j)) are asymptotically equivalent:

n1/2(β̂in − βi∗)

−A−1
i (βi∗)n−1/2∇βi∗(LL∗( j))

→ 1.
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Set,

AL∗(i) = (−A−1
1 (β1∗)∇β1∗ log gβ1∗

1 (Yt|·),−A−1
2 (β2∗)∇β2∗ log gβ2∗

2 (Yt|·), ...,

− A−1
w (βw∗)∇βw∗ log gβw∗

w (Yt|·))′,

and
LE∗(i) =

(
log gβ1∗

1 (Yt|·) − µ1, log gβ2∗
2 − µ2, ..., log gβw∗

w (Yt|·) − µw
)′
.

From Vuong’s approach we have:

Zn = n−1/2
n∑

i=1

{AL∗(i),LE∗(i)}′

=
√

n
(
(β̂n − β∗)′, (

1
n

LLwn − E∗w)′
)′
L
→N(0,Σ).

�

5.1 Estimating Ai(βi),Bi j(βi, β j) and Σ

Related to the Theorem 5.1. we need to estimate Ai(βi),Bi j(βi, β j) and Σ. The strong
consistent estimators of Ai(βi),Bi j(βi, β j) are given by

Ai(β̂in) =
1
n

n∑
t=1

∂2 log gβ̂in
i (Yt|·)

∂β∂β′
,

Bi j(β̂in, β̂ jn) =
1
n

n∑
t=1

∂ log gβ̂in
i (Yt|·)

∂β

∂ log gβ̂in
i (Yt|·)

∂β′
.

Also, Σ is obtained from the sample analogs of the submatrics of Σ. Then, Σ̂ββ =

Ĉi j(β̂i, β̂ j) which is the empirical version of the Ci j(βi, β j) evaluated at maximum likelihood
estimate of β. Similarly, (i, j)-th submatrics of ΣβL and ΣLL are respectively

σ̂
i j
βL = −

1
n

A−1
i (β̂in)

n∑
t=1

∂ log gβ̂in
i (Yt|·)

∂β
log g

β̂ jn

j (Yt|·)

+

A−1
i (β̂in)

1
n

n∑
t=1

∂ log gβ̂in
i (Yt|·)

∂β


1

n

n∑
t=1

log g
β̂ jn
j (Yt|·)

 ,
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and

σ̂
i j
LL =

1
n

n∑
t=1

log gβ̂in
i (Yt|·) log g

β̂ jn

j (Yt|·)−1
n

n∑
t=1

log gβ̂in
i (Yt|·)


1

n

n∑
t=1

log g
β̂ jn
j (Yt|·)

 .
Consider ai as a (

∑w
i=1 pi + w)-vector, where (

∑w
i=1 pi + i)th element is one and zero

otherwise. Let a be a vector. Then, a′Zn asymptotically is distributed asN(0, a′Σa). Also,
if X is distributed asNw(µ,Σ), the q linear combinations C(q×w)X(w×1) are distributed as
Nq(Cµ,CΣC′). Let S = (0, Iw), and consider SZn. It is easy to see that

√
n(

1
n

LLwn − E∗w) L
−→ N(0,SΣS′),

where SΣS′ = ΣLL. So

C
√

n(
1
n

LLwn − E∗w) L
−→ Nq(0,CΣLLC′).

The calculation of the rejection region using the above multivariate normal distribution
needs much more computational cost when the value of w is large. Therefore, we
propose another statistics. We need to estimate ΣLL. As a natural estimator, consider,

Σ̂LL =
(
Ĉov(log gβi∗

i (Yt|·), log g
β j∗

j (Yt|·))
)

=
(
σ̂

i j
LL

)
.

It is clear that
√

nΣ−1/2
LL (

1
n

LLwn − E∗w) L
−→ N(0, Iw).

Considering
√

nΣ−1/2
LL Σ̂1/2

LL Σ̂−1/2
LL (

1
n

LLwn − E∗w) L
−→ N(0, Iw),

since Σ̂LL is non-singular, if it was also consistent for ΣLL, then by the multivariate
version of Slutsky Theorem, we would obtain,

√
nΣ̂−1/2

LL (
1
n

LLwn − E∗w) L
−→ N(0, Iw),

so, {
C
√

n(
1
n

LLwn − E∗w)
}′
{CΣ̂LLC′}−1

{
C
√

n(
1
n

LLwn − E∗w)
}
L
−→ χ2

q.
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The weak consistency, in the sense of Σ̂LL
P
−→ ΣLL, is easily established given a weakly

consistent estimate of σi j
LL, denoted as σ̂i j

LL.

To test
H0 : µ1 = µ2, µ3 = µ4 = ... = µw,

which is equal to

H0 : ∆1,2 = 0,∆3,4 = 0,∆4,5 = 0, ...,∆w−1,w = 0,

where ∆i, j = µi − µi+1, i = 1, 2, . . . ,w − 1, we consider,

C =



1 −1 0 0 0 0 ... 0 0 0
0 0 1 −1 0 0 ... 0 0 0
0 0 0 1 −1 0 ... 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 · · · 1 −1 0
0 0 0 0 0 · · · 0 0 1 −1


.

Now testing

C


µ1
µ2
...
µw

 =


0
0
...
0

 ,
is equal to testingH0. For testing

H0 : µ1 = µ2 = ... = µw,

we use,

C =



1 −1 0 0 0 0 ... 0 0 0
1 0 −1 0 0 0 ... 0 0 0
1 0 0 −1 0 0 ... 0 0 0
...

...
...

...
...

...
. . .

...
...

...
1 0 0 0 0 0 · · · 0 −1 0
1 0 0 0 0 · · · 0 0 0 −1


.

Sometimes, we want to estimate the difference of the KL risks, which leads to
estimating the differences of the weighted difference of the maximized log- likelihood
functions, i.e.,

4(gβi∗
i , g

β j∗

j ) = KL (h, gβi∗
i ) −KL (h, g

β j∗

j ),



56 A. Sayyareh

will be estimated by −n−1(LLn(i) − LLn( j)). What we really want to estimate is

4(gβ̂in
i , g

β̂ jn

j ) = EKL (h, gβ̂in
i ) − EKL (h, g

β̂ jn

j ).

Using Akaike’s idea, we obtain a simple estimator of 4(gβ̂in
i ), g

β̂ jn

j ):

4̂(gβ̂in
i , g

β̂ jn

j ) = −n−1[LLn(i) − LLn( j) − (pi − p j)],

where E
{
4̂(gβ̂in

i , g
β̂ jn

j ) − 4(gβ̂in
i , g

β̂ jn

j )
}

is an o(n−1). For w = 2, we consider the null

hypothesis H0 : µ1 = µ2. Using Theorem 3.3 of Vuong (1989), when gβi∗
i , g

β j∗

j and
obtain that

n1/2
{4̂(gβ̂in

i , g
β̂ jn

j ) − 4(gβ̂in
i , g

β̂ jn

j )} L−→ N(0, ω2
∗ ),

where ω2
∗ = var[log

gβi∗
i (Yt|·)

g
β j∗
j (Yt|·)

]. An estimator of ω2
∗ is

n−1
n∑

i=1

log
gβ̂in

i (Yt|·)

g
β̂ jn

j (Yt|·)


2

−

n−1
n∑

i=1

log
gβ̂in

i (Yt|·)

g
β̂ jn

j (Yt|·)


2

,

which is used by Commenges et al. (2008) to compute a tracking interval for difference
ofKL risks of two rival models. A main problem in model selection is selecting a simple
model in a set of equivalent rival models. Consider five models as gβi

i , i = 1, 2, ..., 5.

There is a claim that gβ1
1 = gβ2

2 and gβ3
3 = gβ4

4 = gβ5
5 . We may write this claim as

H0 : gβ1
1 = gβ2

2 , g
β3
3 = gβ4

4 = gβ5
5 . TestingH0 is equivalent to testing

C


µ1
µ2
µ3
µ4
µ5

 =


0
0
0

 ,
where

C =

 1 −1 0 0 0
0 0 1 −1 0
0 0 0 1 −1

 .
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Accepting H0 is equal to categorizing the rival models in sets S1 = {gβ1
1 , g

β2
2 } and

S2 = {gβ3
3 , g

β4
4 , g

β5
5 }.

6 Suitable Set Selection Using Quasi Cluster Approach

For k rival models, consider a divergence matrix as bellow,

DM =

M(1)
M(2)
M(3)

...
M(k)



0
4̂(gβ̂n2 , gβ̂n1) 0
4̂(gβ̂n3 , gβ̂n1) 4̂(gβ̂n3 , gβ̂n2) 0

...
...

...
...

...

4̂(gβ̂nk , gβ̂n1) 4̂(gβ̂nk , gβ̂n2) 4̂(gβ̂nk , gβ̂n3) ... 0


,

whereM( j) indicate model j. To simplify the notation, we indicate 4̂(gβ̂nj , gβ̂ni) by 4̂( ji),
then the new presentation ofDM is

DM =

M(1)
M(2)
M(3)

...
M(k)


0
4̂(21) 0
4̂(31) 4̂(32) 0
...

...
...

...
...

4̂(k1) 4̂(k2) 4̂(k3) ... 0


,

where 0 indicates the observed value for 4̂(gβ̂ni , gβ̂ni) = 4̂(ii). To select an admissible set
of models, we consider a procedure. At the first stage of the procedure, we consider
two models which have the lowest 4̂(gβ̂nj , gβ̂ni). They merged to form the smallest set
of rival models which are equally close to the true model. We will show it by

4̂(mt); m, t ∈ {1, 2, ..., k}.

At the second stage we consider the divergence between this set and the k−2 remaining
rival models as follows,

4̂(mt)r = min{4̂mr, 4̂tr} for r = 1, 2, ..., k & r , m, t.

We may now form a new divergence matrix as
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D
1
M

=


0

4̂(w(mt)) 0
4̂(l(mt)) 4̂(lw) 0

...
...

...
...

...
4̂(z(mt)) 4̂(zw) 4̂(zl) ... 0


,

where the first row of this matrix shows the absolute value of divergence between 4̂(mt)
and all of the other rival models. Zero in the first row and the first column is 4̂(mt)(mt).
This procedure will continue until all of the rival models become a member of the set
of models.

6.1 Simulation Study

To verify our approach and answer our question, we perform a simulation study. We
consider the data generating proabilities (true model) as Lognormal(LN) and six rival
models. These models are non-nested, and they are mis-specified. Some of them have
the same domain and some of them are far from the true model. The models are

model 1;M(1): Lognormal, LN(α1 = 2, β1 =
√
.5);

and six rival models as,

model 2;M(2): Weibull,W(α2, β2);

model 3;M(3): Gamma, G(α3, β3);

model 4;M(4): Normal,N(α4, β4);

model 5;M(5): Cauchy, C(α5, β5);

model 6;M(6): Uniform,U(α6, β6) and

model 7;M(1): F, F (α7, β7).

The parameters of the rival models are estimated as the quasi maximum likelihood
estimators. The AIC for this models are respectively,

310.462, 319.629, 315.481, 352.244, 331.866, 387.756 and 400.617,

for n = 50 observation from a LN(2,
√
.5) model. Matrix for these AIC’s is given by

DM as,
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M(1)
M(2)
M(3)
M(4)
M(5)
M(6)
M(7)


0

|319.62−310.46|
100 0

|315.48−310.46|
100

|315.48−319.62|
100 0

352.24−310.46|
100

|352.24−319.62|
100

|352.24−315.48|
100 0

|331.86−310.46|
100

|331.86−319.62|
100

|331.86−315.48|
100

|331.86−352.24|
100 0

|387.75−310.46|
100

|387.75−319.62|
100

|387.75−315.48|
100

|387.75−352.24|
100

|387.75−331.86|
100 0

|400.61−310.46|
100

|400.61−319.62|
100

|400.61−315.48|
100

|400.61−352.24|
100

|400.61−331.86|
100

|400.61−387.75|
100 0

 ,

which is equal to,

M(1)
M(2)
M(3)
M(4)
M(5)
M(6)
M(7)



0
0.091 0
0.050 0.041 0
0.418 0.326 0.368 0
0.214 0.122 0.164 0.204 0
0.773 0.681 0.723 0.355 0.559 0
0.902 0.810 0.851 0.484 0.688 0.129 0


= DM.

In the first step, based on the minimum absolute value of differences between KL ’s
divergences of rival models, the minimum value is related to divergence between
model 2 and model 3,

4̂(mt) = 4̂(23) = 0.041.

Therefore, these two models belong to a same set of models. Now,

4̂(mt)r = min{4̂mr, 4̂tr} = 4̂(23)r = min{4̂2r, 4̂3r} for r = 1, 4, 5, 6, 7.

We see that 4̂(23)r for r = 1, 4, 5, 6, 7, are 4̂(21), 4̂(24), 4̂(25), 4̂(26) and 4̂(27), respectively.
Based on this computation, the divergence matrix will be,

M(1)
M(23)
M(4)
M(5)
M(6)
M(7)



0
0.050 0
0.418 0.326 0
0.214 0.122 0.204 0
0.773 0.681 0.355 0.559 0
0.902 0.810 0.484 0.688 0.129 0


= D1

M
.

Investigation of the last divergence matrix shows that the model 1 (true model) will
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belong to our admissible set of rival models. The second step divergence matrix is,

M((23)1)
M(4)
M(5)
M(6)
M(7)


0

0.326 0
0.122 0.204 0
0.681 0.355 0.559 0
0.810 0.484 0.688 0.129 0

 = D2
M
.

In this stage our admissible set of models will be

AS1 =
{
{model 2,model 3}{model 1}

}
.

The minimum absolute value of differences betweenKL ’s divergences of rival models
indicate that model 5 will attach to theAS1. Then,

M(((23)1)5)
M(4)
M(6)
M(7)


0

0.204 0
0.559 0.355 0
0.668 0.484 0.129 0

 = D3
M
.

Based on our criterion, the minimum value is for model 6 and model 7. The new
divergence matrix has a future as

M(((23)1)5)
M(4)
M(67)


0

0.204 0
0.559 0.355 0

 = D4
M
.

Note that

4̂(mt)(rq) = min{4̂(mt)r, 4̂(mt)q} = min{4̂(((23)1)5)6, 4̂(((23)1)5)7}

= 4̂(((32)1)5)6 = 0.559,

and for the other elements of new matrix is as before. This procedure shows that in
this stage we have three subset of models,

AS1 =
{
{model 2,model 3}︸               ︷︷               ︸{model 1}︸                           ︷︷                           ︸{model 5}

︸                                       ︷︷                                       ︸
}
,

AS2 =
{
{model 6,model 7}

}
,
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and
AS3 =

{
{model 4}

}
.

If we continue our procedure, the next candidate to attach to our admissible set is
normal density. The ordered AIC’s for these seven models is as bellow

AIC(model 1) < AIC(model 3) < AIC(model 2) < AIC(model 5)
< AIC(model 4) < AIC(model 6) < AIC(model 7).

This clustering of models seems reasonable. The models which belong to theAS1 have
smaller AIC than the other ones. We have to focus on this set of models to select the
best one. Selecting each of these models decreases the bias in model selection. In this
discrimination between models for Cauchy density, M(5), we don’t have "adequate
reason to consider it as a member of the admissible set, AS1. We can only say that
for the proposed parameters for model 1,M(1), the Cauchy density is a candidate to
describe the data. One may stop his search when he finds a reasonable set of models.

7 Conclusion

In this paper, we have proposed an approach to test whether competing models have
expected relations. We have extended Vuong’s (1989) results to various cases in non-
nested situations. In many situations we have w rival models and a n-sample. For
each model, we can compute the individual lack of fit or losses as − log(gβ̂n(Yt|·)), i =
1, . . . ,n. The mean corrected losses is equal to 1/(2n)AIC(j). Assuming the multivariate
distribution for the mean corrected losses, we consider models where we can put
equality constraints on the mean of this multivariate distribution, which defines models
for mean corrected losses, say m-models. Then, we can find the best m-models among
the m-models assuming equality of the risks for some rival models. We may try
m-models, m-model0: µ1 = µ2 = . . . = µw, m-model1: µ1, µ2 = . . . = µw, m-model(1-
w): µ1, µ2, . . . , µw and so on. For instance for m-model1, − log(gβ̂1n(Yt|·)) has a certain
expectation while − log(gβ̂ jn(Yt|·)), j = 2, . . . ,w, all have the same expectation, so
there are only two parameters for the mean. There are of course other parameters
for the covariances. Katayama (2008), in a unpublished paper, has considered a deep
mathematical and asymptotic study on the extension of Vuong’s (1989) model selection
test. As a part of work, Katayama considerd the equality of all rival models. In this
work, we have considered a test statistic, which is a little different from Katayama’s
work. Therefore, we could consider many m-models and different tests. Also, we have
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proposed an approach which helps us answer this unsolved problem in statistics: How
can we select an admissible set of models which are more reasonable to consider as
a rival set of models? This set of rival models leads us to decrease the bias in model
selection and make more precise decision to describe the data at hand. This approach
lets us consider a large set of models as the candidate set and return out some of them
because of their large divergence from the true model.

References

Akaike, H. (1973), Information theory and an extension of maximum likelihood
principle. Second International Symposium on Information Theory, Akademia
Kiado, 267-281.

Atkinson, A.C. (1970), A method for discriminating between models. Journal of the Royal
Statistical Society B, 32, 323-344.

Barmalzan, G. and Sayyareh, A. (2011), The choice of an admissible sete of rival models.
Journal of Statistical Sciences, 4(2), 149-165.

Clarke, K., A. and Signorino, C. S. (2010), Discriminating methods: Tests for non-nested
discrete choice models. Political Studies, 58, 368-388.

Commenges, D., Sayyareh, A., Letenneur, L., Guedj, J. and Bar-Hen, A. (2008),
Estimating a difference of Kullback-Leibler risks Using a normalized difference of
AIC. The Annals of Applied Statistics, 2(3), 1123-1142.

Cox, D.R. (1961), Test of separate families of hypothesis. proceeding of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, 1, 105 − 123.

Katayama, N. (2008), Portmanteau likelihood ratio tests for model selection, (http://
www.economics.smu.edu.sg/femes/2008/169.pdf).

Kullback, S., Leibler, R. (1951), On information and sufficiency. Annals of Mathematical
Statistics, 22, 79-86.

Lorestan, H. and Sayyareh, A. (2017), Model selection using union-intersection
principle for non nested models. Communications in Statistics-Theory and Methods,
46(4), 1636-1649.



Testing Several Rival Models 63

Pesaran, M. H. (1974), On the general test of model selection. Review of Economic Studies,
41, 153-171.

Pesaran, M. H., and Deaton, A.S. (1978), Testing non-nested nonlinear regression
models. Econometrica, 46, 667-694.

Pho, K. H., Ly, S. Ly, S., and Lukusa, T. M. (2019), Comparison among Akaike
information criterion, Bayesian information criterion and Vuong’s test in model
selection: A case study of violated speed regulation in Taiwan. Journal of Advanced
Engineering and Computation, 3(1), 293-303.

Sayyareh, A. Obeidi, R., and Bar-Hen, A. (2011), Empirical comparison of some model
selection criteria. Communication in Statistics-Simulation and Computation, 40, 72-86.

Sayyareh, A. (2012), Inference after separated hypotheses testing: An investigation for
linear models. Journal of Statistical Computation and Simulation. 82(9), 1275-1286.

Sayyareh, A. (2017), Non parametric multiple comparisons of non nested rival models.
Communications in Statistics-Theory and Methods, 46(17), 8369-8386.

Shimodiara, H. (1998), An application of multiple comparison techniques to model
selection. Annals of Institute Statistical Mathematics, 50(1), 1-13.

Shimodaira, H. (2001), Multiple comparisons of log-likelihoods and combining non-
nested models with application to phylogenetic tree selection. Communication in
Statistics-Theory and methods, 30, 1751-1772.

Vuong, Q. H. (1989), Likelihood ratio tests for model selection and non-nested
hHypotheses. Econometrica, 57(2), 307-333.

Yanagihara, H., and Ohomoto, C. (2005), On distribution of AIC in linear regression
models. Journal of Statistical Planning and Inference, 133, 417-433.

White, H. (1982a). Maximum likelihood estimation of misspecified models.
Econometrica, 50, 1-26.

White, H. (1982b), Regularity conditions for Cox’s test of non-nested hypotheses. Journal
of Econometrics, 19, 301-318.

Zucchini, W. (2000), An introduction to model selection. Journal of Mathematical
Psychology, 44, 41-61.


