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Abstract. Different approaches to goodness of fit (GOF) testing are proposed. This
survey intends to present the developments on Goodness of Fit based on entropy
during the last 50 years, from the very first origins until the most recent advances
for different data and models. Goodness of fit tests based on Shannon entropy was
started by Vasicek in 1976 and were continued by many authors. In this paper, we
describe different GOF tests constructed by authors from the beginning to now. First,
the problem of GOF and different types of GOF are stated. Then, the method of GOF
tests based on entropy for complete and censored data is explained and all works
proposed by authors in this subject are mentioned.
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1 Introduction

The term goodness of fit (GOF) was coined by Pearson in 1902, and refers to statistical
tests that check the quality of a model or a distribution’s fit to a set of data. The first
measure of GOF for general distributions was derived by Kolmogorov (1933). Andrei
Nikolaevich Kolmogorov (1905-1987), perhaps the most accomplished and celebrated
Soviet mathematician of all time, made fundamental contributions to probability theory,
including test statistics for distribution functions - some of which bear his name.
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Nikolai Vasil’yevich Smirnov (1900-1966), another Soviet mathematician, extended
Kolmogorov’s results to two-sample cases.

The Kolmogorov statistic (sometimes called the Kolmogorov-Smirnov test statistic
test statistic, which is defined as)

KS = sup
t
|Fn(t) − F(t)| ,

provides nonparametric GOF tests for many distributions. Here, F is the cumulative
distribution function of the reference distribution and Fn is the empirical distribution
function of the sample. This statisitc measures how good a parametric model fits an
observed sample. The fitting problem can be split into three main steps:

• choose a suitable theoretical model,

• estimate the model parameters,

• determine the significance level.

In assessing whether a given distribution is suited to a data-set, the following tests and
their underlying measures of fit can be used:

Chi-Square GOF test determines how well theoretical distribution (such as normal,
binomial, or Poisson) fits the empirical distribution.

In Chi-Square GOF test, the range of the theoretical distribution is divided into a
finite number of intervals. Then the numbers of points that fall into the intervals are
compared, with the expected numbers of points in each interval. The Chi-Square test
statistic is

χ2 =
(O − E)2

E
,

where, χ2 is the Chi-Square GOF test, O stands for the observed value and E denotes
the expected value. About the details of the number of intervals, on can see Greenwood
and Nikulin (1996).

An important problem in statistics is to obtain information about the form of the
population from which the sample is drawn. GOF tests are employed to determine
how well the observed sample data "fits" some proposed model. GOF tests can be
constructed based on different methods. Here, we state these methods and researchers
which have been worked in this field.

1. GOF tests based on the empirical distribution function (EDF)

• Cramer-von Mises (1931);

• Kolmogorov-Smirnov (1933);

• Anderson-Darling (1952);
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• Kuiper (1960);

• Watson (1961);

• Lilliefors (1967);

• Zhang (2002).

2. GOF tests based on measures of the moments

• D’Agostino and Pearson (1973);

• Jarque–Bera (1980);

• Doornik–Hansen (1994);

• Bonett and Seier (2002);

• Gel and Gastwirth (2008).

3. GOF tests based on regression and correlation

• Shapiro–Wilk (1965);

• Shapiro and Francia (1972);

• Filliben (1975);

• Chen and Shapiro (1995);

• Rahman and Govindarajulu (1997).

4. GOF tests based on the empirical characteristic function

• Epps and Pulley (1983).

5. GOF tests based on the empirical likelihood ratio (ELR)

• Vexler and Gurevich (2010);

• Gurevich and Vexler (2011);

• Vexler et al. (2014).

6. GOF tests based on information measures

• These tests are completely discussed in the next section.

In numerous applications in reliability studies and engineering and management
sciences, it is very important to test whether the underlying distribution has a particular
form. Most statistical methods assume an underlying distribution in the derivation of
their results. However, when we assume that our data follow a specific distribution, we
take a serious risk. If our assumption is wrong, then the obtained results may be invalid.
For example, the confidence levels of the confidence intervals or error probabilities of
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tests of hypotheses implemented may be completely off. The consequences of mis-
specifying the distribution may prove very costly. To avoid this problem, a formal
assessment of the distributional assumption is needed.

Obviously, the specialized tests will be more powerful than an omnibus test such
as the Kolmogorov-Smirnov test. D’Agostino and Stephens (1986) warned that for
testing for normality, the Kolmogorov-Smirnov test is only a historical curiosity. It
should never be used. It has poor power in comparison to [specialized tests such as
Shapiro-Wilk, D’Agostino-Pearson, Bowman-Shenton. and Anderson-Darling tests].

2 GOF Tests Based on Entropy

Entropy is a measure of the unpredictability of the state, or equivalently, of its average
information content. To get an intuitive understanding of these terms, consider the
example of a political poll. Usually, such polls happen because the outcome of the poll
is not already known. In other words, the outcome of the poll is relatively unpredictable,
and actually performing the poll and learning the results gives some new information;
these are just different ways of saying that the a priori entropy of the poll results is
large. Now, consider the case that the same poll is performed a second time shortly
after the first poll. Since the result of the first poll is already known, the outcome of
the second poll can be predicted well and the results should not contain much new
information; in this case the priori entropy of the second poll result is small relative to
that of the first.

The development of the idea of entropy of random variables and processes by
Claude Shannon provided the beginnings of information theory and of the modern
age of ergodic theory. It is seen that entropy and related information measures provide
useful descriptions of the long term behavior of random processes and that this behavior
is a key factor in developing the coding theorems of information theory. In this article,
we investigate the case of GOF based on entropy.

Suppose that a random variable X has a distribution function F(x) with a continuous
density function f (x). The entropy H( f ) of the random variable was defined by Shannon
(1948) to be

H( f ) = −

∫
∞

−∞

f (x) log f (x) dx .

The problem of estimation of H( f ) has been considered by many authors. For
discrete random variables, this problem is studied by Dobrushin (1958), Hutcheston and
Shenton (1974), Vatutin and Michailov (1995) and, for absolutely continuous random
variables, by Vasicek (1976), Dudewicz and van der Meulen (1987), Joe (1989), Hall and
Morton (1993), Van Es (1992), Correa (1995), Wieczorkowski and Grzegorewski (1999),
Bowman, (1992), Ebrahimi et al. (1994), Beirlant et al. (1997), Song (2000), Goria et
al. (2005), Yousefzadeh and Arghami (2008), Zamanzade and Arghami (2009, 2011),
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Alizadeh Noughabi (2010), Alizadeh Noughabi and Arghami (2010), and Alizadeh
Noughabi (2015a, b).

Among these various entropy estimators, Vasicek’s sample entropy has been most
widely used in developing entropy-based statistical procedures (Dudewicz and van
der Meulen (1981); Gokhale (1983); Arizona and Ohta (1989); Ebrahimi et al. (1992),
etc).

Vasicek (1976), for one dimensional distributions, proposed an estimator of entropy.
His estimate was based on the fact that H( f ) can be expressed as

H( f ) =

∫ 1

0
log

{
d
dp

F−1(p)
}

dp.

The estimate was constructed by replacing the distribution function F by the
empirical distribution function Fn , and using a difference operator instead of the
differential operator. The derivative of F−1(p) is then estimated by a function of the
order statistics.

Assuming that X1, ...,Xn is the sample, the Vasicek estimator (1976) is given by

HVmn =
1
n

n∑
i=1

log
{ n

2m
(X(i+m:n) − X(i−m:n))

}
,

where m is a positive integer, m ≤ n
2 , and X(1:n) ≤ X(2:n) ≤ ... ≤ X(n:n) are order statistics

and X(i:n) = X(1:n) if i < 1, X(i:n) = X(n:n) if i > n.

Vasicek proved that HVmn → H( f ) in probability as n→∞ ,m→∞, m
n → ◦ .

2.1 Test for Normal Distribution

A well-known theorem of information theory (Shannon (1949), p. 55) states that among
all distributions that possess a density function f and have a given variance σ2, the
entropy H( f ) is maximized by the normal distribution. Based on this property, Vasicek
(1976) introduced the following statistic for testing normality:

TVmn =
exp{HVmn}

σ̂
=

n
2mσ̂

 n∏
i=1

(X(i+m:n) − X(i−m:n))


1/n

,

where

σ̂ = S =

√√
1
n

n∑
i=1

(Xi − X̄)2 .

Arizona and Ohta (1989) showed that the above test statistic can be derived based
on Kullback-Leibler(KL) information. Let

g(x;µ, σ) =
1
√

2πσ
exp

{
−

1
2

(x − µ
σ

)2
}
,
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KL information f from g can be written as

D( f , g) =
∫
∞

−∞
f (x) log( f (x) )dx −

∫
∞

−∞
f (x) log( g(x;θ) )dx

= −H( f ) −
∫
∞

−∞
f (x) log( g(x;θ) )dx,

where H( f ) is entropy of f . By replacing g(x), we have

D( f , g) = −H( f ) + log
√

2πσ2 +
1
2

∞∫
−∞

(x − µ
σ

)2
f (x)dx.

Consequently, an estimate of D( f , g) is constructed as

Imn = log

√2πσ̂2 exp

 1
2n

n∑
i=1

(
xi − µ̂

σ̂

)2

/
exp {HVmn}

 ,
where µ̂ and σ̂ are the maximum likelihood estimators of µ and σ, respectively. Thus,
the test statistic due to Arizona and Ohta (1989) is given by

KLmn =
√

2π
/
exp {Imn}.

It is easy to show that
KLmn = TVmn

/√
e,

where TVmn is the test statistic introduced by Vasicek (1976). Therefore, the KL based
test for the normality is equivalent to the entropy-based test given by Vasicek (1976).
Moreover, some authors presented other versions of the Vasicek’s test. Park (1999)
proposed a GOF for normality, based on the sample entropy of order statistics. His test
statistic is

DV(J,n,m) =
1
n

n∑
i=1

log
( n
2m

(X(i+m:n) − X(i−m:n))
)

J(ui),

and he took k = 2 and J(u) = 2(1 − 2u).

Choi (2008) used the sample variance 1
n
∑n

i=1(Xi − X̄)2 and concluded that the power
of the Vasicek test increases and therefore improved the Vasicek’s test. Also, Gurevich
and Davidson (2008) indroduced the standarized forms of tests based on KL information.

The authors including Zamanzade and Arghami (2009, 2012), Alizadeh Noughabi
(2010), Alizadeh Noughabi and Arghami (2011c), and Lee (2013), proposed normality
tests based on new estimators of entropy. Their test statistics can be found in their
papers.

Using entropy of transformed data Alizadeh Noughabi and Arghami (2013) introd-
uced a test for normal distribution. Summary of the test is as

X1, ...,Xn → Yi j = X(i:n) + X( j:n) , i < j → TAmn =
n′

2mσ̂

 n′∏
i=1

(Y(i+m) − Y(i−m))


1/n′

,
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where n′ = n(n − 1)/2 and σ̂ =

√
1
n′

n′∑
i=1

(Yi − Ȳ)2 .

2.2 Test for Exponential Distribution

Gokhale (1983) introduced a test for exponentaility based on maximum entropy charac-
terization. Ebrahimi et al. (1992) proposed the following test statistic, based on KL
information, for testing exponentiality:

TEmn = −HVmn + log X̄ + 1,

where

X̄ =
1
n

n∑
i=1

Xi .

Choi et al. (2004) introduced two versions of the above test using two different
entropy estimators:

TVEmn = exp (HVEmn) / exp
(
log(X̄) + 1

)
,

where

HVEmn =
1

n −m

n−m∑
i=1

(n + 1
m

(X(i+m:n) − X(i:n))
)

+

n∑
k=m

1
k

+ log(m) − log(n + 1) ,

is Van Es entropy estimator (1992) and

TCmn = exp (HCmn) / exp
(
log(X̄) + 1

)
,

where HCmn is Correa entropy estimator (1995) given by

HCmn = −
1
n

n∑
i=1

log


i+m∑

j=i−m
(X( j:n) − X̄(i:n))( j − i)

n
i+m∑

j=i−m
(X( j:n) − X̄(i:n))

2

 .

Then, Alizadeh Noughabi and Arghami (2011b) introduced two version of entropy
test for exponentiality. Their tests are as

TEmn = exp (HEmn) / exp
(
log(X̄) + 1

)
,

where HEmn is Ebrahimi et al. (1994)’s sample entropy defined as

HEmn =
1
n

n∑
i=1

log
{ n

cim
(X(i+m:n) − X(i−m:n))

}
,
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where

ci =


1 + i−1

m 1 ≤ i ≤ m,
2 m + 1 ≤ i ≤ n −m,
1 + n−i

m n −m + 1 ≤ i ≤ n,

TAmn = exp (HAmn) / exp
(
log(X̄) + 1

)
,

where TAmn is Alizadeh Noughabi (2010)’s estimator of entropy given by

HAmn = −
1
n

n∑
i=1

log

 f̂ (X(i+m:n)) + f̂ (X(i−m:n))
2

,
and

f̂ (Xi) =
1

nh

n∑
j=1

k(
Xi − X j

h
) ,

and the kernel function is set to be the standard normal density function and the
bandwidth h is chosen to be the normal optimal smoothing formula, h = 1.06sn−

1
5 ,

where s is the sample standard deviation.

Park and Park (2003) constructed tests for normal and exponential distribution
based on the correcting moments of the entropy estimators. They first derived the
underlying nonparametric density function of HVmn as

gv(x) =

{
0 x < ξ1 or x > ξn+1,
1
n

2m
x(i+m:n)−x(i−m:n)

ξi < x ≤ ξi+1, i = 1, ...,n,

where ξi =
(
x(i−m:n) + · · · + x(i+m−1:n)

)
/2m.

The nonparametric distribution function of HEmn has been derived by Park and
Park (2003) as

ge(x) =

{
0 x < η1 or x > ηn+1,
1
n

1
ηi+1−ηi

ηi < x ≤ ηi+1, i = 1, ...,n,

where

ηi =


ξm+1 −

m∑
k=i

1
m+k−1

(
x(m+k:n) − x(1:n)

)
i f 1 ≤ i ≤ m,

(x(i−m:n)+···+x(i+m−1:n))
2m i f m + 1 ≤ i ≤ n −m + 1,

ξn−m+1 +
i∑

k=n−m+2

1
n+m−k+1

(
x(n:n) − x(k−m−1:n)

)
i f n −m + 2 ≤ i ≤ n + 1.

Then, Park and Park (2003) introduced the following test statistics for testing
normality.

TVmn = −HVnm + log
(√

2πσ̂v
)

+
1
2
,
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TEmn = −HEnm + log
(√

2πσ̂e
)

+
1
2
,

where σ̂v = Vargv (X) and σ̂e = Varge (X).

Based on other estimators, Yousefzadeh and Arghami (2008), Zamanzade and
Arghami (2009), and Alizadeh Noughabi and Arghami (2011a) introduced some other
tests as follows:

TYmn = −HY2mn + log
(√

2πσ̂y
)

+
1
2
,

TZmn = −HZmn + log
(√

2πσ̂Z
)

+
1
2
,

TAmn = −HAmn + log
(√

2πσ̂a
)

+
1
2
,

where σ̂y = Vargy (X), σ̂z = Vargz (X) and σ̂a = Varga (X). Also,

gy (x) =

 ◦ ζn+1 < x or x < ζ1,
F̂y(x(i+m:n))−F̂y(x(i−m:n))

x(i+m:n)−x(i−m:n)
ζi < x ≤ ζi+1, i = 1, ....n,

where

ζi =
x(i−m:n) + · · · + x(i+m−1:n)

n∑
i=1

(
F̂y

(
x(i+m:n)

)
− F̂y

(
x(i−m:n)

)) , i = 1, ....n,

gZ (x) =

 ◦ ζn+1 < x or x < ζ1,
1

n(ηi+1−ηi) ζi < x ≤ ζi+1, i = 1, ....n,

and

ηi =


ζm+1 −

m∑
k=i

1
k

(
x(m+k:n) − x(1:n)

)
i f 1 ≤ i ≤ m,

(x(i−m:n)+···+x(i+m−1:n))
2m i f m + 1 ≤ i ≤ n −m,

ζn−m+1 +
i∑

k=n−m+2

1
n−k+2

(
x(n:n) − x(k−m−1:n)

)
i f n −m + 1 ≤ i ≤ n + 1,

ga(x) =

{
◦ x < η1 or x > ηn+1,
1
n

1
ηi+1−ηi

ηi < x ≤ ηi+1, i = 1, ...,n,

and

ηi =


ζm+1 −

1
m

m∑
k=i

(
x(m+k:n) − x(1:n)

)
i f 1 ≤ i ≤ m,

(x(i−m:n)+···+x(i+m−1:n))
2m i f m + 1 ≤ i ≤ n −m,

ζn−m+1 + 1
m

i∑
k=n−m+2

(
x(n:n) − x(k−m−1:n)

)
i f n −m + 1 ≤ i ≤ n + 1.
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Similarly, Park and Park (2003) proposed two tests for exponentiality based on the
correcting moments of entropy estimators. Their test statistics are

TP1nm = −HVnm + log
(
θ̂v

)
+ 1,

TP2nm = −HEnm + log
(
θ̂e

)
+ 1,

where θ̂v = Egv (X) and θ̂e = Ege (X).

Next, Yousefzadeh and Arghami (2008), Zamanzade and Arghami (2009), and
Alizadeh Noughabi and Arghami (2011a) used this idea and introduced other tests
for exponentaility based on the correcting moments of entropy estimators. Their test
statistics are

TYmn = −HY2mn + log
(
θ̂y

)
+ 1,

TZmn = −HZmn + log
(
θ̂Z

)
+ 1,

TAmn = −HAmn + log
(
θ̂a

)
+ 1,

where θ̂y = Egy (X), θ̂z = Egz (X) and θ̂a = Ega (X).

Based on some characterizations of the exponential distribution and entropy of
transformed data, Alizadeh Noughabi and Arghami (2011d, e) constructed some tests
for exponentiality. They first proved the following theorem.

Theorem 2.1. Let X1 and X2 be two independent observations from a continuous distribution
F. Then
i) W = X1

X1+X2
is distributed as U(0, 1) if and only if F is exponential.

ii) Y = X1
X2

is distributed as F(2,2) if and only if F is exponential.
iii) Z = X1−X2

X1+X2
is distributed as U(−1, 1) if and only if F is exponential.

(F(2,2) is Fisher distribution with 2 and 2 degrees of freedom).

Then, they proposed some tests for exponentaility. Summary of these tests are as
follows.

X1, . . . ,Xn →Wi j = Xi
Xi+X j

, i , j → T1 = − 1
n′

n′∑
i=1

log
{

n′
2m (W(i+m) −W(i−m))

}
,

X1, . . . ,Xn → Yi j = Xi
X j
, i , j → T2 = − 1

n′
n′∑

i=1
log

{
n′
2m (Y(i+m) − Y(i−m))

}
+ 2

n′
n′∑

i=1
log(1 + Yi) ,

X1, . . . ,Xn → Zi j =
Xi−X j

Xi+X j
, i , j → T3 = − 1

n′
n′∑

i=1
log

{
n′
2m (Z(i+m) − Z(i−m))

}
+ log(2) ,

where n′ = n(n − 1).
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2.3 Test for Uniform Distribution

For the class of continuous distributions f , concentrated on [0, 1], it holds

H( f ) ≤ 0 ,

with the maximum value of H( f ), zero, being uniquely attained by the U(0, 1) density.

Dudewicz and van der Meulen (1981) used the above property and constructed a
test of uniformity. Their test statistic is given by

TVmn = HVmn ,

where HVmn is Vasicek entropy estimator. For small values of the test statistic TVmn ,
the uniformity hypothesis is rejected.

Alizadeh Noughabi (2017b) considered different entropy estimators and proposed
some entropy based tests of uniformity. His tests are

TVEmn = HVEmn ,
TCmn = HCmn ,
TYmn = HYmn ,
TAmn = HAmn ,
TNmn = HNmn ,

where HVEmn, HCmn, HYmn, HAmn, and HNmn are Van Es (1992), Correa (1995),
Yousefzadeh and Argham (2008), Alizadeh Noughabi (2010), Alizadeh Noughabi and
Alizadeh Noughabi (2008) estimators, respectively.

2.4 Test for Other Distributions

Testing procedures based on the sample entropy have been proposed for some other
distributions as well. Jammalamadaka and Lund (2000) introduced a GOF test for
von Mises distribution. For Inverse Gaussian distribution, Mudholkar and Tian (2002)
proposed a test based on maximum entropy and then Alizadeh Noughabi and Vexler
(2016) introduced tests for IG distribution based on the empirical likelihood ratio and
minimum discrimination information (MDI) estimators. Recently, Alizadeh Noughabi
and Jarrahiferiz (2018) introduced tests for the IG distribution based on correcting
entropy estimators. Choi and Kim (2006), based on the maximum entropy of Laplace
distribution, proposed a GOF test for this distribution. Then, Alizadeh Noughabi and
Park (2016), based on correcting moments of entropy estimators, constructed tests for
Laplace distribution and proposed some tests which were powerful. Perez-Rodriguez
et al. (2009) proposed a test for Gumbel distribution based on the maximum entropy
characterization. They used the moment and ML estimators for their test statistic.
Baratpour and Khodadadi (2012), based the cumulative residual entropy, constructed
a test for Rayleigh distribution. Finally, Mahdizadeh and Zamanzade (2017) proposed
a GOF test for Cauchy distribution and obtained the power values of the proposed test
and concluded that their test have a good power.



186 H. Alizadeh Noughabi and G. R. Mohtashami Borzadaran

2.5 General Treatment of GOF Tests Based on Entropy

Alizadeh Noughabi and Arghami (2013) investigated the general treatment of GOF
tests based on entropy and proposed a general test statistic. Their test statistic can be
obtained as follows. The KL discrimination information function is given by

D( f , f0;θ) =
∫
∞

−∞
f (x) log

( f (x)
f0(x;θ)

)
dx

= −H( f ) −
∫
∞

−∞
f (x) log

{
f0(x;θ)

}
dx .

Under the null hypothesis,

∃ θ s.t. f0(x;θ) = f (x)⇔ ∃ θ s.t. D( f , f0;θ) = 0⇔ inf
θ∈Θ

D( f , f0;θ) = 0 .

Also under H1 ,

∀θ f0(x;θ) , f (x)⇔ ∀θ D( f , f0;θ) > 0⇔ inf
θ∈Θ

D( f , f0;θ) > 0 .

They used an estimate of Dinf = inf
θ∈Θ

D( f , f0;θ), denoted by D̂inf, where

D̂inf = −Hmn − sup
θ∈Θ

1
n

n∑
i=1

log( f0(xi;θ)) .

Finally, their test statistic is stated as

D̂inf = −HVmn − sup
θ∈Θ

1
n
∑n

i=1 log( f0(xi;θ))

= − 1
n
∑n

i=1 log
{

n
2m (X(i+m:n) − X(i−m:n))

}
−

1
n
∑n

i=1 log( f0(Xi; θ̂)) ,

where θ̂ is the maximum likelihood estimator of θ. Then, they showed that the test
based on D̂inf is consistent and it is exact for location, scale and location-scale families.

Moreover, they showed that the minimum KL distance tests for the normality and
exponentiality are equivalent to the entropy-based tests given by Vasicek (1976) and
Ebrahimi et al. (1992), respectively. Generally, Alizadeh Noughabi and Arghami (2013)
showed that all entropy-based tests introduced by the previous authors can be obtained
by their general test.

Based on the above test statistic, Alizadeh Noughabi and Arghami (2013) constructed
some GOF tests for Laplace, uniform, Weibull and beta distributions.

2.6 Test for Symmetry Based on Entropy

Let Er1...rk:n represent the entropy of a set of order statistics X(r1:n), ...,X(rk:n). Then, we
have

E1:1 = −

∫
∞

−∞

f (x) log f (x) dx,
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and

E1:k = − log k −
∫
∞

−∞

{
log f (x) + (k − 1) log(1 − F(x))

}
dF1:k(x) .

Park (1999) showed that

E1:k = 1 −
1
k
− log k −

∫
∞

−∞

log f (x) dF1:k(x),

Ek:k = 1 −
1
k
− log k −

∫
∞

−∞

log f (x) dFk:k(x).

He also derived the sample estimates of E1:k and Ek:k , k = 1, ...,∞ , by analogy to Vasicek
(1976), as

Ê1:k = 1 −
1
k
− log k +

1
n

n∑
i=1

log
( n
2m

(X(i+m:n) − X(i−m:n))
)

k
(
1 −

i
n + 1

)k−1
,

Êk:k = 1 −
1
k
− log k +

1
n

n∑
i=1

log
( n
2m

(X(i+m:n) − X(i−m:n))
)

k
( i
n + 1

)k−1
.

The sample estimates of E1:k and Ek:k can be unified in the following general expression:

const. +
1
n

n∑
i=1

log
{ n

2m
(X(i+m:n) − X(i−m:n))

}
J(ui),

where ui = i
n+1 , i = 1, ...,n, J(u) is bounded and continuous and J(u) = −J(1 − u) .

Park (1999) used the sample estimates of E1:k−Ek:k and introduced a characterization
for symmetric.

Lemma 2.1. (Park, 1999) Let Dk = E1:k − Ek:k, then Dk = 0 for k = 1, ...,∞ if and only if f is
symmetric.

Park (1999) proved the above Lemma and used the estimate of Dk to obtain a
test statistic for testing normality against asymmetric alternatives. He considered the
following general expression for estimating Dk:

DV(J,n,m) =
1
n

n∑
i=1

log
( n
2m

(X(i+m:n) − X(i−m:n))
)

J(ui) .

Habibi Rad and Arghami (2007) investigated the above test and evaluated its power
properties. Abbasnejad and Mohammadi (2010), based on the above idea, constructed
a symmetry test using Renyi information and then obtained power values of their
test. Alizadeh Noughabi (2015) used the other entropy estimators and presented some
nonparametric tests of symmetry based on the sample entropy of order statistics. His
tests have this advantage that we do not need to estimate the center of the symmetry.
Monte Carlo studies showed that the proposed tests were more powerful than previous
ones against a variety of asymmetric alternative distributions.
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2.7 Tests Based on Entropy for Ranked Set Samples (RSS)

Ranked set sampling, originally developed by McIntyre (1952), combines simple rand-
om sampling (SRS) with the field investigator’s professional knowledge and judgment
to pick places to collect samples. Alternatively, field screening measurements can
replace professional judgment when appropriate. The use of ranked set sampling
increases the chance that the collected samples will yield representative measurements.
This results in better estimates of the mean as well as improved performance of many
statistical procedures such as testing for compliance with risk-based or background-
based (reference-based) standards.

Mahdizadeh and Arghami (2010) investigated the efficiency of ranked set sampling
in entropy estimation and GOF testing for the inverse Gaussian law. Similarly, Mahdiza-
deh (2012) performed a similar study for the Laplace distribution. Al-Omari and
Haq (2012) proposed GOF tests for the inverse Gaussian distribution based on new
entropy estimation, using ranked set sampling and double ranked set sampling. Then,
Mahdizadeh and Arghami (2013) improved the entropy based tests of uniformity
using ranked set samples. Amini et al. (2016) and Zamanzade and Mahdizadeh
(2017) proposed some entropy estimators based on ranked set sampling and compared
them with other estimators based on SRS. Alizadeh Noughabi (2017a) proposed seven
normality tests based on RSS and compared them with the similar tests based on SRS.

2.8 Tests Based on Entropy for Independence

A test of independence determines whether two factors are independent or not. This
test determines if there is a relationship between two categorical variables in the
population. It is called a test of independence because “no relationship” means
“independent.” If there is a relationship between the two variables in the population,
then they are dependent.

Some authors including Sharifdoost et al. (2009), Fernandes and Neri (2010), Onken
et al. (2012), and Lee and Kim (2017) proposed tests for independence based on entropy.
They used the KL information and constructed a test statistic for independence.

2.9 Test Based on Entropy for Censored Data (Type II, Progressive, Hybrid,
etc.)

The estimation of H( f ) based on censored samples has been done by Park (2005). If

X(1:n),X(2:n), ...,X(r:n)

are the first r order statistics of a random sample of size n, then entropy of these data is
defined as

H1,...,r:n = −

∫
∞

−∞

...

∫ x(2:n)

−∞

f1,...,r:n log f1,...,r:n dx(1:n)...dx(r:n) ,



An Updated Review of Goodness of Fit Tests Based on Entropy 189

where f1,...,r:n is the joint probability density function of X(1:n), ...,X(r:n).

Park (2005) showed that

H1,...,r:n = −
(
log n + ... + log(n − r + 1)

)
+ nH̄1,...,r:n ,

where

H̄1,...,r:n =
r
n
−

∞∫
−∞

(1 − Fr:n−1) f (x) log h(x) dx,

and h(x) is the hazard function. He further showed that

H̄1,...,r:n = −E
(∫ Ur:n−1

0
log

(
d
dp

F−1(p)
)

dp
)
− E

(
(1 −Ur:n−1) log (1 −Ur:n−1)

)
,

where Ur:n−1 is the rth order statistic from a sample of size n − 1, from the standard
uniform distribution.

Based on the above expression, Park (2005) proposed an estimator of H̄1,...,r:n as

H(n,m, r) =
1
n

r∑
i=1

log
{ n

2m
(X(i+m:n) − X(i−m:n))

}
−

(
1 −

r
n

)
log

(
1 −

r
n

)
,

where the window size m is a positive integer less than or equal to r/2 , and X(i:n) = X(1:n)
if i < 1 , X(i:n) = X(r:n) if i > r. Park (2005) then established the consistency of H(n,m, r)
for the population entropy.

Subsequently, some other authors also considered the problem of entropy estimation
under different censored schemes. For example, Balakrishnan et al. (2007) estimated the
joint entropy of a sample under progressive type-II censoring. Morrabi and Razmkhah
(2009) obtained the entropy under hybrid censoring schemes, but did not consider the
estimation of entropy.

Let G(x;θ) be a parametric family of distributions with probability density function
g(x;θ). Then, the hypothesis of interest is

H0 : f (x) = g(x;θ) , f or some θ ∈ Ω ,

versus
H1 : f (x) , g(x;θ), f or any θ ∈ Ω .

To discriminate between the two hypotheses H0 and H1 , the KL information can be
used. If f actually belongs to G, the minimal value of the KL information is zero and
if f does not belong to G, the minimal KL information is strictly positive. Therefore,
a GOF test can be constructed which would reject H0 for large value of I1,...,r:n

(
f , g;θ

)
,
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where

I1,...,r:n
(

f , g;θ
)

=
∞∫
−∞

f1,...,r:n (x) log f1,...,r:n(x)
g1,...,r:n(;θ) dx

=
∞∫
−∞

f1,...,r:n (x) log f1,...,r:n(x) dx −
∞∫
−∞

f1,...,r:n (x) log g1,...,r:n(x;θ) dx

= −H1,...,r:n −
∞∫
−∞

f1,...,r:n (x) log g1,...,r:n(x;θ) dx,

where H1,...,r:n is the joint entropy of X(1:n), ...,X(r:n).

Park (2005) approximated I1,...,r:n
(

f , g;θ
)

by

I1,...,r:n
(

f , g;θ
)

= −nH̄1,...,r:n −

r∑
i=1

log g(x(i:n);θ) − (n − r) log
(
1 − G(x(r:n);θ)

)
,

and based on I1,...,r:n
(

f , g;θ
)
/n proposed the following test statistic:

T (n,m, r) = −H(n,m, r) −
1
n

 r∑
i=1

log g(x(i:n); θ̂) + (n − r) log
(
1 − G(x(r:n); θ̂)

) ,
where θ̂ is an estimate of θ and H(n,m, r) is Park’s estimate of H̄1,...,r:n.

Alizadeh Noughabi and Balakrishnan (2015) proposed to estimate I1,...,r:n
(

f , g;θ
)

by

TA(n,m, r) = −H(n,m, r) −HA(n,m, r),

where H(n,m, r) is Park’s estimate of H̄1,...,r:n and HA(n,m, r) is the semi-parametric
estimate of second part of KL information, given by

HA(n,m, r) =

r∑
i=1

log

G(X(i+m:n); θ̂) − G(X(i−m:n); θ̂)
X(i+m:n) − X(i−m:n)

 + (n − r) log
(
1 − G(x(r:n); θ̂)

)
.

Consequently, the proposed test statistic based on I1,...,r:n
(

f , g;θ
)
/n is

TA(n,m, r) = 1
n

r∑
i=1

log
{

2m/n
X(i+m:n)−X(i−m:n)

}
+

(
1 − r

n

)
log

(
1 − r

n

)
−

1
n

r∑
i=1

log
{

G(X(i+m:n);θ̂)−G(X(i−m:n);θ̂)
X(i+m:n)−X(i−m:n)

}
−

(
n−r

n

)
log

(
1 − G(x(r:n);θ)

)
= − 1

n

r∑
i=1

log
{

n
2m

(
G(X(i+m:n); θ̂) − G(X(i−m:n); θ̂)

)}
+ (1 − r

n ) log
(

1−r/n
1−G(x(r:n);θ̂)

)
,

where G denotes the distribution function of g under the null hypothesis, m is a positive
integer such that m less than or equal to r

2 , and X(1:n), ...,X(r:n) are the order statistics.
Also, θ̂ can be any equivariant estimate of θ .

Other authors such as Lim and Park (2007), Balakrishnan et al. (2007), Yousefzadeh
and Arghami (2008), Habibi Rad et al. (2011), Alizadeh Noughabi (2017c), Alizadeh
Noughabi (2019), and Alizadeh Noughabi and Chahkandi (2018) introduced some tests
under different censoring schemes based on entropy or censored KL Information.
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2.10 Tests Based on Entropy for the Residual Life

In survival or reliability studies, the mean residual life or life expectancy is an important
characteristic of the model. If X is a nonnegative random variable representing the life
of a component having distribution function F, the mean residual life function or life
expectancy function at age x is defined by

ε(x) = E(X − x|X > x).

Ebrahimi (1998) considered the problem of testing GOF for exponentiality of the
remaining life of a system at a certain age. He developed a test statistic for the above
problem based on the dynamic version of KL information. Also, Ebrahimi (2001)
proposed a test statistic for uniformity of the remaining life of a system at a certain age
based on the dynamic version of KL information. Recently, Chahkandi and Alizadeh
Noughabi (2016) proposed a new test for exponentiality of the residual life of a system
at a certain age. They investigated the properties of the test statistic and then compared
the power of the new test with Ebrahimi’s test.

2.11 Test Based on Entropy for Fuzzy Data

The theory of fuzzy sets and systems has been widely employed in many pattern
analysis applications. It is a well known tool for formulation and analysis of imprecise
and subjective concepts. The common tests of fit are based on precise data. But, in
practical problems, different kinds of uncertainty exist, especially in problems with
imprecise data. In other words, the data sometimes cannot be recorded precisely. For
example, because of the fluctuation of a river, the water level cannot be measured in
an exact way. Then, we say that the water level is around 30 meters, for example. The
phrase ’around 30 meters’ can be considered as a fuzzy number. Therefore, the fuzzy
sets theory is an appropriate tool for analyzing the imprecise data.

Given a fuzzy random sample
(
X̃1, X̃2, ..., X̃n

)
from a continuous probability distribu-

tion F with a density f (x), the hypothesis of interest is

H0 :
(
X̃1, X̃2, ..., X̃n

)
is a sample from normal distribution ,

versus
H1 :

(
X̃1, X̃2, ..., X̃n

)
is not a sample from a normal population,

where µ and σ are unspecified.

According to Alizadeh Noughabi and Akbari (2016) the fuzzy random variable X̃ is
fuzzy normal if and only if its α-pessimistic is normal for all values of α ∈ [0, 1]. Based
on this definition Alizadeh Noughabi and Akbari (2016) proposed the following test
statistics.

1- The Kolmogorov-Smirnov type test statistic :

KS =

∫ 1

0
sup

ỹαi

∣∣∣Fn(ỹαi) − Zαi
∣∣∣ dα,
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which is approximated by

KS =
1

100

1∑
α=.01

max
{
max
1≤i≤n

{ i
n
− Zαi

}
,max

1≤i≤n

{
Zαi −

i − 1
n

}}
.

2- The Cramer-von Mises type test statistic :

CM =

1∫
0

∞∫
−∞

(
Fn(ỹαi) −Φ(ỹαi)

)2dΦ(ỹ)dα,

which we approximate it by

CM =
1

100

1∑
α=.01

 1
12n

+

n∑
i=1

(
Zαi −

2i − 1
2n

)2
 .

3- The Kuiper type test statistic :

V =
1

100

1∑
α=.01

{
max
1≤i≤n

{ i
n
− Zαi

}
+ max

1≤i≤n

{
Zαi −

i − 1
n

}}
.

4- The Anderson-Darling type test statistic :

AD =
1

100

1∑
α=.01

−n −

∑n
i=1 (2i − 1)

{
ln(Zαi) + ln(1 − Zα(n−i+1))

}
n

.
5- The Shapiro-Wilk type test statistic :

W =
1

100

1∑
α=.01

(
[n/2]∑
i=1

a(n−i+1)(ỹα(n−i+1) − ỹαi)
)2

n∑
i=1

(ỹαi − ¯̃yα)2
.

Through a Monte Carlo simulation, they computed the power values of the tests
under 20 alternatives. Similarly, Zendehdel et al. (2018) introduced some exponentiality
tests for fuzzy data.
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2.12 Tests Based on Cumulative Residual Entropy (CRE)

Rao et al. (2004) proposed the cumulative residual entropy (CRE) of a nonnegative
random variable, which covers some problems of Shannon entropy, as

CRE(F) = −

∫
∞

0
F̄(x) log F̄(x)dx,

where F̄(x) = 1 − F(x) is the survival function.

Drissi et al. (2008) extended the definition of CRE to the whole real line. CRE
has its merit that it is well defined on the empirical distribution function. Hence, its
nonparametric estimate can be instantly obtained as

CRE(Fn) = −

∫
∞

0
F̄n(x) log F̄n(x)dx,

where Fn(x) is the empirical distribution function.

The cumulative residual KL information (Baratpour and Habibi Rad, 2012) has been
defined in relation with CRE as

CRKL(F : G) =

∫
∞

0
F̄(x) log

F̄(x)
Ḡ(x)

dx − (E(X) − E(Y)). (2.1)

The functions F̄(x) and Ḡ(x) are the survival functions of nonnegative continuous
random variables X and Y, respectively.

CRKL has the nonnegativity and characterization properties as a distance function
between two distributions, but it is not symmetric. CRKL is also well defined on the
empirical distribution function, and its estimate based on the empirical distribution
function has been studied as a GOF test for exponentiality by Baratpour and Habibi
Rad (2012). Because CRKL is defined on the nonnegative random variables, so that∫
∞

0 F̄(x)dx can be defined as E(X), its application has been limited to the semi-infinite
intervals.

Park et al. (2018) extend the application of CRKL to the whole real line as

CRKL(F : G) =

∫
∞

−∞

F̄(x) log
F̄(x)
Ḡ(x)

dx −
∫
∞

−∞

(F̄(x) − Ḡ(x))dx.

They also considered the extension of the cumulative KL information (Park et al.
(2012)) as

CKL(F : G) =

∫
∞

−∞

F(x) log
F(x)
G(x)

dx −
∫
∞

−∞

(F(x) − G(x))dx.

CKL gives more weights on later difference while CRKL gives more weights on
earlier difference. In this sense, it is better to consider CRKL in measuring the distance
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between lifetime distributions because CRKL is more sensitive to earlier difference. If
we consider distribution functions supported on the whole real line, it may be proper
to consider a general cumulative KL information (GCKL) defined as

GCKLα(F : G) = αCKL(F : G) + (1 − α)CRKL(F : G), 0 ≤ α ≤ 1.

The choice of α depends on whether to put more weight on earlier difference or later
difference.

Park et al. (2018) considered a normal distribution as an example of distribution
functions supported on the whole real line, and proposed GOF test statistics based on
CRKL, CKL and GCKLα, respectively. Then, They compared their performances with
some competing test statistics based on the empirical distribution function, including
the Kolmogorov-Smirnov, Cramer von Mises, and Anderson Darling tests.

Some other authors used the CRE and constructed tests for exponential and normal
distributions. See for example, Baratpour and Habibi Rad (2012, 2016), Park et al.
(2012), Park and Lim (2015), Park and Pakyari (2015), and Zardasht et al. (2015).

2.13 Tests Based on Other Divergences

Shannon entropy and KL divergence are perhaps the two most fundamental quantities
in information theory and its applications. Because of their success, there have been
many attempts to generalize these concepts, and in the literature one will find numerous
entropy and divergence measures. Most of these quantities have never found any
applications, and almost none of them have found an interpretation in terms of coding.
The most important exceptions are the Renyi entropy and Renyi divergence. Renyi
divergence is related to Renyi entropy much like KL divergence is related to Shannon’s
entropy, and comes up in many settings. It was introduced by Renyi as a measure of
information that satisfies almost the same axioms as KL divergence, and depends on a
parameter that is called its order. In particular, the Renyi divergence of order 1 equals
the KL divergence.

The following authors considered other entropies (for example, Renyi, Verma) or
Phi-Divergence and constructed tests for statistical distributions, Pasha et al. (2008),
Abbasnejad (2011), Lequesne (2015), Abbasnejad (2016), Alizadeh Noughabi and Balak-
rishnan (2016). These authors compared their tests with some other tests, such as
entropy-based tests, and concluded that for some alternatives their tests have a higher
power than their competitors.

3 Simulation Study

In order to perform a simulation study in this context, since the distribution of the
test statistics under the null hypothesis are complicated for analytical evaluation, the
critical values of the test statistics are computed using Monte Carlo simulation. We use
the following steps to determine the critical values of the test statistics.
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1. Generate a sample X1, . . . ,Xn of size n from the null distribution;

2. Calculate the test statistics based on the sample X1, . . . ,Xn;

3. Repeat Steps 1-2 a large number of times and then determine the quantile of the
statistics.

The obtained critical values of the test statistics can be found in the corresponding
articles. Through Monte Carlo simulation, the power values of the tests can be
computed. Since the tests based on the empirical distribution function are commonly
used in practice, the authors compared the power values of the entropy-based tests
with the power values of the EDF-based tests. For more details about these tests, see
D’Agostino and Stephens (1986).

In power comparisons of the tests, authors consider various alternatives. For
example, in exponentiality tests, the considered alternatives include densities with
decreasing failure rates (DFR), increasing failure rates (IFR), as well as models with
unimodal failure rate (UFR) and bathtub failure rate (BFR) functions.

Under the considered alternatives, the power values of the tests can be computed
by means of Monte Carlo simulations. Under each alternative, several samples of
size n are generated and the test statistics are calculated. Then power values of the
corresponding test are computed by the frequency of the event "the statistic is in the
critical region". To save space, the power values of the tests are not reported and the
results of a simulation study can be observed in the following papers.

The normality tests are compared by Esteban et al. (2001), Senoglu and Surucu
(2004), Alizadeh Noughabi (2010), Alizadeh Noughabi and Arghami (2011c, 2011f,
2012, 2013) and Zamanzade and Arghami (2011, 2012). The GOF tests for exponentiality
are compared by Alizadeh Noughabi and Arghami (2011a, b, d, e), and Zamanzade and
Arghami (2011). The uniformity tests are compared by Alizadeh Noughabi (2017a).

In all of the above papers, it is shown that none of the tests is optimum for all
alternatives but the entropy-based tests generally have a better performance than the
competitors and therefore these tests can be confidently used in practice.

4 Conclusions

In this paper, we collected the developments on GOF based on entropy during the last
50 years, from the very first origins until the most recent advances for different data
and models. We explained different entropy-based GOF tests constructed by authors
from the beginning to now. All works proposed by authors in this subject have been
expressed.

The properties of the tests are stated and then the critical values are discussed.
Finally, method of computing the power values of the considered tests against different
alternatives was presented. Based on simulation study performed by some authors,
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we found that none of the tests is optimum for all alternatives. However, we observed
that the entropy-based tests have a higher power than competitors against some
alternatives and are superior to the other tests. For example, the entropy-based
tests for the exponential distribution have high power against IFR (increasing failure
rate) alternatives. Therefore, the choice of a specific test depends on the alternative
distribution.

In general, based on the simulation study performed by authors, we can say that
the power values of entropy-based tests are reasonable and acceptable and therefore
these tests can be confidently used in practice.
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