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Abstract. Recently, some statistical studies have been done using the shape data. One
of these studies is clustering shape data, which is the main topic of this paper. We are
going to study some clustering algorithms on shape data and then introduce the best
algorithm based on accuracy, speed, and scalability criteria. In addition, we propose
a method for representing the shape data that facilitates and speeds up the shape
clustering algorithms. Although the mentioned method is not very accurate, it is fast;
therefore, it is useful for datasets with a high number of landmarks or observations,
which take a long time to be clustered by means of other algorithms. It should be noted
that this method is not new, but in this article we apply it in shape data analysis.
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1 Introduction

Statistical shape analysis is a branch of science that deals with the behavior of the shapes
of various objects and the relationships between the shape and size of the shapes with
the features of the related objects. On the other hand, clustering is an unsupervised
method for grouping objects in such a way that the objects in one cluster have the most
similarities compared to the objects of other clusters. This method helps the researchers
find the patterns within the objects. Clustering shape data is a useful method for
analyzing shape datasets and discovering the relations between shape and size and the
features of the objects. For example, to discover the relationship between the age and
the size and shape of the bones in a kind of animal, shape clustering is used. Until
now, many studies have been done on clustering shape data. Some of these studies
are listed in continuation. The distance matrix and its usage in hierarchical clustering
were studied by Lele and Richtsmeier (2001). Usage of hierarchical clustering in
imaged objects and finding the probability models for clusters of shapes were studied
by Srivastava et al. (2005). The application of K-means in shape data was made by
Amaral et al. (2010). The application of hierarchical clustering was considered by
Ishihara et al. (2011), and the agglomerative hierarchical clustering with different
shape distances was studied in Nabil and Golalizadeh (2016).

Our goal in this article is to examine four kinds of clustering methods, including
agglomerative hierarchical, divisive hierarchical, partitioning, and fuzzy clustering
on shape data to achieve the best clustering method in terms of accuracy, speed, and
scalability. In addition, a vectorized representation of shape data is proposed. Although
this representation leads to a simple and fast clustering algorithms, it loses some of the
accuracies.

In the next section, we briefly explain some basic concepts of statistical shape
analysis that are used in shape clustering. Then, in Section 3, a simulation study is
done. Section 4 contains the results of our study on five benchmark data and then in
the last section, we summarize the results and introduce a simpler and faster clustering
method for shape datasets.

We mention that all calculations in this article are performed with a computer with
the following features: CPU: P4/3.4 GHz, H.D.D: 320 G, RAM: 1 GB.
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2 The Basic Concepts of Clustering Shape Data

In this section, we define some basic concepts about clustering shape data, which are
useful in the subsequent parts. It is necessary to mention that most of the notations
and concepts of this section are based on Dryden and Mardia (2016).

A “shape" is all the geometrical information that remains when location, scale, and
rotational effects are filtered out from an object, Kendall (1977). To represent a shape
in mathematical form, landmarks are used. The landmarks are some points that are
placed on the border or the image of an object to represent the shape of the object
approximately. Suppose there is an object and its shape is desired to be investigated.
To represent the shape of an object, a matrix with k rows and m columns will be used,
which named configuration matrix and is represented by X. Here, k is the number
of landmarks, which is located on the border of an object or its image and m is the
dimension of the mentioned landmarks. Therefore, when we have n objects, the shape
dataset will be a k×m×n array. It is worth mentioning that in all configuration matrices
of this paper, there is no similar correspondent labels.

Another useful concept is a pre-shape of X, which is represented by Z and is the
result of some mathematical changes in X such that it is invariant under the translation
and scaling of the original configuration. Now, we are going to find the best clustering
algorithm for shape data in terms of speed and accuracy. We will compare clustering
algorithms on simulated and benchmark shape datasets.

As mentioned in Izenman (2008) and Rencher (2002), the agglomerative hierarchical
clustering is suitable for the situations that a large number of clusters is desired, and
the divisive is useful for clustering with a few number of clusters. On the other hand, a
partitioning clustering algorithm is faster than the hierarchical, and the fuzzy clustering
has more accuracy. Because of the mentioned properties of each of these algorithms,
we are interested in examining their impact on shape datasets.

Clustering shape data has many applications in the real world. Some examples
are explained in Dryden and Mardia (2016) and Lele and Richtsmeier (2001). For
example, determining the effect of schizophrenia on the shape of the human brain or
determining the effect of age to shape and size of a certain bone in a kind of animal.

Clustering methods group objects in such a way that objects within each group are
more similar in comparison with those of other groups. An essential tool for measuring
similarities or dissimilarities is the distance measure. For clustering shape data, one
could use the shape distances. There are some specific shape distances, like partial
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Procrustes, full Procrustes, Riemannian, and size-and-shape distances. As pointed
out in Nabil and Golalizadeh (2016), size-and-shape distance is the best measure of
distance for clustering shape data when the size is of interest; otherwise, full Procrustes
is the best distance to use. Therefore, we will use size-and-shape and full Procrustes
distances for clustering datasets. Based on Dryden and Mardia (2016), these two
distances are defined as (2.1) and (2.2):

dF(X1,X2) = inf
Γ∈SO(m),β∈R

‖ Z2 − βZ1Γ ‖, (2.1)

d2
S(X1,X2) = inf

Γ∈SO(m)
‖ HX1 −HX2Γ ‖2 . (2.2)

Here, X1 and X2 are two configuration matrices and Zi = HX/ ‖ HXi ‖ for i = 1, 2 is the
related pre-shape of i-th object. Besides, ‖ HXi ‖ stands for the norm of HXi, where H
is Helmert sub-matrix with k − 1 rows and k columns. The first row of Helmert matrix
is removed in H. Furthermore, SO(m) which is a special orthogonal group, is the set of
all m ×m rotation matrices and Γ is a rotation matrix.

One other concept is the definition of a mean shape. As mentioned in Dryden and
Mardia (2016) and Nabil and Golalizadeh (2016), a mean shape can be inferred as the
minimizer of any shape distance. For N configuration matrices X1, . . . ,XN, it is given
by

µ̂ = arg inf
a∈Rkm

N∑
i=1

d2(a,Xi),

where d denotes the distance used in the shape space.

There are several criteria for identifying the accuracy of clustering algorithms, which
can be classified in two general categories of internal and external criteria. We will use
three internal criteria: Silhouette, Dunn, and tau, as well as the four external criteria:
Rand, Jaccard, Russel-Rao, and Fowlkes-Mallows to compare clustering algorithms.
The Silhouette is a criterion that shows the similarity of an object with its cluster
members compared with the members of other clusters. Its value could be in (−1, 1).
The higher the amount of Silhouette, the greater the adaptation to the desired cluster.
Dunn’s interpretation is like Silhouette. The tau criterion measures the relationship
between two vectors. The higher value means the higher similarity. The Rand index is
a measure of the similarity between two data clustering methods: real classes and the
result of clustering algorithms. Its value is between 0 and 1. Jaccard’s output is a value
between 0 and 100 %, which higher values indicate higher similarity. Fowlkes-Mallows
criterion can be used to determine the similarity between two clustering methods. The
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higher value of this index, the greater similarity between the clusters. Russel-Rao
criterion is like Fowlkes-Mallows. According to Gan et al. (2007), we consider two
clustering structure C = {C1, . . . ,Cm} and P = {P1, . . . ,Ps} for defining the above criteria.
Besides, we define a, b, c, and d as follows:

• a is the number of pairs of data points that are in the same cluster of C and in the
same cluster of P.

• b is the number of pairs of data points that are in the same cluster of C but in
different clusters of P.

• c is the number of pairs of data points that are in different clusters of C but in the
same cluster of P.

• d is the number of pairs of data points that are in different clusters of C and in
different clusters of P.

Now we have four indexes including Rand index (R), Jaccard (J), Russel-Rao (RR), and
Fowlkes-Mallows (FM) as follows.

R =
a + b

a + b + c + d
, J =

a
a + b + c

,RR =
a

a + b + c + d
,FM =

√
a

a + b
×

a
a + c

.

3 Simulation Study

We are going to generate a shape dataset involving four hypothetical types of flower
images in two dimensions. Then we will perform four clustering algorithms on our
simulated data to achieve the best algorithm in terms of accuracy, speed, and scalability.
In the end, we will examine a new method to represent our simulated shape data and
compare the results of clustering by this new method with previous algorithms.

In order to generate shape data, we use the linear model (3.1). As mentioned in
Dryden and Mardia (2016), equation (3.1) is the configuration matrix definition.

Xi = βiµΓi + 1kγ
T
i , i = 1, . . . ,n, (3.1)

where Xi is the i-th element of our desired shape dataset array, βi is a scale parameter
with positive values, µ is the mean shape, Γi is an m ×m rotation matrix, 1k is a vector
involving k numbers of ones and γi is a location vector with m × 1 dimensions.

Suppose we are going to study the shape and size of four kinds of flowers, including
three-leaf, four-leaf, five-leaf and violet flower, and so we have four mean shapes, as
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in Figure 1. We put 31 landmarks on each mean shape and simulate 10, 15, 20 and 25
configuration matrices for each kind of flower, respectively, see Figure 2. Therefore,
we are going to cluster a 31 × 2 × 70 dataset to four clusters. In the simulation study,
we use a fixed µ for each of these four mean shapes. Then with some changes in scale,
rotation, and location, we generate new configurations. In the following algorithm, we
explain that µ has a fixed value in step 3.

• Step 1. Create a function named Gamma which generate n stochastic orientation
matrix as a 2 × 2 × n array which elements are the 2 × 2 orientation matrices

as
(
cosθ − sinθ
sinθ cosθ

)
. The parameter θ can be randomly chosen from a uniform

distribution on (−π, π). Here we choose (0,−π/6) as we wish. There is no
different in final results if we choose θ in other distances from −π to π.

• Step 2. Define a random vector of uniform distribution as a scale vector. We
called it Beta. As we explain earlier, β belongs to R+. Here we choose it on (1, 2).

• Step 3. Input mean shape as a matrix that has n rows and m column. It’s name is
Mu.

• Step 4. Define a random array of location vectors of standard normal distribution,
We called it gamma.

• Step 5. Create a linear function which gives Beta, Mu, Gamma, and gamma and
gets the simulated dataset according to equation (3.1).

For clustering this dataset, we consider four clustering algorithms, including hclust,
diana, pam and fanny in R software. These algorithms are based on the agglomerative,
divisive, partitioning and fuzzy clustering method, respectively. As it is mentioned in
the help of R software, hclust is a function for hierarchical cluster analysis on a set of
dissimilarities and the methods for analyzing it. It is necessary to know that, we use
the ward. D2 method in all over of this paper. diana computes a divisive hierarchical
clustering of the dataset returning an object of class diana. pam partitions (clusters) data
into k clusters "around medoids", which is a more robust version of K-means. fanny
computes a fuzzy clustering of the data into k clusters. It is necessary to mention that
the shape-and-size distance is used to clustering this dataset because both shape and
size is important in this study.
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Figure 1: Simulated mean shapes of four kinds of flower, including three-leaf, four-leaf,
five-leaf and violet.

To compare the accuracy of these clustering algorithms, we will use some internal
and external indexes. To compare the speed of the algorithms, the average running
time in 100 repetitions is calculated and the one with the lowest average will be chosen
as a better algorithm. It should be noted that the time used here is the user time and
is in seconds. The scalability of different methods is investigated by a set of simulated
data with 100, 150, 200, and 250 configuration matrices (n = 700) of each kind of the
mentioned flowers, respectively.

We summarize the results of 100 repetitions of algorithms in Table 1. In each
column of this table, we have bolded cases with the best results. Therefore, it is clear
that pam algorithm has higher accuracy and speed than the other algorithms and then
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diana takes the second place. In addition, the results of scalability for the previous
algorithms except fanny are gathered in Table 2. The fanny algorithm is omitted from
this comparison because by Table 1 it is not useful even in the small dataset. As it is
shown in Table 2, for large number of observations the diana algorithm is most accurate
in comparison to the hclust and pam. In this situation, the hclust algorithm is faster
than the others.

Figure 2: The four kinds of flower landmarks, with 31 landmarks per Flower image:(a)
10 three-leaf; (b) 15 four-leaf; (c) 20 five-leaf and (d) 25 violet flower.
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Table 1: The results of 100 repetitions of the algorithms on a simulated dataset with
n=70. The best values are bolded. The time average is reported in seconds.

Desired criteria
Algorithm Silhouette Dunn Tau Rand Jaccard Russel-Rao Fowlkes-Mallows Time
hclust 0.513658 0.189075 0.783638 0.853834 0.657008 0.215954 0.731606 3.602400
diana 0.512121 0.247597 0.803604 0.932447 0.800520 0.237863 0.882373 3.572100
pam 0.523196 0.201804 0.904391 0.941723 0.813739 0.242605 0.884712 3.573400
fanny 0.505655 0.095020 0.832288 0.903317 0.626673 0.203130 0.787413 3.593600

Table 2: The results of 100 repetitions of the algorithms on a simulated dataset with
n=700. The best values are bolded. The time average is reported in seconds.

Desired criteria
Algorithm Silhouette Dunn Tau Rand Jaccard Russel-Rao Fowlkes-Mallows Time
hclust 0.495745 0.077016 0.780923 0.854842 0.655617 0.224789 0.768154 351.7919
diana 0.529793 0.295104 0.998913 0.997577 0.994356 0.272549 0.996532 352.1557
pam 0.522502 0.125237 0.944293 0.964526 0.887448 0.261003 0.946582 352.0493

3.1 Matrix Based Shape Clustering (MBSC)

Now we draw your attention to a small trick for clustering shape data. Previously, this
idea was used in Mohammadpour et al. (2004) and Gonzalez and Woods (2002). Our
purpose is to consider each k ×m configuration matrix of the shape dataset as a 1 × km
vector to achieve an n × km matrix instead of the k × m × n array. With this approach,
the results of clustering algorithms will be impressive. Although the accuracy of the
algorithms is somewhat diminished, the speed and simplicity are so dramatic. In
addition, when one uses this method, it will be so easy for him/her to apply some
clustering algorithms that don’t accept a distance matrix as input, like K-means. It is
necessary to mention that we will still have the impact of all the data in these clustering
processes. We named this common vectorized method “MBSC", the abbreviation of the
Matrix Based Shape Clustering, for shape data. The results of performing this approach
for clustering the simulated data for n = 70 are gathered in Table 3. It is possible to
somewhat rely on this method because it does not lose much accuracy in comparison
with the other algorithm in Table 1. The results of the scalability of “MBSC" method
on simulated data are gathered in Table 4. From this table, we conclude that “MBSC"
method is useful for a large number of observations.
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Table 3: The results of 100 repetitions of the algorithms on simulated dataset by MBSC
approach for n = 70.

Desired criteria
Algorithm Rand index Time
kmeans 0.690667 0.011740
diana 0.674990 0.012450
pam 0.709892 0.012730

Table 4: The results of 100 repetitions of the algorithms on simulated dataset by MBSC
approach for n = 700.

Desired criteria
Algorithm Rand index Time
kmeans 0.684412 0.9557
diana 0.674467 2.1604
pam 0.707982 1.1397

4 Application

Now we are going to investigate the accuracy of the results of the simulation study with
some benchmark data. The data were studied by Dryden and Mardia (2016) and are
available in R package shapes. At first, in Subsection 4.1, we introduce the benchmark
datasets that will be used in this section and then, in Subsection 4.2, we will check the
results of the simulation study with the given benchmark datasets.

4.1 Benchmark Datasets

We use 5 datasets named mice, macaques, schizophrenia, sand, and rats. In the
following, we will introduce each of them briefly, for more information, see Dryden
and Mardia (2016).

• Mice dataset: It is a 6 × 2 × 46 array, including the configuration matrix of the
image of the second thoracic vertebra T2 in mice. Here, 23 large and 23 small
bones are studied. The aim is to recognize the effect of mice’s size in the shape
and size of the mentioned bone.

• Macaques dataset: This dataset is a 7 × 3 × 18 array, including the configuration
matrix of the shape of the skulls of 9 male and 9 female macaques. The aim is to
recognize the effect of gender of macaques in the shape and size of the skulls.
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• Schizophrenia dataset: In this dataset, the aim is to cluster a 13 × 2 × 28 array to
two clusters, including 14 volunteers and 14 schizophrenia patients with respect
to the image of their brains for detecting the effect of schizophrenia on brain
shape.

• Sand dataset: 25 river sands and 24 sea sands are targeted to describe the
differences in shape variability of the sands by means of a 50 × 2 × 49 array.

• Rats dataset: It is a 8 × 2 × 144 array, including the configuration matrix of the
image of the skulls of rats at ages 7,14, 21, 30, 40, 60, 90 and 150 days. There are
18 rats with complete sets of eight landmarks in two dimensions at each age. The
aim is to find the effect of age on the size and shape of skulls.
It should be noted that the shape data may not necessarily be labeled in clustering
analysis and the clustering algorithms are efficient for unlabeled shape data, too.

4.2 Evaluation of Clustering Algorithms

In this subsection, we put the results of the four clustering algorithms outlined in
Section 3 on each of the introduced benchmark datasets. It should be noted that
we have used the appropriate shape distance for each dataset. It means that for the
mice, rats, and macaques datasets the shape-and-size distance is used and for the
schizophrenia and sand datasets the full Procrustes distance is applied. The results
of four clustering algorithms on these datasets are summarized in Table 5 and 6. It
is necessary to mention that in the sand and schizophrenia datasets we consider just
the shape and in the other ones both shape and size are important so the fuzziness
parameter is 2 for all datasets except the sand and schizophrenia, which is 1.5. That is
because when the fuzzy parameter increased the fuzziness in clustering will increase
too. For more information see the help of R software about fanny function. In Table
5, we put the average user time of each clustering algorithm for each dataset and in
Table 6, the comparison of the accuracy of the four algorithms for the above-mentioned
datasets is summarized.

Table 5: The average time of running clustering algorithms on five shape datasets.

Dataset’s name
Algorithm’s name Mice Rats Macaques Schizophrenia Sand

hclust 0.4683 5.1621 0.2643 0.1493 2.3129
diana 0.4655 5.1042 0.2623 0.1484 2.3397
pam 0.4775 5.2500 0.2634 0.1477 2.3152
fanny 0.4703 5.3484 0.2634 0.1502 2.3286
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It is clear from Table 5 that divisive hierarchical clustering is faster than the other
algorithms and in the second rank, the partitioning algorithm is suitable in terms of
speed.

Table 6: The results of accuracy indexes of clustering algorithms on benchmark datasets.
The best values are bolded.

Mice
Silhouette Dunn Tau Rand Jaccard Russel-Rao Fowlkes-Mallows

hclust 0.414389 0.337954 0.957427 0.956522 0.914934 0.467633 0.955578
diana 0.421518 0.348350 0.877058 0.875362 0.775652 0.430918 0.873687
pam 0.419584 0.323346 0.916515 0.914976 0.840580 0.448309 0.913393
fanny 0.419584 0.323346 0.916515 0.914976 0.840580 0.448309 0.913393

Rats
hclust 0.333330 0.253835 0.076438 0.778749 0.048852 0.011364 0.093183
diana 0.342476 0.260198 0.066309 0.776127 0.051440 0.012141 0.097933
pam 0.325581 0.180406 0.063231 0.781080 0.045320 0.010392 0.086713
fanny 0.311732 0.180406 0.061467 0.780206 0.049958 0.011558 0.095183

Macaques
hclust 0.328196 0.425589 0.777778 0.790850 0.636364 0.366013 0.777778
diana 0.345807 0.465953 0.797724 0.790850 0.644444 0.379085 0.784070
pam 0.345714 0.434053 0.620174 0.633987 0.481482 0.339869 0.653276
fanny 0.328196 0.425589 0.777778 0.790850 0.636363 0.366013 0.777778

Sand
hclust 0.193411 0.222455 -0.285307 0.525510 0.368063 0.276361 0.538659
diana 0.220038 0.154416 -0.428333 0.583333 0.403167 0.281463 0.574653
pam 0.214734 0.178345 -0.271058 0.525510 0.351916 0.257653 0.520646
fanny 0.220038 0.154416 -0.428333 0.583333 0.403167 0.281463 0.574653

Schizophrenia
hclust 0.109056 0.421800 0 0.481481 0.304965 0.227513 0.467419
diana 0.097007 0.444431 0.382360 0.547619 0.389286 0.288360 0.561572
pam 0.125513 0.430909 0.144338 0.492064 0.314286 0.232804 0.478289
fanny 0.130492 0.428562 0.144338 0.492064 0.314286 0.232804 0.478289

Table 7: Rand index of MBSC for benchmark datasets. The best values are bolded.

Desired criterion and algorithm
Dataset’s name Rand index of kmeans Rand index of pam Rand index of diana

Mice 0.671981 0.837681 0.736232
Rats 0.776363 0.783217 0.761267

Macaques 0.790850 0.575163 0.790850
Sand 0.750000 0.750000 0.780612

Schizophrenia 0.484127 0.492064 0.484127
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Table 8: The average time of 1000 times running MBSC for benchmark datasets. The
best values are bolded.

Algorithm
Dataset kmeans pam diana

Mice 0.00044 0.00079 0.00075
Rats 0.00074 0.01009 0.0067

Macaques 0.00033 0.00035 0.00033
Sand 0.00076 0.0012 0.00113

Schizophrenia 0.00039 0.00054 0.00041

At the first glance in Table 6, it is concluded that divisive hierarchical clustering is
more accurate almost everywhere. However, a shape dataset with a large number of
landmarks has higher speed under the agglomerative hierarchical clustering.

In Tables 7 and 8, the results of MBSC for the benchmark data are presented. As it
is clear from the results, the MBSC has more accuracy under partitioning and divisive
hierarchical clustering in comparison with the K-means. In other hands, it is very fast
under the K-means and very time-consuming under the partitioning one. It is clear
from Tables 6 and 7 that although the MBSC method will lose some of the accuracies,
it will save a lot of time.

5 Conclusion

In this article, we examined the agglomerative hierarchical, divisive hierarchical,
partitioning and fuzzy clustering algorithms on a collection of shape data to achieve the
best clustering algorithm in terms of accuracy, speed, and scalability. According to the
obtained results, the fastest algorithm is the divisive hierarchical clustering in ordinary
datasets. When the number of landmarks increases, agglomerative hierarchical clusteri-
ng is better in terms of speed. On the other hand, the divisive hierarchical and
partitioning clustering methods are, respectively, more accurate compared with other
methods. In addition, we used the simple and fast vectorized method for shape
clustering, which is suitable for time-consuming clustering datasets. Although it is not
as accurate as of the regular approach, it is really fast and simple.

The codes are available from Github of corresponding author.
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