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1 Introduction

The data collected by modern techniques may be considered as some independent and
identically distributed realizations of a random field, taking values in a real separable
Hilbert space L2(T) endowed with a scalar inner product 〈· , · 〉, where T is a rectangle
in RN. In other words, the data for a given phenomenon is a random sample of an N-
dimensional random field. Formally, Adler (1981) defines the N-dimensional random
field as follows.

Let GN,d denote the set of all Rd-valued functions on RN, N, d > 1, and GN,d denote
the σ-field consisting of all sets of the form

{
g ∈ GN,d

|g(t j) ∈ B j; j = 1, 2, · · · ,m
}
, where

m is an arbitrary fixed integer, the t j’s are points of RN and B j ∈ B
d, with Bd stands for

the Borel σ-field generated by the half-open intervals in Rd.

Definition 1.1. (Adler , 1981, p.13) For a given probability space (Ω, A, η), an n-
dimensional d-valued random field is the measurable mapping X : (Ω,A) −→ (GN,d,GN,d).
We call X an (N, d) random field and write it for short X = {Xt}t∈RN .

The random projection technique (Johnson and Lindenstrauss , 1984) has been adapted
in different scientific areas; for example, in machine learning, functional regression,
data mining and so on. For instance, using randomly chosen projections to random
lines, Lejsek et al. (2005) present the nearest neighbor application to study copyright
protection for online posted images. Also, based on a univariate kernel smoothing and
for the functional regression model with scalar response, Patilea et al. (2012) present a
projection-based effect test of a functional covariate.

The logic behind the finite random projection approach is to project, using a random
projection matrix R, a set of high-dimensional n points in Euclidean space Rp onto a
subspace Rk, with k � min(n, p), such that the pairwise distances are preserved by a
small factor ε > 0. (Achlioptas , 2003).In other words, given a matrix A ∈ Rn×p, we can
project the p-dimensional n points of A onto Rn×k by computing

√
(1/k)A · R, where

Rp×k is a random projection matrix. The elements of R can be generated, for example,
from N(0, 1) distribution. In effect, many studies have been carried out to choose the
best projection matrix R and to study the statistical properties of the projected dataset.
We refer the interested reader to Achlioptas (2003) and the references therein for more
details on effective methods for choosing the matrix R.

We are concerned with projecting, at random, high-dimensional points of a dataset
on one-dimensional random directions and then applying a univariate test on a few
randomly elected marginals. In fact, the one-dimensional random projection approach
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allows one to test whether the entire distribution of the process is Gaussian or not, and
hence it is not restricted to the marginal distributions, and that is why it is suitable
for goodness of fit problems. The one-dimensional random projection approach was
developed for the infinite dimensional space by Cuesta-Albertos et al. (2006) and
Cuesta-Albertos et al. (2007a). Relying on this approach, Cuesta-Albertos et al. (2009)
proposed the one-dimensional KS goodness of fit test to study the Gaussianity of a
stationary stochastic processes, by observing one realization of the process. Other
applications can be found in Cuevas and Fraiman (2009) and when observations are
realizations of a random function (functional data), in Cuesta-Albertos et al. (2007b).
On the other hand and by observing just one realization, Di Bernardino et al. (2017)
presented a Gaussianity test for an isotropic stationary random field, which is based
on computing the Euler characteristic function.

The rest of this article is organized as follows. In Section 2, we point out the
main results of the one-dimensional random projection approach and give a review
of the one-dimensional projected KS goodness of fit test. We generalize the one-
dimensional KS test to random field settings and define the projected AD statistic for
stochastic processes and random fields in Section 3. Some series of simulation studies
are carried out in Section 4 to study the performance of the proposed method. Finally,
an application of real data will be developed to illustrate and compare the performance
of the projected tests for three-dimensional random fields in Section 5.

2 One-dimensional Random Projection

We assume that all random elements are defined on the probability space (Ω, A, η).
Suppose that X and Y are twoRp-valued random vectors with probability distribution
laws P and Q, respectively. If 〈· , ·〉 denotes the usual scalar product in Rp and if we

define the set E(X,Y) = {h ∈ Rp
|〈h,X〉 law

= 〈h,Y〉}, then the main statistical problem is

finding a sufficient condition on E(X,Y) to guarantee that X law
= Y, that is, X and Y are

identically distributed. Cuesta-Albertos et al. (2007a) give a general answer to this
problem in the following theorem. In effect, h is a fixed random element generated
according to a non-degenerate probability law ψ independent of P and Q.

Theorem 2.1. For two Rp-valued random vectors X and Y, let P be a Borel probability law of

X onRp so that
∑

n>1
(E ‖X‖n)−1/n = ∞. Then X law

= Y if and only if the set E(X,Y) has a positive

Lebesgue measure.
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Theorem 2.1 was generalized to infinite-dimensional separable Hilbert space as follows.

Theorem 2.2. (Cuesta-Albertos et al., 2007b) Let H be a separable Hilbert space endowed
with norm ‖·‖. Let X and Y be two H-valued random elements such that

∑
n>1

(E ‖X‖n)−1/n =

∞. Take ψ as a non-degenerate Gaussian measure on H . Define the set E(X,Y) = {h ∈

H|〈h,X〉 law
= 〈h,Y〉}. Then X law

= Y if and only if ψ [E(X,Y)] > 0.

Suppose that P〈h〉 is the distribution law of the random variable 〈X, h〉 and, similarly,
Q〈h〉 is the probability distribution of the random variable 〈Y, h〉.

Note. Let us highlight some consequences of these two results. If X law
= Y (P = Q), then

clearly, ∀h, the marginal distributions P〈h〉 and Q〈h〉 are matched. But if P , Q, then
the probability that all one-dimensional marginal distributions are matched, is zero, or
equivalently, if the probability that P〈h〉 = Q〈h〉 is positive for some h, then P = Q. As a
result, the null hypothesis testing of H0 : P = Q is equivalent to testing H0,h : P〈h〉 = Q〈h〉
for a given non-degenerate random direction h.

As a result, the main idea of the proposed goodness of fit test is, at first, generating
some random directions h’s, and then, performing the underlying null hypothesis
testing (H0) according to H0,h’s through the multiple testing paradigm. The empirical
error and the power of this proposed test are evaluated through the simulation studies.

Now, suppose that we have a random sample X1,X2, · · · ,Xn of a random element X
with probability lawP on a separable Hilbert spaceH and letP0 be a given probability
law on H . To test the null hypothesis H0 : P = P0 against the alternative H1 : P ,
P0, Cuesta-Albertos et al. (2006) defined the following one-dimensional projected KS
statistic.

Dn(h) := sup
u∈R

∣∣∣Fh
n(u) − Fh

0(u)
∣∣∣ , (2.1)

where

Fh
n(u) :=

1
n

n∑
i=1

I(−∞,u] (〈Xi, h〉); (u ∈ R), (2.2)

and
Fh

0(u) := P0
{
x ∈ H : 〈x, h〉 ≤ u

}
; (u ∈ R). (2.3)

That is, if we define E(P,P0) =
{
h ∈ H|P〈h〉 = P0,〈h〉

}
, then the hypothesis testing of

H0,h : P〈h〉 = P0,〈h〉 is equivalent to testing the underlying null hypothesis H0. They also
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proved that the statistic (2.1) has the exact properties of the well-known one-sample
KS statistic and that it is independent of the random direction h. The projected null
hypothesis is rejected if Dn(h) is large enough. The above hypothesis testing problem
is known as the goodness of fit problem.

Similarly, suppose that X1,X2, · · · ,Xn and Y1,Y2, · · · ,Ym are two random samples
of the two Hilbert-valued random elements X and Y with probability laws P andQ on
H , respectively. To test H0 : P = Q against the alternative H1 : P , Q, Cuesta-Albertos
et al. (2006) proposed the following one-dimensional projected KS statistic.

Dn,m(h) := sup
u∈R

∣∣∣Fh
n(u) − Gh

m(u)
∣∣∣ , (2.4)

where

Fh
m(u) :=

1
n

n∑
i=1

I(−∞,u] (〈Xi, h〉); (u ∈ R),

and

Gh
m(u) :=

1
m

m∑
j=1

I(−∞,u]

(
〈Y j, h〉

)
; (u ∈ R).

As a result, with probability one, if H0,h : P〈h〉 = Q〈h〉 is rejected, then the underlying
null hypothesis H0 : P = Q is rejected. The above hypothesis testing problem is known
as the equality of distribution problem.

In fact, from the results presented by Cuesta-Albertos et al. (2007a) and Cuesta-
Albertos et al. (2007b), we conclude that, by defining a proper separable Hilbert space
endowed with a suitable inner product, the results are still valid for Hilbert-valued
random field settings. To our knowledge, there is no published work on the goodness
of fit tests for random fields based on observing a sample.

Therefore, in the following section, we will define the one-dimensional projected
KS and AD statistics for Hilbert-valued random fields.

3 Goodness of Fit Tests for Random Fields

Let X be an N-dimensional random field defined on Ω→ H = L2([0, 1]N), whereH is
endowed with the following inner product for trajectories (non-random sample paths),

〈 f , g〉 =

∫
t∈[0,1]N

ftgt dt, (3.1)
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which is well defined because of the inequality 2|ab| 6 |a|2 + |b|2. By considering this
Hilbert spaceH and the inner product (3.1), the one-dimensional projected KS test is still
reliable and valid in random fields settings, and we will propose the one-dimensional
projected AD test.

The inner product in (3.1) is well defined for the Brownian sheet according to the
following theorem (Adler and Taylor, 2004, Theorem 3.1.2).

Theorem 3.1. For a centered Gaussian process h with a continuous covariance function, if h
is almost surely continuous, then the sum

ht =

∞∑
n=1

ξnϕn(t); t ∈ T,

converges uniformly on T with probability one, where the ξn are i.i.d. N(0, 1), and the ϕn are
certain functions on T determined by the covariance function of h. In general, the convergence
is in L2(P) for each t ∈ T.

Now, suppose that X1,X2, · · · ,Xn is a random sample of a random field X. Using the
one-dimensional random projection approach, we are interested in testing H0 : P = P0,
where P0 is a given continuous probability law on H . According to Section 2, it is
enough to generate, at random and independently of P, a Hilbert-valued element h
according to non-degenerate law ψ, a Brownian sheet for example. Then, we compute
the scalar products Xi(h) = 〈Xi, h〉; (i = 1, 2, . . . ,n) and apply the KS test for the projected
sample.

Similarly, the projected two-sample KS test for independent samples X1,X2, · · · ,Xn
and Y1,Y2, · · · ,Ym of two independent random fields is defined.

In the next subsection, we will give our main result, the one-dimensional projected
AD goodness of fit test. We will see in Section 4 that the projected AD statistic is more
powerful than the projected KS one, as is the case in the standard AD and KS tests
(Lehmann, 1999, Lemma 5.7.1).

3.1 AD Goodness of Fit Test for Random Fields

Assume that X1,X2, · · · ,Xn is a real-valued sample of a random variable X defined
on the probability space (Ω,A, η). Let F be a continuous distribution function of the
probability law P. To test the null hypothesis of H0 : P = P0, for a given continuous
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P0, Anderson and Darling (1952) proposed the following test statistic:

A2
n := n

∫
R

[Fn(u) − F0(u)]2

F0(u) [1 − F0(u)]
dF0(u), (3.2)

where F0 is the distribution function of P0, Fn(u) := 1
n

n∑
i=1

I(−∞,u] (Xi); u ∈ R, is the

empirical distribution function and w(u) = (F0(u) [1 − F0(u)])−1 is a weight function.
This test statistic is consistent against all alternative hypotheses (DasGupta, 2008, Sec.
26.5) and, under H0, it is distribution-free (Lehmann, 1999). Stephens (1974) showed
that the AD test is the best empirical distribution function (EDF) statistic in detecting
departures of F from Gaussianity. The next Theorem gives the asymptotic distribution
of (3.2).

Theorem 3.2. (DasGupta, 2008, Theorem 26.3) Suppose that the function g is strictly positive

on (0, 1). If
1∫

0
u(1 − u)

[
g(u)

]−1 du < ∞, then

n
∫
R

[Fn(u) − F0(u)]2

g (F0(u))
dF0(u)

η
−→
n→∞

1∫
0

B2(t)
g(t)

dt, (3.3)

where, B(t) is a Brownian bridge on t ∈ [0, 1].

As a result, if we take the function g(u) = u(1 − u), then (3.2) satisfies this Theorem.

In the following, we present the AD type test statistics for Hilbert-valued random
fields and for the one-sample case.

Suppose that X1,X2, · · · ,Xn is a random sample of realizations of a Hilbert-valued
random field X with a probability law P on H = L2([0, 1]N). Let h be an H-valued
random element with a non-degenerate Gaussian probability law ψ, a Brownian sheet
for example, independent of P. Since, with probability one, testing H0 : P = P0 against
H1 : P , P0 is equivalent to testing H0,h : P〈h〉 = P0,〈h〉 against H1,h : P〈h〉 , P0,〈h〉, we
define the one-dimensional projected AD goodness of fit test statistic as

A2
n(h) := n

∫
R

[
Fh

n(u) − Fh
0(u)

]2

Fh
0(u)

[
1 − Fh

0(u)
] dFh

0(u), (3.4)
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where Fh
n(u) and Fh

0(u) are defined as (2.2) and (2.3), respectively. The following Theorem
gives the asymptotic distribution of (3.4) under H0.

Theorem 3.3. Let {Xn}n>1 be anH-valued sequence of independent and identically distributed
random elements with a probability law P and defined on a probability space (Ω,A, η). Also,
for a given continuous probability law P0 onH and for a given random direction h ∈ H , define

A2
n(h) := n

∫
R

[
Fh

n(u) − Fh
0(u)

]2

Fh
0(u)

[
1 − Fh

0(u)
] dFh

0(u).

Now, for every h ∈ H − {0} and ∀n > 1, the statistic A2
n(h) has the same distribution as the

statistic A2
n under the null hypothesis. In particular, its null distribution is independent of the

random direction h as follows.

A2
n(h) := n

∫
R

[
Fh

n(u) − Fh
0(u)

]2

g
(
Fh

0(u)
) dFh

0(u)
η
−→
n→∞

1∫
0

B2(t)
g(t)

dt,

where g(u) = u (1 − u).

Proof. First, we know that the null distribution of the AD test statistic is indeed
independent of F0 (Lehmann, 1999, p.343). Now, it is clear that if the common
distribution of {Xn}n>1 is P0, then Fh

0 is simply the common null distribution function
of the projected random field, that is, Fh

0 is the common null distribution function
of the real-valued random variables {Xn(h)}n>1 = {〈Xn, h〉}n>1 and it is also continuous.
Furthermore, Fh

n is the empirical distribution function of the random variables X1(h),X2(h)
, . . . ,Xn(h). As a result, for the projected sample, and by Theorem 3.2, the statistic (3.4)
satisfies (3.3) and it is independent of h. �

A consequence of this theorem is that, there exists a constant cα,n, large enough, such
that η(A2

n(h) > cα,n) = α, where α is the desired nominal significance level. Also, for

ψ-almost every h ∈ H , we have η
(
lim inf

n→∞
A2

n(h) > 0
)

= 1, that is, the proposed test is

consistent against every possible alternative hypothesis. In other words,

lim
n→∞

η
(
A2

n(h) > c1−α,n

)
= 1.

Also, since (3.4) is independent of h, the hypothesis testing of H0 : P = P0 against
H1 : P , P0 is equivalent to testing, H0,h : P〈h〉 = P0,〈h〉 against H1,h : P〈h〉 , P0,〈h〉.
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3.2 AD Test for Equality of Two Independent Random Fields

Before extending the method to the two-sample case of two Hilbert-valued random
fields, let us recall the AD goodness of fit test for two independent real-valued samples.
Let X1,X2, · · · ,Xn and Y1,Y2, · · · ,Ym be two independent real-valued random samples
of two random variables X and Y. Assuming that F and G are two continuous
distribution functions of X and Y, respectively, Baumgartner et al. (1998) suggested
the two-sample AD type test as follows, which is available in the R package kSamples.

Let r(Xi) be the rank of the observation X(i) in the ordered sample {X(n)}n>1. Also,
r(Y j) is the rank of the observation Y( j) in the ordered sample {Y(m)}m>1. The AD test
statistic of H0 : P = Q against H1 : P , Q is given by

B =
1
2

(BX + BY) , (3.5)

where

BX =
1
n

n∑
i=1

[
r(Xi) − m+n

n i
]2

i
n+1

(
1 − i

n+1

)
m(m+n)

n

,

and

BY =
1
m

m∑
j=1

[
r(Y j) − m+n

m j
]2

j
m+1

(
1 − j

m+1

)
n(m+n)

m

·

They proved these following properties of the proposed two-sample AD test statistic
(3.5).

Theorem 3.4. Assuming that n,m→∞ and n/m→ c < ∞, and the two random variables X
and Y are defined on the probability space (Ω,A, η). We have that√

1
m(m + n)

(
r(Xi) −

m + n
n

i
)

η
−→

min(n,m)→∞
Z,√

1
n(m + n)

(
r(Y j) −

m + n
m

j
)

η
−→

min(n,m)→∞
Z,

where Z = {Z(t)}t is a Brownian bridge, i = 1, 2, · · · ,n and j = 1, 2, · · · ,m. Also,

lim
min(n,m)→∞

η (B < b) =

√
π
2

1
b

∞∑
j=0

(
−1/2

j

)
(4 j + 1)

1∫
0

exp
{

ub
8 −

π2(4 j+1)2

8ub

}
√

u3(1 − u)
du,
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with (
−1
2

j

)
=

(−1) jΓ( j + 1
2 )

j ! Γ( 1
2 )

,

is the generalized Euler symbol.

Now, we turn to the two-sample case in random field settings. Assuming that
X1,X2, · · · ,Xn and Y1,Y2, · · · ,Ym are two independent random samples of two H-
valued random fields X and Y on (Ω,A, η). We are interested in testing H0 : P = Q
against H1 : P , Q using the one-dimensional random projection method. So, we
generate an H-valued random element h independently of P and Q according to a
non-degenerate probability law ψ onH , and then we test the projected null hypothesis

H0,h : P〈h〉 = Q〈h〉, (3.6)

against
H1,h : P〈h〉 , Q〈h〉. (3.7)

Therefore, the random samples of X and Y are randomly projected onto the one-
dimensional subspace generated by h to get the real-valued random variables Xi(h) =
〈Xi, h〉 and Y j(h) = 〈Y j, h〉 for i = 1, 2, · · · ,n and j = 1, 2, · · · ,m. Now, let r(Xi(h)) be the
rank of the observation 〈Xi, h〉 in the ordered sample {〈X, h〉(n)} and, similarly, r(Y j(h)) is
the rank of the observation 〈Y j, h〉 in the ordered sample {〈Y, h〉(m)}.

Now, we define the two-sample one-dimensional projected AD statistic as follows.

B(h) =
1
2

(BX(h) + BY(h)) , (3.8)

where

BX(h) =
1
n

n∑
i=1

[
r(Xi(h)) − m+n

n i
]2

i
n+1

(
1 − i

n+1

)
m(m+n)

n

,

and

BY(h) =
1
m

m∑
j=1

[
r(Y j(h)) − m+n

m j
]2

j
m+1

(
1 − j

m+1

)
n(m+n)

m

·

Obviously, the statistic (3.8) is the test statistic of testing H0,h, and as a result, it satisfies
Theorem 3.4, and the proof of this result is similar to the proof of Theorem 3.3. In other
words, B(h) is independent of the choice of the random direction h.

In the next section, we will show that the projected AD statistic has a better
performance than the projected KS statistic for one-sample and two-sample cases.
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4 Simulation Studies

In this section, we present results from extensive series of simulation studies that
performed by considering two-dimensional Hilbert-valued random fields observed on
equispaced points in the unit square [0, 1]2. Also, we generate the random projection
direction, h, from a Brownian sheet. All simulation results were obtained from
1000 repetitions and then computing the empirical error rates, which are the power
estimations of the projected test. In each repetition, we generate the sample and h, and
hence there is no need to adjust the p-values derived from these simulations.

4.1 One-sample Case

Suppose that X1,X2, · · · ,Xn is a random sample of realizations of a random field X
with probability law P. We are interested in testing H0 : P = P0 against H1 : P , P0,
where P0 is a given Gaussian distribution law on H . As mentioned before and after
computing the scalar products X(h) = 〈X, h〉, testing H0 is equivalent to test

H0,h : X1(h), . . . ,Xn(h) i.i.d
∼ N(mX(h), σ

2
X(h)), (4.1)

where

mX(h) =
1
n

n∑
i=1

Xi(h),

and

σ2
X(h) =

1
n − 1

n∑
i=1

{
Xi(h) −mX(h)

}2
,

against its alternative. In order to study the performance of the proposed method, we
consider multiple choices of P and test the Gaussianity of the projected samples.

4.1.1 First Scenario

In this scenario, we assume that X is a Gaussian random field with different covariance
structures. In Table 1, we listed the covariance structures for the Gaussian random
fields that we consider in our simulation studies i.e. exponential, spherical, wave, circular
and generalized Cauchy (GC) covariance structures.
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Table 1: Stationary isotropic covariance structures used in simulation studies to test
H0 : (P is a Gaussian random field). The amount z > 0 refers to the distance between
points of the random field.

model formula
exponential exp(−z)

spherical
(
1 − 3

2 z + 1
2 z3

)
1[0,1](z)

wave 1{0}(z) +
sin(z)

z 1[0,∞)(z)

circular
[
1 − 2

π

(
z
√

1 − z2 + arcsin(z)
)]
1[0,1](z)

GC (1 + zαX )−βX/αX

Table 2: The empirical rejection rates for testing H0,h : X(h) ∼ N
(
mX(h), σ

2
X(h)

)
against

H1,h : X(h) / N
(
mX(h), σ

2
X(h)

)
. The p-values averages are recorded in parentheses.

n G-exp G-sph G-wave G-circ B-sheet
25 rej(AD) .000 .000 .000 .000 .000

(.863) (.865) (.865) (.856) (.855)
rej(KS) .000 .000 .000 .000 .000

(.794) (.804) (.796) (.783) (.792)
50 rej(AD) .000 .000 .000 .000 .000

(.856) (.854) (.862) (.857) (.854)
rej(KS) .000 .000 .001 .000 .000

(.791) (.792) (.792) (.782) (.786)
100 rej(AD) .000 .000 .000 .000 .000

(.851) (.851) (.854) (.850) (.855)
rej(KS) .000 .000 .001 .000 .000

(.800) (.807) (.804) (.803) (.803)
200 rej(AD) .000 .000 .000 .000 .000

(.844) (.847) (.850) (.854) (.854)
rej(KS) .000 .000 .000 .000 .000

(.791) (.788) (.794) (.800) (.797)
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In Table 2, rej(AD) and rej(KS) stand for the rates of rejections of projected AD and
projected KS statistics, where α = .05, and the p-values averages over 1000 repetitions
(1000 independent trials) are listed in the parentheses. For sample sizes n = 25, 50, 100
and 200, Table 2 shows that, if P is a Gaussian probability law onH , then the projected
sample is a real Gaussian sample and this is true for all considered covariance structures.
Also, when X is a Brownian sheet, the projection-based test statistics assure that the
projected sample X(h) is a set of observations of a Gaussian random variable.

Now, as we see in Table 1, the GFGCC is a Gaussian random field with the following
covariance function

C(z, αX, βX) = (1 + zαX )−βX/αX , (4.2)

where βX > 0 and αX ∈ (0, 2]. In fact, the GFGCC has so many applications in
geostatistics and many other areas (Cressie and Huang, 1999; Berizzi et al., 2004; Stein,
2005; Gneiting et al., 2006; Tscheschel et al., 2005; Mateu et al., 2007; Morariu et al., 2006;
Stein, 2007). As stated in Lim and Teo (2009), the GFGCC is long-range dependence
(LRD) if and only if 0 < αXβX 6 N, and otherwise it is short-range dependence (SRD)
(N = 2 in our simulation studies). As a result, we are interested here in testing (4.1)
by considering X with SRD and LRD. In other words, we consider cases where X is a
non-stationary random field, and we want to evaluate the projected AD and KS test
statistics in non-stationary settings.

As we note in Table 3, the one-dimensional projected test statistics show that the
projected null hypothesis H0,h is supported, confirming that the random field X is a
Gaussian random field.

As a result, the proposed one-dimensional projected tests are powerful in determining
whether an underlying distribution law is Gaussian or non-Gaussian (as shown in the
next scenario), in both LRD and SRD cases. All the empirical rejection rates are near
zero and the p-value averages are close to 1 over 1000 repetitions.
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Table 3: The empirical rejection rates for testing H0,h against H1,h at a level of significance
α = .05. X is a GFGCC with covariance structure C(z, αX, βX). The parentheses contain
p-values averages.

αX = .5 & αX = 1 & αX = 2 &
n βX = .5 βX = 2 βX = 1 βX = 2 βX = 2 βX = 3
50 rej(AD) .000 .000 .000 .000 .000 .000

(.852) (.859) (.854) (.862) (.856) (.850)
rej(KS) .000 .000 .000 .000 .000 .000

(.786) (.793) (.790) (.792) (.791) (.784)
100 rej(AD) .000 .000 .000 .000 .000 .000

(.852) (.858) (.852) (.849) (.845) (.859)
rej(KS) .000 .000 .000 .001 .000 .000

(.800) (.810) (.806) (.797) (.798) (.809)
200 rej(AD) .000 .000 .000 .000 .000 .000

(.843) (.858) (.847) (.856) (.845) (.849)
rej(KS) .000 .000 .000 .000 .000 .000

(.790) (.805) (.793) (.803) (.784) (.800)

4.1.2 Second Scenario

In the current scenario, we test the Gaussianity of the two-dimensional random field
X by testing (4.1) when the actual sample is generated from a Gaussian-based random
field, namely, the t-student random field. Let tν denote the t-student random field with
ν degrees of freedom. We will consider that tν has stationary isotropic exponential and
Gaussian covariance structures, where the Gaussian covariance structure is given by
C(z) = exp(−z2); z > 0.

Across 1000 repetitions, the results of the simulations are listed down in Table 4. As we
see in this table, the empirical power estimation of testing (4.1) for the tν=1 random field
reaches its maximum value of 1. As ν gets larger and larger, the test power becomes
lower and lower, and this is due to the fact that the t-student distribution converges
to the Gaussian distribution for large degrees of freedom. Note that, the maximum
power estimation value of the projection-based AD test statistic equals to .123, which
is somewhat low, for n = 200 and ν = 5.
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Table 4: The empirical rejection rates for testing (4.1) by assuming that X is a t-student
random field with ν = 1 and 5 degrees of freedom, and by considering the exponential
and Gaussian covariance structures. The results are rounded to three decimal places.

n t1-exp t1-Gauss t5-exp t5-Gauss
25 rej(AD) .635 .619 .005 .004

(.108) (.115) (.731) (.758)
rej(KS) .650 .633 .007 .007

(.101) (.106) (.684) (.712)
50 rej(AD) .942 .943 .017 .017

(.012) (.012) (.669) (.674)
rej(KS) .927 .940 .016 .017

(.014) (.013) (.640) (.643)
100 rej(AD) 1.000 .999 .044 .035

(.000) (.000) (.516) (.536)
rej(KS) .998 .999 .035 .025

(.000) (.000) (.533) (.547)
200 rej(AD) 1.000 1.000 .123 .112

(.000) (.000) (.353) (.358)
rej(KS) 1.000 1.000 .084 .066

(.000) (.000) (.397) (.405)

4.1.3 Third Scenario

In the last scenario, X is considered as a χ2 random field with generalized Cauchy,
exponential and Gaussian covariance structures. Namely, we study the performance
of the proposed projection-based test statistics in testing (4.1) when X is a χ2 random
field with f = 4 degrees of freedom and the covariance structure (4.2), for both SRD
and LRD. Also, we test (4.1) when X is a χ2 random field with stationary isotropic
exponential and Gaussian covariance structures. Since X is not a Gaussian random
field, that is, P , P0, we expect that most empirical rejection rates tend to 1 as the
sample size n gets larger.

Table 5 shows that, the values of the parameters α and β in (4.2) are the most
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influencing factors in supporting or rejecting H0. Also, as n increases, the estimations
of the empirical power of the projected tests tend to 1 and the averages of p-values to
0.

Table 5: The empirical rejection rates for testing H0,h against H1,h at a level of significance
.05. X is a χ2

f=4 random field with covariance structure C(z, α, β). The parentheses
contain p-values averages.

αX = .5 & αX = 1 & αX = 2 &
n βX = .5 βX = 2 βX = 1 βX = 2 βX = 2 βX = 3
50 rej(AD) .024 .003 .046 .016 .045 .048

(.445) (.595) (.397) (.454) (.348) (.355)
rej(KS) .032 .009 .054 .019 .048 .049

(.447) (.575) (.412) (.450) (.372) (.375)
100 rej(AD) .183 .041 .235 .151 .357 .303

(.231) (.402) (.190) (.250) (.140) (.169)
rej(KS) .150 .042 .160 .117 .232 .206

(.275) (.430) (.238) (.295) (.193) (.218)
200 rej(AD) .658 .251 .721 .646 .857 .820

(.087) (.202) (.087) (.100) (.045) (.053)
rej(KS) .503 .191 .562 .491 .720 .657

(.115) (.247) (.113) (.126) (.067) (.077)

Finally, Table 6 shows that, for different sample sizes n, the underlying null hypothesis
H0 is always rejected, and the empirical power estimation reaches 1 in most cases.
Note that the projection-based AD test statistic outperforms the KS one, especially for
χ2 with f = 4 degrees of freedom and large sample sizes (n > 100).

4.2 Two-sample Case

Let X1,X2, · · · ,Xn and Y1,Y2, · · · ,Ym (we take m = n) be random samples of two
independent two-dimensional Hilbert-valued random fields X and Y, with distribution
laws P and Q, respectively. In these settings, we are interested in testing H0 : P = Q
against H1 : P , Q using the one-dimensional projected AD and KS statistics.

Simulation results presented in the following two scenarios show that, the proposed
projection-based test statistics have nice performance and can discriminate successfully
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between H0 and the alternatives.

Table 6: The empirical rejection rates for testing (4.1) by assuming that X is a χ2 random
field with f = 1 and 4 degrees of freedom, and by considering exponential and Gaussian
covariances.

n χ2
1-exp χ2

1-Gauss χ2
4-exp χ2

4-Gauss
25 rej(AD) .176 .233 .008 .008

(.225) (.199) (.574) (.573)
rej(KS) .164 .214 .015 .012

(.239) (.215) (.551) (.551)
50 rej(AD) .688 .728 .053 .066

(.066) (.054) (.368) (.342)
rej(KS) .596 .633 .058 .061

(.084) (.067) (.386) (.371)
100 rej(AD) .950 .964 .317 .369

(.011) (.007) (.169) (.147)
rej(KS) .930 .955 .226 .260

(.016) (.010) (.222) (.200)
200 rej(AD) .993 .997 .824 .828

(.001) (.001) (.057) (.048)
rej(KS) .988 .992 .656 .686

(.002) (.001) (.081) (.070)

4.2.1 First Scenario

Suppose that X1,X2, · · · ,Xn is a random sample from a centered Gaussian random
field with isotropic covariance structure C1(z, γ) = exp(−zγ), where γ ∈ (0, 2] is the
stability parameter and z > 0 is the distance between two points of the field. Also, let
Y1,Y2, · · · ,Yn be a random sample of an isotropic stationary Gaussian random field Y
with covariance structure C2(z) = exp(−z2). Obviously, for γ = 2 the underlying null
hypothesis is true, whereas for 0 < γ < 2, the alternative hypothesis is true.

Figure 1 shows a plot of the covariance function C1(z, γ) for different values of γ.
Note that C1(z, γ) is an increasing function in γ and C1(z, 2) looks like a one half of a
bell-shaped function.
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Figure 1: Plot of C1(z, γ) for different values of γwhere z refers to the distance between
two points of the field.

Now, under the null hypothesis (3.6), the rates of rejection should be close to α = .05
and the projected p-values mean should be around .50. Likewise, away from H0, the
empirical test power should tend to 1 and the p-values mean to zero.

The results shown in Table 7 support our previous expectations over 1000 repetitions.
As results in Table 7 reflect, the projected AD and KS test statistics discriminate
successfully between the null and the alternative hypotheses. Obviously, the projected
AD test outperforms the KS one.
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Table 7: The empirical rejection rates for testing H0,h : P〈h〉 = Q〈h〉 against H1,h : P〈h〉 ,
Q〈h〉 and p-values average for different values of γ and multiple sample sizes n. The
parentheses contain p-values averages.

γ =
n 0.01 0.05 0.08 0.1 0.5 1 1.5 2
30 rej(AD) .246 .176 .180 .176 .055 .069 .056 .046

(.251) (.295) (.292) (.292) (.442) (.475) (.492) (.517)
rej(KS) .149 .097 .096 .084 .041 .040 .038 .034

(.374) (.411) (.413) (.415) (.543) (.556) (.563) (.589)
50 rej(AD) .351 .289 .295 .273 .096 .046 .036 .057

(.174) (.203) (.207) (.219) (.373) (.491) (.503) (.494)
rej(KS) .217 .175 .164 .149 .069 .037 .031 .039

(.294) (.325) (.329) (.338) (.466) (.560) (.561) (.558)
100 rej(AD) .618 .540 .532 .512 .136 .064 .069 .044

(.073) (.105) (.095) (.108) (.299) (.443) (.487) (.504)
rej(KS) .359 .287 .292 .283 .076 .043 .042 .033

(.166) (.202) (.199) (.212) (.403) (.499) (.537) (.539)
200 rej(AD) .926 .857 .857 .845 .319 .090 .044 .058

(.016) (.024) (.029) (.027) (.174) (.385) (.489) (.493)
rej(KS) .601 .539 .515 .505 .141 .060 .036 .039

(.067) (.090) (.094) (.094) (.290) (.448) (.524) (.523)

4.2.2 Second Scenario

In the current scenario, we take X and Y to be two-dimensional centered Gaussian
random fields which differ in covariance structures. More specifically, we assume that
X and Y are GFGCC’s (4.2) with parameters αX, βX, αY and βY, respectively.

To assess the performance of the proposed AD and KS tests under H0 and H1, we
considered cases when H0 is true and others to take into account the alternative.

The results of the simulations (across 1000 repetitions) are shown in Table 8, Table
8, where the sample size is equal to n = 100. Under the null hypothesis, when αX =
αY ∈ {0.5, 2} and βX = βY ∈ {2, 3}, the empirical power is close to the significance level
0.05 and p-values average is close to 0.5, as expected.

Note that, for the test of equality of distribution of SRD (αX = 2, βX = 3) and
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LRD (αY = 0.5 and βY = 3) random fields, the empirical power of AD test reaches its
maximum value (0.997).

Table 8: The empirical rejection rates of testing the underlying hypothesis H0, where X
and Y are assumed to be two independent GFGCC’s.

αY = 2 & αY = 0.5 &
H0 βY = 2 βY = 3 βY = 2 βY = 3

αX = 2
rej(AD) .039 .048 .959 .989

(.501) (.466) (.008) (.003)

& βX = 2
rej(KS) .036 .042 .890 .954

(.549) (.512) (.026) (.010)

αX = 2
rej(AD) .060 .979 .997

(.494) (.006) (.002)

& βX = 3
rej(KS) .032 .896 .974

(.538) (.023) (.005)

αX = 0.5
rej(AD) .052 .290

(.486) (.178)

& βX = 2
rej(KS) .044 .125

(.531) (.301)

αX = 0.5
rej(AD) .046

(.509)

& βX = 3
rej(KS) .038

(.547)

As expected, the projection-based statistic AD has more power than the projection-
based KS statistic and, in total, each has a nice performance in discriminating completely
and successfully between the null hypothesis and the alternatives.

In the next Section, we show how one-dimensional random projected AD and KS
tests are applicable to a real dataset of autism spectrum disorder case-control study.
Strictly speaking, we test Gaussianity of the autistic and Gaussianity of the healthy
individuals, and then, we test the hypothesis that the autistic and healthy samples
came from the same probability distribution.
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5 Case Study

Statistical techniques have contributed significantly in medical studies. In effect, since
early diagnosis is a very challenging task, researchers are seeking outperforming
approaches to enhance the whole-brain classification (Song et al., 2015; Dorocic et
al., 2014; Li et al., 2018; Tejwani et al., 2017; Hsu et al., 2015). These difficulties arise in
neurodevelopmental, autism for example, and neuropsychiatric researches.

The autism spectrum disorder (ASD) is a brain-caused disorder diagnosed on the
basis of social and iterative behaviors, where extensive psychological and scientific
studies have engaged with determining the diagnostic criteria since the first recognition
of ASD (Kanner, 1943).

The Autism Brain Imaging Data Exchange II (ABIDE II) dataset is an international
neuroimaging data-sharing initiative that contains brain activation patterns of autistic
and healthy individuals (controls). The sample dataset that we study includes a group
of 15 autistic individuals and a group of 39 controls using high-resolution anatomical
images, that is, using structural magnetic resonance (MRI) images.

The ABIDEII-GU_1 dataset contains three-dimensional MRI images or equivalently
three-dimensional random fields, each with resolution 176 × 256 × 256 pixels. But in
order to reduce the computational burden, we will deal only with selected three-
dimensional MRI images of resolution 106× 131× 71 for each individual in the studied
sample.

To study the performance of the proposed projection-based test statistics AD and
KS, we randomly divided the control sample into two independent groups, namely,
Hea1 and Hea2 groups with 19 and 20 healthy individuals, respectively.

At first, we test the Gaussianity of each group by testing the Gaussianity of the
projected samples in the subspace generated by an isotropic stationary Gaussian
random direction h with a Gaussian covariance structure C(z) = exp(−z2). So, for
each group Aut, Hea1 and Hea2, we test the null hypothesis H( j)

0 : (P j is a Gaussian
law of a three-dimensional random field) with j = 1, 2, 3. According to the previous
discussions, this test is equivalent to testing the projected null hypothesis H( j)

0,h : (P j,〈h〉
is a Gaussian law of a real random variable) for j = 1, 2, 3. The results were obtained
using four AMD Opteron processor 6386 SE (16 Core), total 64 core, running at 2.8
GHz and 128 GB of RAM and operating system CentOS 6.3. To check the robustness of
these results, we repeated the projected Gaussianity tests 200 times and computed the
rejection rates and the p-values average over these repetitions. Actually, the parallel
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computing system we used failed to run Gaussianity tests with high repetitions, so we
just repeated the calculations 200 times. Note that, in each repetition, the same dataset
of each group is projected on a random direction h, that is, we are performing 200
comparison tests simultaneously.

As a result, we have to control the false discovery rate (FDR) using the Benjamini-
Hochberg (BH) adjusted p-values of the projection-based AD statistic, and this is
the same case for the projection-based KS statistic. The BH method (Benjamini and
Hochberg, 1995) is one of the most popular FDR controlling procedures that is very
useful in multiple testing studies. We summarize this controlling procedure here as
follows:

Assuming that in k = 200 repetitions we generate, at random, k independent
Brownian sheets h1, h2, · · · , hk and compute the projected p-value, pi, of testing the
projected null hypothesis H0,hi for i = 1, 2, · · · , k. Now, sort the p-values of these k
independent one-dimensional tests as p(1) 6 p(2) 6 · · · 6 p(k) and reject the underlying

null hypothesis H0 if the set
{

i ∈ {1, 2, · · · , k} | p(i) 6 (.05i)/
k∑

i=1

k
i

}
is not empty. In this

way, the power of the univariate test of the underlying null hypothesis is increased
while maintaining the significance level at α = .05. This decision rule, which requires
the knowledge of null distribution, is given by Benjamini and Hochberg (1995) and
we used the correction formula mentioned in Theorem 1.3 of Benjamini and Yekutieli
(2001) which is referred as the BY method.

So, we use the BY procedure to carry out these projection-based AD tests simultaneo-
usly and control the rate of false rejections at a level of significance of α = .05 and this is
also the case for KS. For comprehensiveness, we also included the results of applying
the Cramér-von Mises test (CvM) to verify the Gaussianity of the projected data.

The results listed in Table 9 support the underlying null hypothesis that each group
j is a sample of a three-dimensional Gaussian random field, for j = 1, 2, 3.

Now, the main goal of this section was to apply the one-dimensional random projection
approach to test the null hypothesis of coincidence of the distributions of any two
groups from {Aut, Hea1, Hea2}. That is, we want to test the null hypothesis H(i j)

0 : Pi =

Q j against H(i j)
1 : Pi , Q j, for i , j. Here, Pi is the probability distribution law of the

three-dimensional random field which the sample i came from, and similarly defineQ j;

i , j ∈ {1, 2, 3}. All results are obtained by repeating the procedure of testing H(i j)
0,h for

200 times. The two-sample Cramér-von Mises test (CvM) is available in the R package
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twosamples, so we also presented its one-dimensional projected results in Table 10.

In every cell of Table 10, we have listed down the empirical rejection rates of testing
H(i j)

0,h using the one-dimensional projected AD, KS and CvM test statistics over 200
repetitions, where the p-values were adjusted and compared to α = .05.

Table 9: Rejection rates of testing H0 : (the individuals in a group are a sample of a
Gaussian random field) according to the projected AD, KS and CvM statistics, and
BY-adjusted p-value averages over 200 repetitions. The results are rounded to four
decimal places.

autistic sample control sample
Aut Hea1 Hea2

rej(AD) .0000 .0000 .0000
(.6792) (.7294) (.5796)

rej(KS) .0000 .0000 .0000
(.6207) (.6470) (.5562)

rej(CvM) .0000 .0000 .0000
(.6547) (.6858) (.5800)

Table 10 shows that, the control samples are identically distributed since the rejection
rates of the projected AD or the projected KS and CvM tests are close to zero. Also, the
autistic sample differs in distribution significantly from the other healthy samples. For
example, the empirical power of testing H0 :(Hea2 and Aut are identically distributed),
equals .360 using the projected KS statistic and it reaches .370 according to the projected
AD statistic. This confirms that both one-dimensional AD and one-dimensional CvM
tests outperform the one-dimensional KS test in detecting differences between distribu-
tions.

Figure 2 shows an autistic and a controls brains, plotted using the BrainNet Viewer
visualization tool (Xia et al., 2013).
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Table 10: The BY-adjusted empirical rejection rates of testing H(i j)
0 : (the distribution

that generated individuals dataset of i and j groups is the same), over 200 repetitions
with α = .05. The parentheses contain the adjusted p-values averages.

Hea1 Hea2

Aut

AD .565 .370
(.083) (.084)

KS .495 .360
(.096) (.103)

CvM .545 .365
(.086) (.090)

Hea1

AD .000
(.558)

KS .000
(.568)

CvM .000
(.563)

6 Conclusion

In this paper, we defined the Anderson-Darling projection-based test statistic for the
stationary and non-stationary random fields. We also compared its performance
with the Kolmogorov-Smirnov projection-based test statistic. Based on a variety of
simulation studies and analyses of a real data sets, we conclude that the projected AD
outperforms relatively than the projected KS as expected. It is also straightforward to
define the Cramér-von Mises projection-based test statistic for random fields, as well
as all other EDF tests, analogous to the projected AD test. Moreover, in the future
work, we plan to define the projected Koziol-Green statistic for randomly censored
data for random fields. Future studies are required to meet more information about
the behavior of our approach in the functional random fields.
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Figure 2: Visualizing brain figures of an autistic individual in the first row and a control
in the second.
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