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Abstract. We study the blocks of interpoint distances, their distributions, correlations,
independence and the homogeneity of their total variances. We discuss the exact
and asymptotic distribution of the interpoint distances and their average under three
models and provide connections between the correlation of interpoint distances with
their vector correlation and test of sphericity. We discuss testing independence of the
blocks based on the correlation of block interpoint distances. A homogeneity test of the
total variances in each block and a simultaneous plot to visualize their relative ordering
are presented.
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1 Introduction

Euclidean interpoint distances (IPDs) provide a versatile tool for analysis of high
dimensional data. Interpoint distances are the building blocks of methods such
as machine learning, classification, multidimensional scaling, discriminant analysis,
depth functions, and testing homogeneity of distributions. Multivariate methods that
depend on nonsingular covariance matrices fail to work in high dimensional settings
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when there are fewer number of observations n than variables p. Methods based on
IPDs circumvent difficulties of high dimensional space because IPDs are always one
dimensional.

IPDs are utilized in numerous applications, including geodesy, economics, genetics,
psychology, biochemistry, and engineering. For example, Marozzi (2016) discusses
multivariate tests based on IPDs and applies them to analyze magnetic resonance
images. Guo and Modarres (2019) use IPDs for classification of high dimensional
discrete observations and Song and Modarres (2020) use IPDs for testing homogeneity
of multivariate mixture models. Modarres and Song (2020) survey recent developments
on the Euclidean interpoint distances. Other distances than the Euclidean one have
been used to develop powerful multivariate test for comparing locations (Marozzi 2015)
and distributions (Marozzi et al. 2020), in particular when the underlying distributions
are heavy-tailed or highly-skewed. Pal et al. (2016), Sarkar et al. (2020), and Modarres
(2020) have proposed dissimilarity measures for high-dimensional, low sample size
settings that use the differences of IPDs for clustering, testing the homogeneity of
distributions, and outlier detection.

Let Xi = (Xi1, . . . ,Xip)′, i = 1, . . . ,n, be p dimensional i.i.d random vectors drawn
from a population F with E(Xi) = µ, and covariance matrix Cov(Xi) = Σ > 0. We
partition Xi into k blocks Xi = (X(1)

i ,X
(2)
i , . . . ,X

(k)
i )′ with p1, p2, . . . , pk components where∑k

r=1 pr = p. The vector of means and the covariance matrix are partitioned similarly
as µ = (µ(1),µ(2), . . . ,µ(k))′ and Σ =

(
Σrt

)
for r, t = 1, . . . , k. Let ‖X‖ = (X′X)1/2 be the

Euclidean norm of X. The squared interpoint distance between Xi and X j is given
by d2

(
Xi,X j

)
= ‖Xi − X j‖

2 for 1 ≤ i < j ≤ n. Two IPDs d2
(
Xi,X j

)
and d2 (Xh,Xk)

are dependent if they have an subscript in common. With n observations, there are
m = n(n − 1)/2 IPDs and m(m − 1)/2 pairs of the IPDs, among which m(n − 2) pairs of
distances are dependent.

Let d2
(
Xr

i ,X
r
j

)
= ‖X(r)

i −X(r)
j ‖

2 denote the squared distance between the r-th compone-

nts of Xi and X j. It follows that d2
(
Xi,X j

)
=

∑k
r=1 d2

(
Xr

i ,X
r
j

)
=

∑k
r=1 ‖X

(r)
i − X(r)

j ‖
2. Since

d2
(
Xi,X j

)
are identically distributed, we use the random variable d2

(X) to denote the
interpoint distance between Xi and X j. Similarly, we use the random variable d2

(X(r))
to

denote the interpoint distance between the r-th components d2
(
Xr

i ,X
r
j

)
. We consider a

data structure with m IPDs for the k-tuple (d2
(X(1))

, . . . , d2
(X(k))

).

Study of the blocks of interpoint distances is important for testing independence of
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the blocks. High dimensional datasets are commonplace in finance, robotics, network
analysis, medical imaging, machine learning, microarray and DNA analysis where
independence testing is a central issue as it facilitates dimension reduction. Classical
tests of independence (Anderson, 2003) are based on the asymptotic theory that n
approaches infinity while the dimension p is fixed where p < n. Therefore, it is not
effective in settings where p approaches infinity. Methods based on the IPDs are
effective for large p when p > n. We will show that under two models X(r) and X(s) are
independent if and only if the interpoint distances d2

(X(r))
and d2

(X(s))
are independent for

r , s = 1, . . . k.

We are also interested in determining whether the means of the blocks of IPDs
ηr = E(d2

(X(r))
), r = 1, . . . , k, are the same across the k blocks. We test the null hypothesis

L0 := η1 = η2 = . . . = ηk, (1.1)

against general alternative La : ηr , ηt for at least one pair (r, t) where r , t = 1, . . . k.

Finding outliers in high dimensional data sets is a difficult task since with increasing
dimensions the observations become sparse and outliers become masked by multiple
dimensions. Study of the blocks of interpoint distances is also important in outlier
detection techniques that are distance-based. One may apply distance-based outlier
detection techniques to blocks of the variables to determine if outliers exist in lower
dimensions. Similar to canonical correlation analysis, one maybe interested in identify-
ing variables that are highly correlated within their block, but uncorrelated with
variables in other blocks. Study of the correlation structure of the blocks allows
one to determine unequal subsets of the original variables that are uncorrelated or
highly correlated. Bottesch et al. (2016) use blocks of variables to improve the lower
bound on Euclidean distances and speed up k-means clustering. We will show that
the correlation between any two blocks equals their vector correlation and relate
the squared coefficient of variation of the IPDs to the test of sphericity under the
multivariate normal distribution.

The rest of the article is organized as follows. The next Section discusses testing the
independence of k blocks. The distributions of IPDs under theM, normal and elliptical
models are discussed in Section 3. In Section 4, we consider the average squared
IPD and examine its properties. Asymptotic distribution of the IPDs for fixed n as
p approaches infinity, and for fixed p as n tends to infinity are discussed in Section
5. Section 6 provides a connection between correlation of the IPDs and their vector
correlation and the test of sphericity under normality. Section 7 presents a method for
comparing total variances of the blocks. A simultaneous plot of the total variances is
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provided to visualize their homogeneity. The last Section is devoted to summary and
conclusions. The proofs appear in the Appendix.

2 Testing Block Independence

We are interested to test the null hypothesis that the joint distribution of the IPD blocks
factors as the product of the distribution of IPD blocks,

H0 : P(d2
(X(1)) ≤ x1, . . . , d2

(Xk)) ≤ xk) =

k∏
r=1

P(d2
(X(r)) ≤ xr) for all (x1, . . . , xk) ∈ Rk. (2.1)

The number of blocks k and the assignment of the variables to the blocks are
determined by the investigator. The pr variables in the r-th block maybe the result
of variable selection techniques and can constitute variable clusters. The choices are
influenced by the tendency of high-dimensional data to contain hubs that frequently
occur in nearest-neighbor lists of other points (Flexer and Schnitzer, 2015). With the
above perspective, many interesting hypotheses can be stated about the blocks of
variables. In particular, under the normal and the power-normal distributions, we show
that H0 is equivalent to the independence of the IPD blocks, that is, for r , t = 1, . . . , k,
G0 : Cov(d2

(X(r))
, d2

(Xt))
) = 0. It is well known that G0 is true if and only if the component

covariances are zero under the normal model. That is, Σrs = 0 for r , s = 1, . . . k.

Consider the Box-Cox power transformation defined by Y j = (X
λ j

j − 1)/λ j where
λ j , 0 and Y j = ln X j when λ j = 0 for each variable X j, Y j in X = (X1,X2, ...,Xp)
and Y = (Y1,Y2, ...,Yp), respectively. Suppose random vector Y has a p-variate normal

distribution with mean µ and covariance matrix Σ. Let Q =
(
Y j − µ

)′
Σ−1

(
Y j − µ

)
.

Freeman and Modarres (2005, 2006) define a power-normal distribution with p.d.f.
f (X | λ,µ,Σ) = 1

K ·
1

(2π)p/2|Σ|1/2

∏p
j=1 X

λ j−1
j exp(−1

2 Q) where K is a normalizing constant
that depends onλ,µ, and Σ. The value of K is often assumed to be 1. Under multivariate
power-normal distribution, the dependence between the variables is no longer linear.
Let ρx and ρy denote the coefficient of correlations in the bivariate power-normal and
bivariate normal scales, respectively. Freeman and Modarres (2006) ρy = 0 if and only
if ρx = 0. Statistics based on interpoint distances not only detect linear dependence,
but also find non-linear relationships that are induced on the power-normal scale.

Guo and Modarres (2020) show that under the normal, and power-normal model
independence between two vectors is equivalent to the independence between their
squared interpoint distances. The following theorem extends the result to k groups.
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Theorem 2.1. Let Xi = (X(1)
i ,X

(2)
i , . . . ,X

(k)
i )′ for i = 1, 2 be i.i.d. copies of the random vector X

with a joint multivariate normal or power-normal distribution with mean µ, covariance matrix
Σ. Consider the r-th and s-th component IPDs ‖X(r)

1 −X(r)
2 ‖

2 and ‖X(s)
1 −X(s)

2 ‖
2, respectively, for

r , s = 1, . . . , k. The vectors X(r) and X(s) are independent if and only if the interpoint distances
d2

(X(r))
and d2

(X(s))
are independent.

Theorem 2.1 allows one to test the independence of k blocks of interpoint distances
through a k × k matrix of their correlations. To test whether the r-th and s-th blocks are
independent one simply computes the correlation coefficient between the m interpoint
distances. Permutation testing allows one to test for significance of this correlation.
Similarly, to determine if all k components are independent, one can compute the
determinant of the resulting k×k correlation matrix (Anderson, 2003) and use permutat-
ion testing to establish significance. Guo and Modarres (2020) discuss testing the
hypothesis of independence when p > n, propose a test statistic based on the correlation
of the IPDS and compare it against several other novel statistics that exploit different
properties of the sample interpoint distances. They show that the IPD correlation test
detects linear, non-linear, monotone and non-monotone dependence structures.

3 Distribution of IPDs

In this section we study the distribution of the interpoint distances under the M,
normal, and elliptical models. While the asymptotic distribution of the interpoint
distances is multivariate normal, we find their exact distribution for finite sample sizes
when one can further assume that the form of the underlying distribution belongs to
the following models.

3.1 TheMModel

Srivastava and Kubokawa (2013) assume the following model, to which we refer as
theM model. Suppose Σ = CC′, where C is a p × p non-singular matrix. It is further
assumed that Xi = µ+CZi whereE(Zi) = 0 andCov(Zi) = Ip for i = 1, . . . ,n. For integers
γ1, . . . , γp, 0 ≤

∑p
t=1 γt ≤ 8, E

[∏p
t=1 zγt

it

]
) =

∏p
t=1E(zγt

it ), where zit is the tth component
of the vector zi = (zi1, . . . , zip)′. Hence, the model assumes existence of the moments
of zit, up to the eighth order. One can write the kurtosis γ = E

(
z4

it

)
= K4 + 3 where

K4 is the excess coefficient of kurtosis defined by K4 = γ − 3. The second model we
consider is the normal model, for which γ = 3 so that K4 = 0. In general, K4 ≥ −2
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since K4 ≥
(
µ3

σ3

)2
−2 where µ3 is the third central moment. For any symmetric unimodal

distribution, K4 ≥ −
6
5 . It is not difficult to show that K4 is large for contaminated normal

model and for heavy tailed distributions. Table 1 displays the values of K4 for several
univariate distributions.

Table 1: Excess Kurtosis K4

U(0,1) Beta(α, α) N(0,1) DE(0,1) Logistic(0,1) Exp(1) tv LN(0,1) Γ(α, α)
−

6
5

6
2α+3 0 6

5 3 6 6
v−4 , v > 4 111 3 + 6

α

Lemma 3.1. Suppose X = µ+CZ is distributed under theMmodel. Let A be a p×p symmetric
matrix. Let U = (U1, . . . ,Up)′ and b = (b1, . . . , bp)′ where E(U) = 0 and Cov(U) = Ip. The
distribution of the quadratic form is

Q(X) = X′AX = (U + b)′Λ (U + b) =


∑p

t=1 λt(Ut + bt)2, if µ , 0,∑p
t=1 λtU2

t , if µ = 0,
(3.1)

where Λ = diag(λ1, . . . , λp), and λ1, . . . , λp are the eigenvalues of CAC.

The random variables Ut includes standardized variables that appear in Table 1,
with varying degrees of kurtosis. For example, when µ = 0, the distribution of IPDs
is a linear combination of χ2 random variables with one degree of freedom under the
multivariate normal distribution. It is not difficult to show that E

[
Q(X)

]
= tr (AΣ) +

µ′Aµ.

3.2 The Normal Model

It follows from (3.1) that, d2
(
Xi,X j

)
∼

∑p
t=1 λtχ2(1), where λ1, . . . , λp are eigenvalues

of 2Σ and U = P′ (2Σ)−
1
2
(
Xi − X j

)
, P is an orthogonal matrix such that P′ (2Σ) P =

diag(λ1, . . . , λp). Modarres and Song (2020) show that E
(
d2(Xi,X j)

)
= 2tr (Σ), and

Var
(
d2(Xi,X j)

)
= 8tr

(
Σ2

)
, respectively. A similar argument to the proof of Theorem

1 shows that the covariance of any two dependent IPDs is 2tr
(
Σ2

)
. Gupta and

Huang (2002) obtain the moment generating function of a quadratic form in Skew-
normal random variables and prove that it is the same as that of the multivariate
normal distribution. Hence, the distribution of the squared IPD remains true for
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the skew-normal distributions. Lemma 3.1 also applies to any component of X(r)
i of

Xi = (X(1)
i ,X

(2)
i , . . . ,X

(k)
i )′ for i = 1, 2 and 1 ≤ r ≤ k. Hence, X(r)

i is distributed as

Npr

(
µ(r),Σrr

)
and d2

(
X(r)

i ,X
(r)
j

)
∼

∑pr
t=1 λtχ2(1) with mean 2tr (Σrr) and variance 8tr

(
Σ2

rr

)
where λp1 , . . . , λpr are eigenvalues of 2Σrr. The covariance between any two dependent
IPDs in block r is 2tr

(
Σ2

rr

)
, for i, j, t ∈ {1, . . . ,n}, and their correlation is 1

4 . From definition

of IPD it follows that d2
(
Xi,X j

)
is distributed as

∑k
r=1

∑pr
t=1 λtrχ2(1) where λtr is the t-th

eigenvalue of Σrr.

3.3 The Elliptical Model

While assumptions of theMmodel are weak, it requires a linear dependence structure,
which excludes several important distributions. In particular, theM model excludes
many distributions from the elliptical family (Fang and Zhang, 1990) as distributions
with non-linear correlations can not be modeled by the M model. The elliptical
distributions (Keller, 1970) generalize multivariate normal distributions and contain a
rich class of distributions that include both heavy and light tailed distributions such as
symmetric stable distributions, the multivariate Cauchy, Student, logistic, generalized
hyperbolic, Kotz, and symmetric Pearson type–VII distributions. A p×1 random vector
X follows an elliptical distribution Ep(µ,Σ, ψ) whereψ is a non-negative scalar function,
if its characteristic function is of the form exp(it′µ)ψ(t′Σt). In particular, if µ = 0 and
Σ = Ip, then X has a spherically symmetric distribution, denoted by X ∼ Sp(ψ), where Sp
is the surface of the unit sphere inRp. If X ∼ Ep(µ,Σ, ψ) and Σ = BB′ is positive definite,
then T = Σ−1/2

(
X − µ

)
∼ Sp(ψ). Furthermore, spherical distributions are invariant

under orthogonal transformations. For any orthogonal matrix O, the transformed
vector OX and X are identically distributed as Sp(ψ).

Elliptical distributions are characterized by a kurtosis parameter κ that relates σi jkl =
E[(X − µ)i(X − µ) j(X − µ)k(X − µ)l to σi j = E[(X − µ)i(X − µ) j] by σi jkl = (κ + 1)(σi jσkl +

σikσ jl + σilσ jk). Since σiiii = 3(κ + 1)σ2
ii, elliptical distributions have the same marginal

kurtoses κ = 1
3

(
σiiii
σ2

ii
− 3

)
. The kurtosis κ does not reduce to the univariate kurtosis

defined by K4. All elliptical distributions are members of a location-scale family defined
through an underlying spherical distribution. The elliptical distributions are closed
under affine transformations and have conditional and marginal distributions that are
also elliptically distributed. When p = 1 the class of elliptical distributions coincides
with the class of univariate symmetric distributions. If Σ is a diagonal matrix, then
the components of X are uncorrelated, but not independent unless the underlying
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distribution is multivariate normal. The matrix Σ is proportional to the covariance
matrix of X, i.e., Cov(X) = aΣ where a = −2ψ′(0).

Lemma 3.2. Suppose X1 and X2 be i.i.d. vectors drawn from an elliptical distribution
Ep(µ,Σ, ψ). The distribution of the IPD d2 (X1,X2) is given by

d2 (X1,X2) = U′diag(λ1, . . . , λp)U =

p∑
j=1

λ jU2
j , (3.2)

where U j has a univariate symmetric distribution with center zero.

4 Average Interpoint Distance

Let the sample average of all squared IPDs be denoted by

d̄ 2
p =

1
m

∑
1≤i< j≤n

d2
(
Xi,X j

)
, (4.1)

and let the sample average of all squared IPDs for the r-th component, r = 1, . . . , k, be
denoted by

d̄ 2
pr

=
1
m

∑
1≤i< j≤n

d2
(
X(r)

i ,X
(r)
j

)
. (4.2)

Let X̄ = 1
n
∑n

i=1 Xi =
(
X̄(1), . . . , X̄(k)

)
and S = 1

n−1
∑n

i=1(Xi − X̄)′(Xi − X̄) = (Srt), for
r, t = 1, . . . k, denote the sample mean and covariance, respectively. In wide range
of applications one is required to estimate the trace of a covariance matrix. To compute
d̄ 2

p , one needs to find m =
n(n−1)

2 IPDs so the computational complexity is O
(
n2

)
. One

can compute d̄ 2
p with a lower computational complexity. It is straightforward to show

that

S =
1

n − 1

n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)′
=

1
n(n − 1)

∑
1≤i< j≤d

(
Xi − X j

) (
Xi − X j

)′
. (4.3)

The identity follows by adding ±X̄ to each term on the right hand side and
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simplifying. It follows that

tr (S) = tr

 1
n(n − 1)

∑
1≤i< j≤n

(
Xi − X j

) (
Xi − X j

)′ =
1
2

d̄ 2
p ,

tr (Srr) = tr

 1
n(n − 1)

∑
1≤i< j≤n

(
X(r)

i − X(r)
j

) (
X(r)

i − X(r)
j

)′ =
1
2

d̄ 2
pr
.

(4.4)

where Srr denote the sample covariance matrix of the r-th block. It follows from (4.4) that
d̄ 2

p = 2tr(S) and d̄ 2
pr

= 2tr(Srr). The expected value of the average IPD isE
(
d̄ 2

p

)
= 2tr (Σ).

The computational complexity to find d̄ 2
p is O(np). This computational complexity is

smaller than O
(
n2

)
unless p is larger than n.

Consider an affine transformation Y = BX+b where B is a nonsingular p×p matrix of
constants and b is a p×1 vector. Since Sy = BSxB, one can verify that tr(Sy) = tr(AS) and
tr(S2

y) = tr(ASAS) where A = B′B. When B is orthogonal, A = Ip. Hence, orthogonal
transformations do not alter IPDs.

Examples 4.1. Consider i.i.d. vectors {Xi}
n
i=1 drawn from a p-variate lognormal distribu-

tion with parametersµ and Σ. It is well-known thatVar(xt) = exp(2µt + σtt)(exp(σtt)−1)
where xt is the t-th component of Xi. One can show that d̄ 2

p = 2tr (S) = 2
∑p

t=1 exp(2x̄t +
stt)(exp(stt) − 1) where x̄ and S = (si j) are parameter estimates of µ and Σ, respectively.
When X ∼ Ep(µ,Σ, ψ), one has Cov(X) = aΣ, so that d̄ 2

p = 2a tr (S) where a = −2ψ′(0).
Hence, given the form of the covariance matrix of a distribution, (4.4) allows one to
compute the average squared IPD without actually computing the IPDs.

Let d̄ 2
(t) denote the IPDs of the t-th univariate component of X and rts be the sample

correlation between the t-th and s-th univariate components of X. Since 2stt = d̄ 2
(t) one

obtains tr(S2) = 1
4
∑p

t=1 d̄ 4
(t) + 1

2
∑

1≤t<s≤p r2
tsd̄

2
(t)d̄

2
(s).

Lemma 4.1. Let ≤St be the stochastic ordering between two random variables. Using (4.4), the
following inequalities hold:

• d̄ 2
p ≤St 2

√
p tr(S2) and

• d̄ 2
pr
≤St 2

√
pr tr(S2

rr) for r = 1, . . . , k.
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5 Asymptotic Distribution of IPDs

It follows from Theorem 1 of Li (2018) and the stated regularity conditions that as

p approaches infinity and for fixed n,
d2

(X)−2tr(Σ)√
Var

(
d2

(X)

) converges is distribution to N(0, 1)

whereVar
(
d2

(X)

)
depends on F. Let R = (d2(X1,X2), d2(X1,X3), . . . , d2(Xn−1,Xn))′ denote

the m-dimensional vector of all IPDs. It follows that E(R) = 2tr (Σ) 1′m where 1m is
a m-dimensional vector of 1s. Under the normal model the covariance ΣR is a m × m
matrix with main diagonal 8tr

(
Σ2

)
. The off-diagonal elements of ΣR are either 2tr

(
Σ2

)
if the two IPDs have an index in common or zero, otherwise. Hence, ΣR

−1/2 (R − E(R))
converges in distribution to the standard multivariate normal normal distribution as
p→∞ for fixed n. Similarly, as p→∞ such that pr approaches infinity, d2

(X(r))
converges

in distribution to a normal distribution with mean 2tr (Σrr) and variance 8tr
(
Σ2

rr

)
for

r = 1, . . . , k.

5.1 The Elliptical Model

Muirhead (1982) proves that under the elliptical model
√

n − 1 (S − Σ) converges to a
p(p + 1)/2 dimensional normal distribution with zero mean and covariance Γ = (γi j,kl)
as n → ∞ where γi j,kl = Cov(si j, skl) = (κ + 1)(σi jσkl + σikσ jl + σilσ jk). It follows that
√

n − 1
(
diag(S) − diag(Σ)

)
converges to a p dimensional normal distribution with zero

means, variances γii,ii = Var(sii) = 3(κ + 1)σ2
ii and covariances γii,kk = Cov(sii, skk) =

(κ + 1)(σiiσkk + 2σ2
ik) as n→∞.

Following Iwashita and Siotani (1994), let h j(S) for j = 1, 2 be continuous and
scalar-valued functions of S with continuous first and second order derivatives in a
neighborhood of S = Σ. It follows that

√
n(h j(S) − h j(Σ)) are asymptotically normally

distributed with mean 0 as n→∞. Using the delta method and (4.4) one can show that
as n→∞, √

n − 1
(
d̄ 2

p − 2tr(Σ)
)
→ N

(
0, 8(1 + κ)tr

(
Σ2

)
+ 4κ (trΣ)2

)
. (5.1)

Similarly, one can show that for r , t = 1, . . . , k,

Cov(d̄ 2
pr
, d̄ 2

pt
) =

8(1 + κ)
n − 1

tr
(
Σ′rtΣrt

)
+

4κ
n − 1

tr(Σrr) tr(Σtt), (5.2)

It follows that as n→∞,
√

n − 1
(
d̄ 2

pr
− 2tr(Σrr)

)
→ N

(
0, 8(1 + κ)tr

(
Σ2

rr

)
+ 4κ(trΣrr

)2
). (5.3)
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Notice that Σrt = 0 impliesCov(d̄ 2
pr
, d̄ 2

pt
) = 4κ

n−1 tr(Σrr) tr(Σtt) > 0 unless κ = 0. Hence,
Theorem 2.1 cannot be extended to the elliptical model. It follows that E(d̄ 2

p ) = η =

2tr(Σ) and E(d̄ 2
pr

) = ηr = 2tr(Σrr). Under the normal model, when κ = 0, Var(d̄ 2
p )) =

Var(
∑k

r=1 2tr(Srr)) = 8
n−1 tr

(
Σ2

)
andVar(d̄ 2

pr
)) = 8

n−1 tr
(
Σ2

rr

)
.

5.2 TheMModel

Under this model, Xi = µ + CZi, for i = 1, . . . ,n where Σ = CC′ and C is a p × p
non-singular matrix. It follows that E(Zi) = 0, Cov(Zi) = Ip, and E

(
z4

it

)
= K4 + 3

where K4 is the excess coefficient of kurtosis and zit is the tth component of the vector
zi = (zi1, . . . , zip)′. Hence, d2(Xi,X j) = (Zi−Z j)′Σ(Zi−Z j). Using Lemma 6.1 of Srivastava
and Kubokawa (2013), one can show that

Var
(
d2(Xi,X j)

)
= 4K4

p∑
r=1

σ2
rr + 8tr

(
Σ2

)
, (5.4)

which reduces to 8tr(Σ2) when K4 = 0 under the normal model. Note that when d2(Xi,X j)
and d2(Xi,Xk) have no index in common their covariance is zero. For i , j , k = 1, . . . ,n,
we obtain

Cov
(
d2(Xi,X j), d2(Xi,Xk)

)
= K4

p∑
r=1

σ2
rr + 2tr(Σ2). (5.5)

Note that Corr
(
d2(Xi,X j), d2(Xi,Xk)

)
= 1/4, which is the same as the correlation under

normality. To find the variance ofVar(d̄ 2
p ), using (4.1), we have

m2Var(d̄ 2
p ) = mVar

(
d2(Xi,X j)

)
+ 2m(n − 2) Cov

(
d2(Xi,X j), d2(Xi,Xk)

)
. (5.6)

Hence, the variance of the average squared IPD is

Var(d̄ 2
p ) =

4
n − 1

K4

p∑
i=1

σ2
ii + 2tr

(
Σ2

) . (5.7)

Similarly, one can show that for r , t = 1, . . . , k,

Cov(d̄ 2
pr
, d̄ 2

pt
) =

4
n − 1

K4

p∑
i=1

σ2
(r)ii + 2tr(Σ′trΣrt)

 , (5.8)
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Var(d̄ 2
pr

) =
4

n − 1

K4

pr∑
i=1

σ2
(r)ii + 2tr

(
Σ2

rr

) . (5.9)

where σ2
(r)ii is the i-th diagonal element of Σrr, for r = 1, . . . , k. Notice that Σrt = 0

implies Cov(d̄ 2
pr
, d̄ 2

pt
) = 4K4

n−1
∑pr

i=1 σ
2
(r)ii > 0 unless K4 = 0. Hence, Theorem 2.1 cannot be

extended to theMmodel. Under theMmodel, the average squared IPD converges in

distribution to a normal distribution. As n→∞,

√

n − 1(d̄ 2
p − η)→ N(0, 4K4

p∑
i=1

σ2
ii + 8tr

(
Σ2

)
), (5.10)

√

n − 1(d̄ 2
pr
− ηr)→ N(0, 4K4

pr∑
i=1

σ2
(r)ii + 8tr

(
Σ2

rr

)
). (5.11)

To examine the rate of convergence of the average squared interpoint distance to
normality as a function of n and p we replicated the following experiment 1000 times.
We generated samples of size n = {20, 50, 100, 200, 300} and p = {2, 10, 50, 100, 200, 300,
500, 1000} from multivariate normal and absolute value of a multivariate normal
distribution with constant correlation structure Σ = (ρi j) = (0.0)(0.5). We applied the
Shapiro-Wilk test of normality to the average squared IPD. Tables 2-3 show the type
I error of testing whether the average squared IPDs follow a normal distribution at
nominal level α = 0.05. Table entries at (n, p) that are close to 0.05 indicate convergence
to normality has taken hold. Type I-error rates converge to the nominal level faster
under independence.

Table 2: Type-I error for testing the asymptotic normality of the average squared IPD
when X ∼ N(0,Σ) and Σ has constant correlation ρ = 0.0 (first cell entry) and ρ = 0.5
(second cell entry).

n|p 2 10 50 100 200 300 500 1000
20 .12 .17 .10 .16 .10 .16 .04 .18 .04 .18 .04 .26 .06 .24 .06 .15
50 .08 .07 .05 .05 .02 .07 .04 .09 .03 .11 .05 .10 .06 .12 .07 .07
100 .09 .06 .05 .12 .03 .10 .01 .09 .08 .03 .05 .08 .04 .08 .03 .06
200 .01 .02 .02 .11 .03 .09 .04 .10 .02 .09 .06 .05 .01 .06 .05 .08
300 .04 .06 .04 .09 .03 .07 .05 .04 .05 .03 .02 .05 .01 .07 .04 .05
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Table 3: Type-I error for testing the asymptotic normality of the average squared IPD
when X ∼ |N(0,Σ)| and Σ has constant correlation ρ = 0.0 (first cell entry) and ρ = 0.5
(second cell entry).

n|p 2 10 50 100 200 300 500 1000
20 .20 .25 .12 .35 .05 .26 .04 .31 .06 .19 .06 .28 .03 .26 .06 .26
50 .17 .28 .08 .13 .04 .12 .06 .08 .02 .07 .09 .08 .09 .08 .07 .07
100 .14 .11 .06 .07 .03 .07 .02 .10 .03 .10 .04 .07 .07 .09 .07 .06
200 .08 .06 .06 .06 .05 .08 .08 .08 .05 .07 .07 .09 .09 .05 .03 .06
300 .08 .08 .07 .05 .04 .05 .05 .10 .05 .05 .03 .04 .06 .04 .07 .06

6 Vector Correlation

Consider vectors X(r) with pr variables and X(t) with pt variables and the corresponding
squared average IPD d̄ 2

pr
and d̄ 2

pt
for r , t = 1, . . . , k. Consider the M model and to

emphasize the dependence on K4 let ψ(K4)(rt) = Corr(d̄ 2
pr
, d̄ 2

pt
) where 0 ≤ ψ(K4)(rt) ≤ 1.

Using (5.7) and (5.8) one can show that

ψ(K4)(rt) =
K4

∑p
i=1 σ

2
(r)ii + 2tr

(
Σ′trΣrt

)
(
K4

∑pr
i=1 σ

2
(r)ii + 2tr

(
Σ2

rr

))1/2(
K4

∑pt
i=1 σ

2
(t)ii + 2tr

(
Σ2

tt

))1/2
. (6.1)

When K4 = 0, under a normal model, the population correlation coefficient between d̄ 2
pr

and d̄ 2
pt

in (6.1) reduces to

ψ(0)(rt) = Corr(d̄ 2
pr
, d̄ 2

pt
) =

tr(Σ′rtΣtr)√
tr(Σ2

rr)tr(Σ2
tt)
. (6.2)

It is clear that ψ(0)(rt) = 0 if and only if Σrt = 0. Similarly, consider the elliptical model
and to emphasize the dependence on κ let ψ∗(κ)(rt) = Corr(d̄ 2

pr
, d̄ 2

pt
) where 0 ≤ ψ∗(κ)(rt) ≤ 1.

Using (5.2) and (5.3) one obtains

ψ∗(κ)(rt) =
8(1 + κ)tr

(
Σ′rtΣrt

)
+ 4κ tr(Σrr)tr(Σtt)

[8(1 + κ)tr
(
Σ2

rr

)
+ 4κ (trΣrr)2]1/2[8(1 + κ)tr

(
Σ2

tt

)
+ 4κ (trΣtt)2]1/2

. (6.3)
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When κ = 0, under a normal model, the population correlation coefficient between d̄ 2
pr

and d̄ 2
pt

in (6.3) reduces (6.2) so that ψ∗(0)(rt) = ψ(0)(rt). It is clear that ψ∗(0)(rt) , 0 unless
κ = 0.

In fact, (6.2) is the vector correlation coefficient RV(X(r),X(t)) defined by Escoufier
(1973) and Robert and Ranger (1985). Hence, under multivariate normal distribution,
the RV coefficient between two random vectors is the same as the correlation of their
interpoint distances. Escoufier (1973) shows that if pr = pt = 1, then RV = r2, the square
of the simple correlation coefficient. Furthermore, 0 ≤ RV ≤ 1 and RV = 0 if and only
if Σrt = 0.

Examples 6.1. Let λ1, . . . , λp are eigenvalues of Σ. It follows from the Cauchy-Schwarz

inequality that
(∑p

i=1 λ
t
i

)2
≤ p

(∑p
i=1 λ

2t
i

)
. Since tr

(
Σt

)
=

∑p
i=1 λ

t
i for t ≥ 1 we obtain(

trΣ
)2
≤ p tr

(
Σ2

)
, so that θ =

p(trΣ2)
(trΣ)2 ≥ 1 with equality holding if and only if λ1 = λ2 =

. . . , λp = λ, for some constant λ. Srivastava (2005) and others have used an estimate of
θ to construct tests of sphericity; i. e. Σ = λIp. The squared coefficient of variation for

the IPD random variable d2
(X) is defined as c2

v =
Var(d2

(X))

(E(d2
(X)))

2 . It is not difficult to show that

under a normal model c2
v = 2θ/p. Hence, the squared coefficient of variation of IPDs is a

linear function of the measure for the sphericity of the underlying normal model.

The distance concentration phenomenon (Francois et al., 2007) describes the effect
of high dimension p on IPDS. Under appropriate moment assumptions, one can show
that the coefficient of variation of the IPDs tends to zero as p tends to infinity. That
is cv =

√
2θ/
√

p tends to zero as p → ∞. As a result of the distance concentration
phenomenon one can show that IPDs of vectors with dependent components are less
concentrated (more variable) than IPDs of vectors with independent components.

Consider the null hypothesis G0 : Cov(d2
(X(r))

, d2
(Xt))

) = 0. Let Ga : Cov(d2
(X(r))

, d2
(Xt))

) , 0
for at least one r , t = 1, . . . , k be the alternative hypothesis. Under theM model, we
define the ratio of the variance under Ga to the variance under G0 by

βK4 =
VarGa(d̄ 2

p )

VarG0(d̄ 2
p )

=
K4

∑p
i=1 σ

2
ii + 2tr

(
Σ2

)
K4

∑p
i=1 σ

2
ii + 2

∑k
r=1 tr

(
Σ2

rr

) . (6.4)

Using (5.1), one obtains a similar expression for the variance ratio under the elliptical

model. Under the normal model, the variance ratio reduces to β0 =
tr(Σ2)∑k

r=1 tr(Σ2
rr)

. Srivastava
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(2005) constructed a statistic for testing the hypothesis that Σ is a diagonal covariance
matrix when n < p and investigates a distance function for testing block independence
using md = β0 − 1. It is clear that β0 ≥ 1 with equality holding when Σ is diagonal. He
further shows that his proposed test statistic is normally distributed for large (n, p) and
is robust when K4 = o(p−ε) where ε > 0.

Examples 6.2. Consider i.i.d. random vectors Xi ∼ Np(0,ρ) for i = 1, 2 where ρ has 1
on the main diagonal, constant correlation ρ on the off-diagonal and − 1

p−1 < ρ < 1. It
follows that under G0 : ρ = I, we have E(d2

(X)) = 2p and Var(d2
(X)) = 8p whereas under

Ga : ρ , I,E(d2
(X)) = 2p andVar(d2

(X)) = 8
∑p

i=1 λ
2
i = 8p(1+(p−1)ρ2) since λ1 = 1+(p−1)ρ

and λ2 = . . . , λp = 1 − ρ and the variance ratio is β0 = 1 + (p − 1)ρ2. Note that β0 = 1
when ρ = 0 (the covariance matrix is diagonal) and as ρ approaches 1, β0 approaches p.

7 Comparing Total Variances

Let ηr = E(d2
(X(r))

) for r = 1, . . . , k. We are also interested in testing the hypothesis L0

in (1.1) that the block total variances are the same across the k dependent components
against general alternative La : ηr , ηt for at least one pair (r, t) where r , t = 1, . . . k.
Total variance (Anderson, 2003) is defined as the trace of a covariance matrix and a
measure of global dispersion of a multivariate dataset . Denote the k × 1 vector of the
squared average distances for the r-th (1 ≤ r ≤ k) components of Xi and X j by W =(
d̄ 2

p1
, d̄ 2

p2
, . . . , d̄ 2

pk

)
. It follows that Ψ−1/2

(
W − ηW

)
converges in distribution to a standard

multivariate normal distribution as p → ∞ where ηW = E (W) = (η1, η2, . . . , ηk) =
(2tr (Σ11) , 2tr (Σ22) , . . . , 2tr (Σkk)). The covariance of W under theMmodel are given by
(5.7) and (5.9) and under an elliptical model by (5.1) and (5.3). Under the normal model
when K4 = 0 or κ = 0 and we further obtain

Ψ = Cov(W) =
8

n − 1


tr (Σ11)2 tr

(
Σ′12Σ12

)
. . . tr

(
Σ′1kΣ1k

)
tr

(
Σ′21Σ21

)
tr (Σ22)2 . . . tr

(
Σ′2kΣk2

)
...

...
...

tr
(
Σ′k1Σ1k

)
tr

(
Σ′k2Σ2k

)
. . . tr (Σkk)2

 . (7.1)

Construct a (k − 1) × k contrast matrix A = (a)rt where arr = 1 and ar(r+1) = −1 for
r = 1, . . . k − 1 so that row sums are 0. It follows that Y = AW has a k − 1 dimensional
multivariate normal distribution with mean µy = AηW and covariance AΨA′. Hence,

T = Y′(AΨ̂A′)−1Y has a χ2 distribution with k − 1 degrees of freedom as p→∞ where
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Ψ̂ is a consistent estimate of Ψ. Assuming a Wishart distribution, Srivastava (2005) in
lemma 2.1 discusses consistent estimator of tr(Σi) for i = 1, 2, which appear in Ψ.

7.1 Visualizing Block Variances

In order to visualize the total variances of the blocks and provide a basis for their
comparison we propose the following method. Let R = maxk

r=1(d̄ 2
pr

) − mink
r=1(d̄ 2

pr
)

denote the range of the average IPDs of all blocks. We will divide the range into s
evaluation points denoted by δ(t) for t = 1, . . . s. Denote the cumulative distributions of
d̄ 2

pr
evaluated at δ(t) by Hr(t) = P(d̄ 2

pr
≤ δ(t)). Let I(.) denote the indicator function and

estimate the CDF by

Ĥr(t) =
1
m

n−1∑
i=1

n∑
j=i+1

I(d̄ 2
pr
≤ δ(t)). (7.2)

We obtain a simultaneous plot of (δ(t), Ĥr(δ(t))), for t = 1, . . . , s, r = 1, . . . , k.

Examples 7.1. To illustrate the simultaneous display, we use s = 100, p = 500 and k = 4,
so that each block contains 125 variables. We generate n = 30 observations fromN(0,Σ)
where Σ has constant correlation ρ. Figure 8 shows the simultaneous plots of the total
variances when L0 is true, σtt = 1 and ρ = 0.5 for t = 1, . . . , p. As one expects, the
ECDFs of the total variances concentrate in a narrow band under L0. Figure 8 displays
the simultaneous plot of (7.2) under multivariate normal distributions where variance
of the block r is r = 1, . . . , 4 and ρ = 0.5. Here, L0 is false and we expect the ECDFs to
differ. Moreover, the display provides a ranking of the block total variances.

8 Summary and Conclusion

We discuss blocks of k ≥ 2 IPDs and show that under the normal and the power-
normal family of distributions independence of blocks is equivalent to zero covariance
between the blocks. We discuss the exact and asymptotic distribution of the IPDs
and their average under the normal, SM and elliptical models. We show that correlation
between two blocks of IPDs is equivalent to vector correlation. We obtain a relationship
between the coefficient of variation of IPDs and a measure of sphericity. A sampling
experiment determines when the average IPD converge to normality as a function of n
and p. Finally, a test of the homogeneity of the total block variances and a simultaneous
plot of the total variances are presented. Future research directions includes the study
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the small sample behavior of the proposed tests, comparison of the power and type-one
error rate against competing tests.

Figure 1: Simultaneous plots of the ECDF of 4 total variances where σrr = 1 for
r = 1, . . . , 4.

Figure 2: Simultaneous plots of the ECDF of 4 total variances where variance of the
block r is r = 1, . . . , 4.
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Appendix

Proof. Theorem 2.1:

Since functions of independent random vectors are independent, the necessary
part follows immediately. To prove the sufficient part we need to show that if IPDs
‖X(r)

1 −X(r)
2 ‖

2 and ‖X(s)
1 −X(s)

2 ‖
2 are independent, then X(r) and X(s) are independent. Since

the contrapositive of any true proposition is also true, we will show if X(r) and X(s) are
dependent, then d2

(X(r))
and d2

(X(s))
are dependent.

Suppose [X(r),X(s)]′ follows a multivariate normal distribution with mean (µ(r),µ(s))′

and covariance matrix Σ =

[
Σrr Σrs
Σsr Σss

]
. Let σ(r)t1t2 , σ(s)u1u2 , σ(rs)tu be the components of

Σrr,Σss,Σrs, respectively, for s,u1,u2 = 1, · · · , ps; r, t1, t2 = 1, · · · , pr. Suppose d2
(X(r))

and

d2
(X(s))

are dependent, we have

tr(Σ2
rs) =

pr∑
t=1

ps∑
u=1

σ2
(rs)tu > 0. (8.1)

Let X(r)
it be the tth variable of the random vector X(r)

i , and X(s)
is be the sth variable of the

random vector X(s)
i for i = 1, 2, t = 1, · · · , pr, s = 1, · · · , ps. One can show that

Cov
(
d2

(X(r)),d
2
(X(s))

)
= Cov

 pr∑
t=1

(X(r)
1t − X(r)

2t )2,

ps∑
u=1

(X(s)
1u − X(s)

2u)2


=

pr∑
t=1

ps∑
u=1

4σ(r)ttσ(s)uuCov
(
W2

1t,W
2
2u

)
,

where W1t =
X(r)

1t −X(r)
2t√

2σ(r)tt
∼ N(0, 1) and W2u =

X(s)
1u−X(s)

2u√
2σ(s)uu

∼ N(0, 1).

The covariance between W1t and W2u is

Cov (W1t,W2u) =
Cov

(
X(r)

1t − X(r)
2t ,X

(s)
1u − X(s)

2u

)
4σ(r)ttσ(s)uu

=
Cov

(
X(r)

1t ,X
(s)
1u

)
+ Cov

(
X(r)

2t ,X
(s)
2u

)
4σ(r)ttσ(s)uu

=
1
2
ρ(rs)tu,
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where ρ(rsy)tu is the correlation between the t-th component of X(r) and u-th component
of X(s) vectors. Thus, the W1t and W2u are jointly normal random variables with
1
2ρ(rs)tu correlation. The conditional expectation and variance of W1t given W2u are
E(W1t|W2u) = ρ(rs)tuW2u, and Var(W1t|W2u) = 1 − ρ2

(rs)tu. Thus, we have E(W2
1t|W2u) =

1 − ρ2
(rs)tu + ρ2

(rs)tuW2
2u. The covariance between W2

1t and W2
2u is

Cov(W2
1t,W

2
2u) = E(W2

1tW
2
2u) − E(W2

1t)E(W2
2u) = E(E(W2

1tW
2
2u|W2u)) − 1

= E[(1 − ρ2
(rs)tu + ρ2

(rs)tuW2
2u)W2

2u] − 1

= ρ2
(rs)tu(E(W4

2u) − 1) = 2ρ2
(rs)tu.

Since Cov
(
W2

1t,W
2
2u

)
= 2ρ2

(rs)tu, we obtain

Cov
(
d2

(X(r)),d
2
(X(s))

)
=

pr∑
t=1

ps∑
u=1

4σ(r)ttσ(s)uuCov
(
W2

1t,W
2
2u

)
=

pr∑
t=1

ps∑
u=1

8σ(r)ttσ(s)uuρ
2
(rs)tu

= 8
pr∑

t=1

ps∑
u=1

Cov2(X(r)
1t ,X

(s)
1u) = 8tr(Σ′rsΣrs).

Under the assumption of dependence, the above covariance and the equation (8.1)
prove that Cov(d2

(X(r))
,d2

(X(s))
) > 0. Thus, d2

(X(r))
and d2

(X(s))
are dependent.

Let ρx and ρy denote the coefficient of correlations in the bivariate power normal
and bivariate normal scales, respectively. Freeman and Modarres (2006) study the
properties of the power normal distribution and show that

ρx = h(ρy) =

∑
∞

i=1 i!b1ib2i ρi
y√

(
∑
∞

i=1 b2
1ii!)(

∑
∞

j=1 b2
2 j j!)

,

where the form of the function h depends on the mean, covariance and the transformati-
on parameter. Here, b1i, b2i are defined in terms of the parameters and the Chebyshev-
Hermite polynomials. It follows that ρy = 0 if and only if ρx = 0 and based on the first
part of the Theorem, the proof is completed. �
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Proof. Lemma 3.1:

Let C = Σ1/2 be the square root of Σ. One can write Z = Σ−1/2
(
X − µ

)
. Let P be

a p × p orthogonal matrix which diagonalizes Σ1/2AΣ1/2, where PP′ = P′P = Ip. That
is, P′Σ1/2AΣ1/2P = Λ, where Λ = diag(λ1, . . . , λp), and λ1, . . . , λp are the eigenvalues of
P′Σ1/2AΣ1/2P. Let U = P′Z, and note that Z = PU, E(U) = 0 and Cov(U) = Ip because
E (Z) = 0 andCov (Z) = Ip under theMmodel. We obtain the quadratic form (3.1) since

Q(X) = X′AX = (Σ1/2Z + µ)′A(Σ1/2Z + µ)

= (Z + Σ−1/2µ)′(Σ1/2AΣ1/2)(Z + Σ−1/2µ)

= (U + b)′P′Σ1/2AΣ1/2P(U + b)

= (U + b)′Λ(U + b) =


∑p

t=1 λt(Ut + bt)2, if µ , 0,∑p
t=1 λtU2

t , if µ = 0,

where b′ = (P′Σ−1/2µ)′ = (b1, . . . , bp) and U′ = (U1, . . . ,Up). �

Proof. Lemma 3.2:

Let X1 and X2 be i.i.d. vectors drawn from an elliptical distribution Ep(µ,Σ, ψ).
Consider the distribution of IPD d2 (X1,X2). Note that Xi = µ + BTi where Ti ∼ Sp(ψ),
for i = 1, 2, and B is a p × p matrix such that Σ = BB′ is positive definite. It follows that
X1 − X2 = B(T1 − T2) ∼ Ep(0, 2Σ, ψ). Hence, d2

(
Xi,X j

)
= (T1 − T2)′Σ(T1 − T2) = R′ΣR

where R =
√

2(T1−T2) ∼ Sp(ψ). Let diag(λ1, . . . , λp) be the eigenvalues of 2Σ. It follows
that d2 (X1,X2) = R′ΣR = R′diag(λ1, . . . , λp)R =

∑p
j=1 λ jU2

j where U j has a univariate
symmetric distribution with center zero. �

Proof. Lemma 4.1:

For t ∈ R and r = 1, . . . , k, using (4.4), one can show that [tr (S)]t = 1
2t d̄ 2t

p and
[tr (Srr)]t = 1

2t d̄ 2t
pr

. Let λ1, . . . , λp denote the eigenvalues of S. It follows from the

Cauchy-Schwarz inequality that
(∑p

i=1 λ
t
i

)2
≤ p

(∑p
i=1 λ

2t
i

)
with equality holding if and

only if λ1 = λ2 = . . . , λp = λ, for some constant λ. Since tr
(
St

)
=

∑p
i=1 λ

t
i for t ≥ 1 it

follows that
(
trS

)2
≤ p tr

(
S2

)
when t = 1. Coupled with (4.4) allows one to show that

d̄ 2
p ≤St 2

√
p tr(S2) and d̄ 2

pr
≤St 2

√
pr tr(S2

rr) where ≤St is the stochastic ordering between
two random variables. �


