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Abstract. This paper focuses on different methods of estimation and forecasting in
first-order integer-valued autoregressive processes with Poisson-Lindley (PLINAR(1))
marginal distribution. For this purpose, the parameters of the model are estimated
using Whittle, maximum empirical likelihood and sieve bootstrap methods. Moreover,
Bayesian and sieve bootstrap forecasting methods are proposed and predicted value
for h-step ahead of the series is obtained. Some simulations and a real data analysis are
applied to compare the presented estimations and the prediction methods.
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1 Introduction

Time series analysis is one of the most important statistical techniques when dealing
with the study of real data sets. Although this method is applied for decades, analyzing
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time series of counts or integer-valued time series has recently attracted the attention of
researchers. These time series are concerned with counting certain objects or events at
specific times and can be studied from two aspects. In one aspect, if an integer-valued
time series has a big enough range, it can be approximated by a standard continuous
model and, in the other aspect, it is necessary to fit an integer-valued model to the
series.

Integer-valued time series has been widely used in different studies, such as the
number of daily transactions in the stock market, the annual counts of hurricanes, the
number of rainy days in successive weeks, the number of patients treated each day in
an emergency department and the daily counts of swine flu cases, see Fokianos and
Kedem (2003), McKenzie (2003), and Brdannas and Shahiduzzaman Quoreshi (2010),
Morifna etal. (2011), Livsey etal. (2018), etc. The main characteristic of integer-valued
time series is their integer-valued structure and their correlation over time. Therefore,
they cannot be well approximated by continuous variables.

Since the late 1970s, various models have been introduced to model count time
series with a preset marginal distribution. Many of these models are thinning operator-
based and resemble the autoregressive moving-average (ARMA) models. Among these
thinning operators, the binomial thinning operator, introduced by Steutel and Van
Harn (1979), is very popular. Al-Osh and Alzaid (1987) were the first researchers that
proposed an INAR model based on this thinning operator, called first-order integer-
valued autoregressive (INAR(1)) process. Du and Li (1991) presented a pth-order
INAR model. Zheng et al. (2007) proposed a first-order random coefficient INAR
process. Risti¢ (2009) applied the geometric distribution and defined a new INAR(1)
process based on the negative binomial thinning operator. Bakouch and Risti¢ (2010)
presented an INAR(1) process with zero truncated Poisson marginal distribution. Using
signed generalized power series thinning operator, Zhang et al. (2010) introduced
the pth-order INAR process. In 2016, introducing a random environment in INAR
process by Nasti¢ et al. (2016) results in a significant breakthrough in INAR modeling.
Mohammadpour etal. (2018) proposed a first-order INAR model with Poisson-Lindley
marginal distribution. For more related research, we refer readers to Weif (2008) and
Scotto et al. (2015).

In time series analysis, estimation and forecasting are two critical topics. Various
researchers apply different methods for parameter estimation in INAR models. Among
these methods, the Yule-Walker, maximum likelihood, conditional least squares and
quasi-likelihood estimates are more popular, see for example, Zheng et al.  (2006)
However, prediction methods in integer-valued time series are less developed. For
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instance, McCabe et al. (2011) used an efficient probabilistic forecast method. Maiti and
Biswas (2015) and Awale et al. (2017) considered the coherent forecasting first-order
INAR process with geometric marginals. Maiti et al. (2016) studied the forecasting for
count time series using Box-Jenkins’s AR(p) model.

The Poisson-Lindley distribution, which belongs to the compound Poisson family,
is unimodal, overdispersed, and infinitely divisible, Ghitany and Al-Mutairi (2009).
Besides, this distribution has an increasing hazard rate and can be viewed as a mixture
of a geometric and a negative binomial distribution. Moreover, it has smaller skewness
and kurtosis than the negative binomial distribution, Ghitany and Al-Mutairi (2009).
The theoretical advances of this distribution, along with its performance in real data
analysis, are the motivations of Mohammadpour et al.  (2018) to introduce and
established several statistical properties the Poisson-Lindley INAR(1) process, PLIAR(1)
in abbreviation. Besides, they considered conditional least square, Yule-Walker and
maximum likelihood methods for estimating the unknown parameters of this model.
Moreover, in 2018, Wang and Zhang proposed the Quasi-Likelihood estimation for
the parameters of PLINAR(1) process. In this paper, we are going to study Whittle,
maximum empirical likelihood and sieve bootstrap methods for parameter estimation
and Bayesian and sieve bootstrap forecasting methods for predicting PLINAR(1) proce-
sS.

The remainder of this article is organized as follows. Section 2 is devoted to
preliminary notations and definitions. Besides, we present some statistical properties
of the PLINAR(1) process, which will be used throughout the paper. In Section 3,
we propose the Whittle, maximum empirical likelihood and sieve bootstrap estimation
methods. The Bayesian and sieve bootstrap prediction methods for PLINAR(1) process
are studied in Section 4. The simulation results and an application are presented in
Sections 5 and 6.

2 Preliminaries and some Basic Properties of PLINAR(1)

In this section, we are going to have a quick review on the definition of PLINAR(1)
model along with some of its properties, which are presented in Mohammadpour et al.
(2018) and Wang and Zhang (2018) and will be applied in the rest of the paper.

Consider the binomial thinning operator "o" defined as o o X := Zle Bj, where B;

is a sequence of i.i.d. Bernoulli random variables with P (B]- = 1) =1-P (B j= O) = q,
Steutel and Van Harn (1979). Let {X}};cz be a sequence of scalar time series satisfying
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the INAR(1) equation
Xi=ao0Xiq+e€, t>1. (21)

If, additionally, X; is stationary with Poisson-Lindley distribution, PL(0), with probabil-
ity mass function (PMF)

_0*(x+60+2)

Tor x=0,1,..., 6>0, 2.2)

f(x,0)

the resulting process is called PLINAR(1). Mohammadpour etal. (2018) demonstrated
that €;, which is a non-negative integer-valued random variable, possesses the PMF
fe (x) = ah (x) + (1 — a) g (x), where h (x) is a degenerate distribution at zero, and g (x) is
a PMF presented by

_92(1—a)2+9(1—a2)+2a 0 ( 0 )

8= 61 -a)+1) 0+1\" 1+06
1-a)(x+1)[ 6 \ o\
+9(1—a)+1(1+6) (t-133)
a 1+0 0+1 \*
_(6(1—a)+1)21+9+a( _1+6+a)' (2.3)

Here, €; is independent of X,,, and its associated counting series for all m < t. Besides,
they provide two other representations for PLINAR(1) process:

) aoXiy w. p.a
Xt_{oth_1+et w.p.1l-a, (2.4)

or equivalently,
X;=ao Xt—l + I;H;, (25)

where P(I; =0) =1 - P(I; = 1) = a, H; has the PMF g, presented in equation (2.3) and
X;_ is independent of I;H;, for k > 1.

It can easily be shown that, for k > 0, the autocovariance and autocorrelation
functions of the PLINAR(1) process are obtained as y (k) = Cov (X;, X;—) = a*yp, and
p (k) = ok, respectively. Consequently, the spectral density function of the PLINAR(1)
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process is formulated as

fA) = i k;m Cov (X, X;_x) exp (—idk)

(6% +46% + 60 +2)(1-a?)
 2mo2 0+ 121 +a2-2acos (1)

(2.6)

where A € (—n, 1], Mohammadpour et al. (2018).

The PLINAR(1) process possesses the Markov property and, consequently, for 0 > 1,
if Xp is PL(0), then the process {X;} is Poisson-Lindley for every t > 1 and is strict
stationarity. The 1-step ahead transition probabilities for this process can be calculated
as

min(i,j) .
fxeaix ({lj) = P(Xen1 = jIXe =) = Z ( ,l( )ak(l ~a)*P(LH =j-k), (7
k=0

Mohammadpour et al. (2018), and similarly, the h-step ahead transition probabilities
can be obtained as

fxnix, (@) = P (Xeqn = 11X = )

min(, j)

= Z (i)ahk@ - ah)j‘k PWyy=i—k), (2.8)
k=0
where
o+ (1 - ah) (Ah% th (%)2 + Chlfgfa},)< i=0
PWe =i =1 (1-a") [Ah% () +Bui+1)(1%) () 2.9)

4Oyt (! )l] i=1,2,...

+0+a \1+0+a"
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and

62 (1 - ah)2 +0 (1 - aZh) +2a"

Ap =
(6(1—ah)+1)
_ Ak
B = —17%
O(1l-ah)y+1
C —o’

oA —-a 1)

Wang and Zhang (2018). Additionally, using the induction method, the k-step ahead
conditional mean of PLINAR(1) process is obtained as

6+2

I (2.10)

E (XpilXe = x) = aFx + (1 - ak)
Mohammadpour etal. (2018). In the following sections, we will apply these definitions
and properties to provide different estimators and prediction methods in PLINAR(1)
process.

3 Estimation Methods

In time series analysis, parameter estimation is a key component in developing the
appropriate model for a set of data. To estimate the unknown parameters from the
realization x1, - - -, x,, of the PLINAR(1) process, different methods, such as conditional
least square, Yule-Walker, maximum likelihood (Mohammadpour et al. (2018)) and
Quasi-Likelihood estimation methods (Wang and Zhang (2018)) are proposed. In
this section, we will present the Whittle, empirical likelihood ratio (ELR) and sieve
bootstrap (SB) estimators for the unknown parameters of PLINAR(1) process.

3.1 Whittle Estimation

Generally speaking, the estimation of the parameters in finite-parameter time series
models is based on the time-domain approach. However, in 1953, Whittle proposed
an estimator based on the frequency domain to estimate the parameters in Gaussian
processes. The motivation of introducing Whittle’s estimator is that sometimes it is
easier to obtain the spectral density function of a model than the exact likelihood. This
estimator, which is investigated by several authors (\Walker (1964); Hannan (1973);
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Rice (1979), is used in different applications and situations (Fox and Taqqu (1986);
Sesay and Rao (1992); Rao and Chandler (1996)).

Let w be the vector of the parameters of the considered model and f (A, w) denotes
the non-normalized spectral density function of the process. The periodogram, I (1),
of the considered process is defined as:

2

N
Iy (A) = 2rN) ™! Z X, exp (idt)
t=1
N 2 N 2)2
= 2rN)™! ZXtcos(At)] + Zthin()\t)]
t=1 =1

Whittle (1953) demonstrated that, for Gaussian time series, the maximization of the
log likelihood function of the sample is asymptotically equivalent to minimization of
Whittle’s criterion given by

ﬁN(w):% I {log f(Aw)+ ;?A(tz)}d)\. (3.1)

Consider @ to represent the estimator obtained by minimizing (3.1). Under the
Gaussianity assumption, this estimator is weakly consistent and has an asymptotic
normal distribution, Whittle (1953) and Walker (1964). In non-Gaussian time series,
the Whittle’s criterion can be applied and the obtained estimator is still consistent and
has an asymptotic normal distribution, Rao and Chandler (1996) and Rice (1979).
However, difficulty in obtaining expressions for the asymptotic variance of (@ — w)
makes these estimators impractical.

To estimate the parameters using the minimization of Whittle criterion, (3.1) is
replaced by

. [N/2] In (A
@ =y ; {log (1) + fl(VA(j, 2)} (3.2)

where f (A ]-,a)) is the spectral density function at the frequency point A; = 27j/N, and
w is the vector of the parameters. For PLINAR(1) process, considering the spectral
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density function, presented in (2.6), and w = («, G)T , we have

Iy (@) o 21 /]{10 (6% + 407 + 60 +2) + log (1 - a?) — 210g (0.0 + 1))}

27162 (6 + 1) &
"NE T 66++ 2)(1-a?) Z (1+ 0 = 2acos (1)) 1w (1)
| N2
- — Z log 1 +a? = 2acos (A])) (3.3)

j=1

The numerical minimization of equation (3.3) is achieved using numerical algorithms.

3.2 Maximum Empirical Likelihood Estimation

The empirical likelihood (EL) method, which is introduced by Owen (1988, 1990), is a
way to expand the likelihood-based inference ideas to certain nonparametric situations,
Chuang and Chan (2002). For a sequence of i.i.d. observations, x1, - - -, x;,, of a discrete-
valued random variable X with some unknown distribution functions F, the EL function

is defined as
L) =]are)=]]pe (34)
t=1 t=1

and it can be shown that the maximizer of EL function, subject to the constraints p; > 0
and )i, pr = 1, is the empirical distribution function F,, (x) = (1/n) X,}_; I (x; < x). The
empirical likelihood ratio (ELR) is introduced as R (F) = L (F) /L (F,) and equivalently,
it can be written as R (F) = [];_, np:.

Let w € R be the vector of parameters of interest in the distribution F. Presume
that, for some function g, the constrain Er (¢ (X,w)) = 0 holds. The sample version of
this constraint, denoted by i, ptg (xt, w) = 0, should be imposed in the estimation of
w. For this purpose, the profile ELR function is defined as

R(w) = maX{H npil pr 2 0, Zpt =1, Zptg (xt, w) = } (3.5)

t=1

The maximizer of R (w) can be obtamed using the Lagrange multiplier (LM) method.
Let ¢ € R and @ € R? be the Lagrange multipliers and consider £ (w) as

L(w) = ; log (p:) + qb(l - ;th —ng’ ;ptg(xt,w).
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It can be demonstrated that the maximum is attained for p; = 1/ [n (1 + ¢’ g (x;, w))] and
¢ = n. Besides, @, which is a function of the unknown parameter w, is a solution to

Z g,w)
1+9'g(x,w)
Therefore, the minus log profile ELR function can be written as

n
L) =-logR(@) =) log(1+¢g(x,w)),
t=1
and the minimizer of £ (w) is called the maximum empirical likelihood estimator
(MELE) of w.

This method is extended to statistical models with a martingale structure by Mykland
(1995). He proved that the derivative of the objective function with respect to the
unknown parameter is a martingale under the true parameter. Therefore, the score
function is used to construct the ELR statistic. Here, this method is applied to obtain
the profile ELR function.

Consider the PLINAR(1) process given by (2.1) and let the conditional least squares
(CLS) criterion function be defined as

n

2
S(@) = Zst (@) = Z( X —(1-a) %) , (3.6)
t=1

where w = (a,0)". Let D; (w) = —(1/2) 9S; (w) /dw. The solution of equation )}, D; (w)
= 0 yields CLS estimation of w. It is easy to verify that D; (w) = (Dy; (@), Dp (w))", with

Di (@) = (Xf X - (1-a) %) (Xt_l ; a%) (3.7)
2
Di2 @) = (x X~ (1- ) %) ((1 ~a) %) . (3.8)

Let F; = 0(Xo,X1,---,Xt). It can be shown that {D; (@), ¥, t > 1} is a martingale
difference sequence, Zhang et al. (2011). Based on the score function D; (w) and
following Mykland (1995) and Chuang and Chan (2002), the profile ELR function can
be constructed as

R (@) = max {H npip; > 0, Z pr=1, Z D (@) = } (3.9)

t=1
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and the maximizer of (3.9) can be found by the method of Lagrange multipliers.
Following the same steps as in the i.i.d case, It can be verified that the optimal value of
pris1/(n(1 + ¢’ (w) D (w))) and ¢’ (w) satisfying

- D; (w) _
; o@D " (3.10)

The solution to Equation (3.10) can be obtained by numerical algorithms. Thus, the log
profile ELR statistic has the following form

L) =-2log(R@))=2) log(1+¢ (@)D (@)). (3.11)

t=1

The minimizer @ of (3.11) is the "MELE of w.

3.3 Sieve Bootstrap Parameter Estimation

The sieve bootstrap (SB) method, which is applied by Biihlmann (1997) in the analysis
of time series data, is extended to the integer-valued time series by Cardinal et al.
(1999) and Kim and Park (2008). Our proposed algorithm to obtain the parameters of
PLINAR(1) using SB method is as follows:

Algorithm 1

1- Compute the residuals; & = X; — aX;_q; t = 2,...,n, where & can be any of the
estimations mentioned in Section 3.

2- Since each error & may include a fractional part and even have a negative value,
the considered empirical distribution is related to the modified errors & defined

by
~ [ét] ’ ét > O/
“=Y0 &<,

where [.] represents the value rounded to the nearest integer. Therefore, the
empirical distribution function of the modified residuals is defined as:

. 1 v+
Pe) = ——= ) ez,
=2

n-1
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3- Draw B sets of i.i.d samples ef, b=1,...,B, t =1,...,n from the empirical
distribution Fg(.).

4

Define X! by the recursion:

X'=aoXl +eéb, t=1,...,nt=1,...,B.

i

Based on {Xll’ , Xg, .., Xf}, t < n,compute the estimation of the PLINAR(1) coefficie-
nts &’ and 6, as in step 1.

6

Estimations of @ and 6 can be obtained considering the sample mean
B B

Yo =1y

b=1 b=1

4 Prediction in the PLINAR(1) Process

a=

o3| =
o3| =

In practice, the point and interval forecasts of future values are of great importance
and some methods are developed to predict the future values of integer-valued time
series. For example, the concept of coherent forecasting is introduced by Freeland
and McCabe (2004) in the context of integer-valued time series data. Moreover,
the probabilistic forecasts by estimating the forecasting distribution is presented by
Freeland and McCabe (2004) and McCabe et al. (2011).

Based on the classical methodology, the h-step-ahead predictor of PLINAR(1) is
defined using the conditional mean, i.e.,

0+2
60 +1)

This prediction method is studied by Branndas (1994) and Freeland and McCabe (2004),
but it hardly produces integer-valued forecasts. In other words, the conditional mean-
based prediction is not a coherent forecasting method, i.e., it is not integer-valued.

K = E[XuanlXil = o' X + (1~ o") (41)

Median of transition probability-based predictor, which is proposed by Freeland
and McCabe (2004), applies the minimizer of the expected absolute error given the

sample, E [|Xt+h — )A(f+h| IXt] , as a coherent prediction for X;,y.

Let m;,;, be the median of the h-step ahead conditional distribution f (x;|x;) . In this
case, my,y, is the predicted value of X;,y, i.e., Xisn = My, and, for PLINAR(1) process,
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it is defined as the smallest non-negative integer such that

M)y My, MIn(i, ) ; i
D Fram @)=, ) (k)“tk (1-a") " P(Wiy=i-k 205,
i=0 i=0 k=0

where the PMF of Wy, is given in (2.9).

In 2018, Wang and Zhang compared the rounded conditional mean-based predictor
(RCM) with the median of transition probability-based predictor (MTP) in PLINAR(1)
process. Moreover, they used the highest predicted probability (HPP) interval for
interval prediction of future observation in this process. In both simulation studies and
real data analysis, they concluded that the MTP was much better than RCM. So, they
suggested using the MTP based predictor for data prediction in the PLINAR(1) process.
Note that if fx, ,x, (Olx;) > 0.5, the median is not defined and median forecast method
cannot be applied. (See, Simarmata et al. (2017)). As we can see in the Anorexia data
set, Table (7) in Section 7, in PLINAR(1) the chance of zero is high, so the MTP method is
not an appropriate method. Here, we are going to apply two other prediction methods,
Baysian and sieve bootstrap, for PLINAR(1) time series.

4.1 Bayesian Forecasting Method

Consider the future observation X;.; and the random vector of unknown parameters
w = (a,0)'. The information about w is obtained through the observed sample x; and
is quantified in the posterior predictive, m(w|x;). The Bayesian predictive probability
function is a weighted average over the parameter space ©, and as a posterior distributi-
on, it assigns a weight to every possible parameter setting. Silva et al. (2009) and
Simarmata et al. (2017) suggested a Bayesian methodology for Poisson INAR(1)
process. Here, we extend their method to PLINAR(1) process.

Definition 4.1. Let w € © be the vector of unknown parameters. The h-step ahead
Bayesian posterior predictive distribution is presented by

FiGrranle) = f@ F&ponr wlxe)dao
- f@ FGranl, x)m(@ix)dao, (42)

where n(w|x;) is the posterior probability function of w.
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Note 1. In Section 2, the h-step ahead transition probability is denoted by f(x;.plx¢). In
this section, to emphasis on the randomness of the parameters, f(x;.;|x;) is substituted

by f(xiinlw, x:).

When f;,(x:.4/x;) is obtained, the expected value, the median or the mode of this
distribution can be considered as the Bayesian h-step-ahead predictor.

In PLINAR(1) model, since beta and gamma distributions are the conjugation of
binomial and PL distributions, they can be applied as the prior distributions of the
parameters o and 0. More precisely, let a ~ Beta(a, b), a,b > 0and 0 ~ I'(c,d), c,d > 0. If
« and O are consider to be independent random variables, then the prior distribution
of w would be:

(w) = 1t(a)1(6)

_T@a+b) ,4 b-1 4% 4001
“Tore® Y el ?
o a1 (1 — o)L 00e1 0 >0, O<a<l, (4.3)

wherea, b, cand d are known parameters. The posterior distribution of w can be written
as
T(wlxt) o L (xtlx1, w) m(w)

= f(xtlxi—1, @) - -+ f (x3]x2, @) f (x2]x1, @) (W)

t My
Xn-1) k+a-1 Xp-1—k+b-1 _ -d6 pe-1
ocllk;( ; )a (1-a) P(I,H, = x, — k) e 4901, (4.4)
where L (x¢|x1, w) is the conditional likelihood function and M,, = min (x,,x,,_1). The
complex structure of the posterior distribution of w makes it difficult to derive the
marginal distribution, and consequently, the posterior mean value of each of the
unknown parameters. Therefore, to apply the Gibbs sampling algorithm in the simulati-
on studies, we need the full conditional posterior distribution of a and 0. Using
Equation (4.4) the full conditional posterior distribution of « is given by

t My
el 0 - [ Y (5 -0 P, =5 -, @9
n=2 k=0

while the full conditional posterior distribution of 0 is obtained as

t M,
(0, ) oc e 097 H Z (x”k*)ak (1-a)"*P(,H, =x, k). (4.6)
n=2 k=0
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Consequently, for the PLINAR(1) model, the Bayesian predictive function of X;,, given
Xt is

Folxeenlxt) = f@ f(xpnlw, xo)(w|x ) dw

co 1 min(xe,xpp) X xi—k
“J S L (3o (1= )™ P Wi = 1=

t My

[1Y. (x’};l)a" (1= @)™ P (LuH = x0 ~ k)
n=2 k=0
a1 (1 - a)’ e 96 dado. (4.7)

The complexity of f;(x;4/x;) prevents us from finding a solution using the standard
Bayesian method. Therefore, the algorithm of Bayesian forecasting method is applied
to determine the forecasting value. Let (X1, X, ..., X;) be observed. The following

algorithm is used to obtain the & step ahead sample (Xt+h;1/ Xisho, ooy XHh;m) from
equation (4.7).

Algorithm 2

1- A starting estimation for a and 6, called ag and 0y, are calculated from the sample
(X1, Xp, ..., X)), through the classical method.

2- Obtain a sample (a1, 01), (a2, 02), ..., (am, On) from the full conditional distributi-
ons of parameters, where for each pair (o}, 0;), j = 1,2,...,m, we simulate

ajp ~ (l0jx-1,Xs), k=1,...,K (4.8)
and

Ojx ~ Olajx-1,Xe), k=1,...,K 4.9)
where ao = ag, 00 = 6o, @j = ajx and 0; = O.

3- For each j, j = 1,...,m, obtain Xin;j from f(x;ulxt, aj, 6)), using the inverse
transform method adapted to integer variables, i.e.,

(a) Sample u from uniform U(0, 1),

(b) Calculate the least integer valued s, such that Zim:o f (xt+h|xt, aj, 0 j) >,
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(c) Let Xy =s.

After obtaining the sample points X1, Xi+n:2, - - -, Xp4hm, the h-step ahead predictor
X4+, can be calculated using sample mean (XH;,)), median (#1.,;) or mode (MHh)). We
can also calculate E(X;,,|X;) using properties of mathematical expectation, i.e.,

E [Xp4nlXt] = E [E [Xpsnl Xt, @] 1Xi]

0+2
_ h h
_E[aixt+(l—a )9(9+1) Xt]

= X;E[a"| X,| + E [(1 —a") _0+2 Xt] . (4.10)

0(0 + 1)

Markov Chain Monte Carlo (MCMC) algorithm can be used to estimate these expected
values. Here, Metropolis algorithm is performed in conjunction with Adaptive Rejection
Sampling Method (ARMS) in order to sample values from full conditional distributions
of a and 0, denoted by (a1, az,...,am), (01,02,...,0,), respectively, (see Silva and
Oliveira (2005) and Silva et al. (2009)). We have,

m
h|xt _%Za s

=1

and

E[(l h) 0+2

_1'” ) e+2
] mZA 0(0; + 1)

=1

Consequently, the predictor can be written as

4.2 Sieve Bootstrap Forecast

As mentioned previously, when the time series is integer-valued, the conditional
expectation, the Bayesian approach, the mean and MCMC methods are not coherent
forecasting methods. To preserve the integer-valued nature of data, we suggest
an alternative method, namely the bootstrap approach. A bootstrap approach is a
distribution-free alternative method. In the following, we employ the bootstrap method
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proposed by Pascual et al. (2004) after some modifications to PLINAR(1) model using
the next algorithm.

Algorithm 3

1- Estimate @, 0 by SB method as & and & mentioned in Section 3.3.

2- Compute future bootstrap observations by the recursion:

Xn+h =ao Xn+h—1 + €n+h’ h> 0’

where h > 0, and X; = X;, t < n and e,
distribution computed in Step 2.

, is a sample from the empirical

5 Numerical Simulations

In this section, we generate observations from PLINAR(1) model with four different
sets of parameters, (a, 0) = (0.3,2), (0.3,3), (0.5,2), and (0.5,3). In each case, we do
the simulation study for three sample sizes, n = 100, 300, and 500 and all the sample
observations are repeated N = 1000 times.

To check the efficiency of the proposed estimation methods, we compare them using
the conditional least square (CLS) and maximum likelihood estimation (MLE) methods
(Mohammadpour et al. (2018)). In Table (1), we report the estimated bias (BIAS) and

sample standard error (SSE) for (d, é) . For each case, the first line and the second line,

which is in bold-face-type, show BIAS and SSE for ((54, é) , respectively. It can be seen
from the results that the BIAS and SSE of all the estimations are decreasing as sample
size n increases and all the suggested methods are work well.

The aim of the second simulation is to compare the conditional mean-based predictor
with conditional least square estimation suggested by Mohammadpour et al. (2018)
with the Bayesian, median, bootstrap and conditional mean prediction methods, based
on our parameter estimation methods, MELE, Whittle and bootstrap, toward h-step
prediction.

We generate n + 5 observations from the PLINAR(1) process, n = 100, 300, 500,
where the first n observations are used to estimate the parameters and the remaining
observations are used to calculate the prediction mean absolute error (PMAE) as

N
1 IR
PMAE(h) = 2 X8 -x0 ),
k=1
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where. Xglh is the. (n + h.)—th observed data, )A(ﬁrh is the corresponding h-step prediction
and k is the repetition times.

Table 1: Bias and SSE of (&, é) for the PLINAR(1) process

(a, 0) n CLS MELE Whittle Bootstrap MLE

(032) 100 (-0.0216,0.0790) __ (-0.0205,0.0754) (-0.0091, 0.1399) (:0.0205, 0.0754) __ (-0.0107, 0.0834)
(0.0123,0.1699) (0.01200,0.1638) (0.0117, 0.2282) (0.0120, 0.1638) (0.0078, 0.1708)

300  (-0.0092,0.0345) (-0.0055,0.0295) (-0.0058,0.0538) (-0.0055,0.0295) (-0.0091, 0.0598)
(0.0044,0.0517) (0.0046,0.0472) (0.0042,0.0670) (0.0046,0.0472) (0.0074, 0.1241)

500  (-0.0055,0.0194) (-0.0030,0.0157) (-0.0036,0.0288) (-0.0030,0.0158) (-0.0088, 0.0555)
(0.0027,0.0243) (0.0027,0.0277 ) (0.0027,0.0360) (0.0027,0.0277) (0.0069, 0.1116)

(033) 100 (-0.0205,-1.9727)  (-0.0273,0.2178) (-0.0129, 0.2312) (-0.0273,02178) __ (0.1457,-0.0088)
(0.0110, 0.2800) (0.0126, 0.6505) (0.0126, 0.8287) (0.0126, 0.6505) (0.0403, 0.1192)

300 (-0.0094,0.0562) (-0.0139,0.0707) (-0.0045,0.0987) (-0.0139,0.0707) (-0.0243, -0.2847)
(0.0049,0.1453) (0.0046,0.1808) (0.0053,0.2064) (0.0046,0.1808) (0.0067, 0.0863)

500  (-0.0048,0.0325)  (-0.0045,0.0216) (-0.0028, 0.0555) (-0.0045,0.0216)  (-0.0025, 0.2810)
(0.0030,0.0811) (0.0029, 0.0816 ) (1.956e-17,1.323e-16 ) (0.0029,0.0816 ) (0.0065, 0.0872)

(0.5,2) 100 (-0.0304, 0.1452) (-0.02592, 0.1214) (-0.0202, 0.2114) (-0.02590, 0.1214) (-0.0157, 0.1473)
(0.01135, 0.2639) (0.0113, 0.2861) (0.0117,0.3488) (0.0113, 0.2861) (0.0067, 0.2622)

300 (0.0100,0.0522) (-0.0114,0.0598) (-0.0065,0.0763) (-0.0114,0.0598) (-0.0097, 0.0569)
(0.0039,0.0828) (0.0042,0.0818) (0.0039,0.1092) (0.0042,0.0818) (0.0059, 0.1242)

500  (-0.0070,0.0260)  (-0.0072,0.0183) (-0.0051,0.0381) (-0.0072,0.0183)  (-0.0065, 0.0387)
(0.0025,0.0400 ) (0.0026,0.0462 ) (0.0025,0.0514 ) (0.0026,0.0462 ) (0.0053, 0.1110)

(0.53) 100  (-0.0363, 0.3333) (-0.0420, 0.3832) (-0.0164, 0.3594) (-0.0420, 0.3832)  (-0.0156, -0.5000)
(0.01407, 1.2658) (0.0139, 1.4615) (0.0300, 1.2788) (0.0139, 1.4615) (0.0030, 0.2502)

300  (-0.0089,0.0660) (-0.0124,0.0433) (-0.0096,0.0376) (-0.0124,0.0433) (-0.0068, 0.0496)
(0.0046,0.2457) (0.0046,0.2161) (-0.0397,0.4317) (0.0046,0.2161) (0.0070, 0.1690)

500  (-0.0065,0.0417) (-0.0038,0.0533) (-0.0059,0.0682) (-0.0038,0.0353) (-0.0069, 0.0416)
(0.0029,0.1543 ) (0.0029,0.1626 ) (0.0027,0.1843 ) (0.0029,0.1626 ) (0.0078, 0.1659)

The results can be seen in Tables (2). The PMAE for Bayesian method and, after
that, Bayesian, the median and classic prediction when the parameters are estimated
with Whittle method, were less than other methods, which indicate that these three
prediction method are better than the other methods.

A standard interval in autoregressive models for h-step interval forecasting is base
on asymptotic normality property of E (X,,.4X,) (Bhansali (1974)). Maiti and Biswas
(2015) suggested that we can use the 100(1 — @)% highest predicted probability (HPP)
interval where a € (0, 1). Based on the definition of HPP interval and the unimodality
of the forecasting distribution, Wang and Zhang (2018) suggested an algorithm for
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100(1 — @)% HPP interval for PLINAR(1).

Table 2: PMAE for simulated PLINAR(1) process
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(o, 0) n  h conditional mean conditional mean conditional mean Median Bootstrap  Bayesian
(CLS) (MELE) (Whittle)

0.32) 100 1 0.7212 1.0703 0.7214 0.7870 0.9610 0.6431
2 0.8103 1.2722 0.8089 0.7830 1.0360 0.6807

3 0.7618 0.9059 0.7480 0.7510 0.9660 0.6333

4 0.7832 0.8997 0.7507 0.7210 0.9620 0.6348

5 0.7850 1.0816 0.7817 0.7850 1.0030 0.6959
300 1 0.7130 0.7617 0.6860 0.7230 0.9320 0.5466
2 0.7686 0.7962 0.7807 0.7530 1.0040 0.6572

3 0.7612 0.7873 0.7586 0.7030 0.9661 0.6305

4 0.7753 0.7969 0.7508 0.7070 0.9614 0.6340

5 0.7823 0.7520 0.7806 0.7240 0.9690 0.5769
500 1 0.7105 0.7499 0.6853 0.7150 0.8680 0.5398
2 0.7630 0.7747 0.7616 0.6480 0.9660 0.6560

3 0.7607 0.7219 0.7776 0.6460 0.9540 0.5644

4 0.7749 0.7495 0.7492 0.6470 0.9600 0.6289

5 0.7741 0.7524 0.7734 0.6710 0.9140 0.4907
033) 100 1 1.3261 0.5148 0.5318 1.4200 0.6854 0.4163
2 1.3927 0.5914 0.5857 1.4280 0.7392 0.4359

3 1.3054 0.5924 0.5901 1.3460 0.6623 0.4719

4 1.2968 0.5981 0.5826 1.3600 0.6886 0.4713

5 1.4050 0.5835 0.5799 1.5100 0.7355 0.4863
300 1 0.5187 0.5127 0.5347 0.5560 0.6450 0.4110
2 0.5862 0.6000 0.5761 0.5640 0.6360 0.4302

3 0.5844 0.6046 0.5676 0.5970 0.5990 0.4552

4 0.5808 0.5726 0.5821 0.5920 0.6370 0.4702

5 0.6012 0.5535 0.5793 0.5610 0.6120 0.4400
500 1 0.5478 0.5175 0.5367 0.5460 0.6260 0.3829
2 0.5770 0.5677 0.5759 0.5470 0.6230 0.4309

3 0.5801 0.5787 0.5786 0.5630 0.6140 0.4544

4 0.5801 0.5686 0.5793 0.5720 0.6000 0.4659

5 0.5726 0.5454 0.5708 0.5410 0.6290 0.4404
052) 100 1 0.7198 0.6059 0.6080 0.7160 0.7650 0.5001
2 0.8312 0.7412 0.6626 0.7220 0.7880 0.6201

3 1.0555 0.7797 0.7106 0.7120 0.7989 0.7274

4 0.9874 0.7500 0.7129 0.7160 0.8250 0.6641

5 1.1123 0.7728 0.7214 0.7120 0.8990 0.6631
300 1 0.7067 0.5804 0.6000 0.6770 0.7650 0.5005
2 0.8187 0.7256 0.7009 0.6800 0.7820 0.6142

3 1.1373 0.7582 0.7005 0.6810 0.7940 0.7284

4 0.9816 0.7759 0.7137 0.6950 0.8070 0.6341

5 1.0283 0.7625 0.7012 0.6810 0.8750 0.6677
500 1 0.6300 0.5605 0.5985 0.6570 0.7650 0.5001
2 0.7401 0.7252 0.6390 0.6530 0.7560 0.6451

3 0.7733 0.7244 0.6721 0.6500 0.7920 0.6083

4 0.7761 0.7666 0.7125 0.6750 0.8080 0.6217

5 0.7649 0.7584 0.7012 0.6800 0.8670 0.6627
0.53) 100 1 0.4608 0.4358 0.4432 0.4230 0.5870 0.3565
2 0.5177 0.5244 0.5463 0.4370 0.5380 0.4350

3 0.5462 0.5616 0.5463 0.4300 0.5980 0.4808

4 0.5873 0.5844 0.5949 0.4790 0.5860 0.4187

5 0.5891 0.6185 0.5977 0.4880 0.5960 0.4545
300 1 0.4407 0.4280 0.4417 0.3920 0.5800 0.3540
2 0.5110 0.5201 0.5304 0.4140 0.5340 0.4235

3 0.5419 0.5609 0.5451 0.4280 0.5790 0.4070

4 0.5749 0.5785 0.5778 0.4610 0.5870 0.3933

5 0.5765 0.5971 0.5878 0.4690 0.5470 0.4103
500 1 0.4219 0.4033 0.4343 0.3800 0.5480 0.3270
2 0.5030 0.5011 0.5150 0.4050 0.5060 0.4138

3 0.5154 0.5600 0.5290 0.4010 0.5460 0.4029

4 0.5480 0.5618 0.5726 0.4490 0.5830 0.3853

5 0.5618 0.5955 0.5710 0.4630 0.5270 0.3675
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Table 3: 95% HPP intervals for the prediction of PLINAR(1) simulated data

(@,0) h conditional mean  conditional mean  Bootstrap Bayesian
(MELE) (Whittle)
0.3,2) n =100
1 HPPI (0,2.624) (0,2.519) (0,2.446)  (0.001,2.572)
CP% 0.964 0.968 0.969 0.968
LPI 2.624 2.519 2.446 2.570
2 HPPI (0,2.896) (0,2.808) (0,2.534)  (0.001,2.828)
CP% 0.964 0.968 0.969 0.968
LPI 2.896 2.808 2.534 2.827
3 HPPI (0,2.966) (0,2.871) (0,2.542)  (0.001,2.887)
CP% 0.964 0.968 0.969 0.968
LPI 2.966 2.871 2.542 2.886
4 HPPI (0,2.984) (0,2.894) (0,2.543)  (0.001,2.918)
CP% 0.964 0.968 0.969 0.968
LPI 2.984 2.894 2.543 2917
5 HPPI (0,2.992) (0,2.903) (0,2.543)  (0.001,2.939)
CP% 0.964 0.968 0.969 0.968
LPI 2.992 2.903 2.543 2.938
n =300
1 HPPI (0,2.544) (0,2.537) (0,2.722) (0,2.430)
CP% 0.967 0.967 0.968 0.967
LPI 2.544 2.537 2.544 2.430
2 HPPI (0.001,2.871) (0,2.852) (0,2.833) (0,2.748 )
CP% 0.968 0.968 0.968 0.968
LPI 2.870 2.852 2.870 2.748
3 HPPI (0.001, 2.965) (0,2.931) (0,2.838) (0,2.817)
CP% 0.969 0.968 0.968 0.968
LPI 2.964 2.931 2.964 2.817
4 HPPI (0.001,2.989) (0,2.963) (0,2.839) (0,2.840)
CP% 0.969 0.968 0.968 0.968
LPI 2.988 2.963 2.988 2.840
5 HPPI (0.001,2.993) (0,2.972) (0,2.839) (0,2.884)
CP% 0.969 0.968 0.968 0.969
LPI 2.992 2.972 2.992 2.884
n =500
1 HPPI (0,2.512) (0.001,2.528) (0,2.854) (0,2.371)
CP% 0.965 0.966 0.969 0.968
LPI 2.512 2.527 2.854 2.370
2 HPPI (0,2.922) (0.001,2.916) (0, 2.950) (0,2.704)
CP% 0.969 0.969 0.969 0.970
LPI 2.922 2915 2.950 2.704
3 HPPI (0,3.014) (0.001,3.003) (0, 2.960) (0,2.759)
CP% 0.970 0.969 0.969 0.970
LPI 3.014 3.002 2.960 2.759
4 HPPI (0,3.046) (0.001,3.024) (0,2.962) (0,2.775)
CP% 0.970 0.969 0.969 0.967
LPI 3.046 3.023 2.962 2.775
5 HPPI (0,3.052) (0.001,3.030) (0,2.962) (0,2.807)
CP% 0.970 0.969 0.969 0.971
LPI 3.052 3.029 2.962 2.807
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Table 4: 95% HPP intervals for the prediction of PLINAR(1) simulated data

(@,0) h conditional mean  conditional mean Bootstrap Bayesian
(MELE) (Whittle)
(0.5,2) n =100
1 HPPI (0.020,2.368 ) (0.005,2.356) (0.014,2.377)  (0.009,2.363)
CP% 0.968 0.968 0.968 0.969
LPI 2.348 2.351 2.363 2.353
2 HPPI (0.029,2.741) (0.008,2.756)  (0.014,2.758)  (0.009,2.753)
CP% 0.967 0.968 0.967 0.968
LPI 2712 2.748 2.744 2.743
3 HPPI (0.028, 2.915) (0.006, 2.913) (0.014,2.933)  (0.010,2.915)
CP% 0.968 0.968 0.968 0.968
LPI 2.887 2.907 2919 2.904
4 HPPI  (0.030,2.995) (0.009,2.996)  (0.016,3.014)  (0.011,2.982)
CP% 0.968 0.968 0.968 0.968
LPI 2.965 2.987 2.998 2.971
5 HPPI (0.031, 3.027) (0.009,3.026) (0.017,3.046)  (0.011,3.017)
CP% 0.968 0.968 0.968 0.968
LPI 2.996 3.017 3.029 3.006
n =300
1 HPPI (0.007,2.389) (0.011,2.398) (0,2.491) (0,2.332)
CP% 0.969 0.969 0.968 0.969
LPI 2.382 2.387 2.491 2.331
2 HPPI (0.007,2.739) (0.012,2.774) (0,2.601) (0,2.723)
CP% 0.967 0.967 0.968 0.968
LPI 2732 2.762 2.601 2723
3 HPPI (0.009,2.943) (0.011,2.949) (0,2.613) (0,2.879)
CP% 0.968 0.967 0.968 0.968
LPI 2.934 2.938 2.613 2.878
4 HPPI (0.01,3.021) (0.013,3.038) (0,2.616) (0.001,2.950)
CP% 0.968 0.968 0.968 0.968
LPI 3.011 3.025 2.616 2.949
5 HPPI (0.01,3.053) (0.013,3.072) 0,2.616)  (0.001,2.974)
CP% 0.968 0.968 0.968 0.968
LPI 3.043 3.059 2.616 2972
n =500
1 HPPL  (0.006,2.426) (0.011,2.42) (0,2.683) (0,2.257)
CP% 0.970 0.969 0.968 0.970
LPI 2.420 2.409 2.683 2.256
2 HPPI  (0.008,2.748) (0.011,2.762) (0, 2.79) (0, 2.541)
CP% 0.966 0.966 0.968 0.967
LPI 2.740 2.751 2.790 2.541
3 HPPI (0.012, 2.986) (0.012,2.985) (0,2.798) (0,2.709)
CP% 0.968 0.967 0.968 0.967
LPI 2974 2.973 2.798 2.709
4 HPPI (0.012,3.1) (0.014,3.086) (0,2.798) (0, 2.816)
CP% 0.969 0.968 0.968 0.968
LPI 3.088 3.072 2.798 2.815
5 HPPI  (0.014,3.136) (0.014,3.129) (0,2.798) (0, 2.831)
CP% 0.969 0.969 0.968 0.967
LPI 3.122 3.115 2.798 2.831
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Table 5: 95% HPP intervals for the prediction of PLINAR(1) simulated data

(@,0) h conditional mean  conditional mean  Bootstrap  Bayesian
(MELE) (Whittle)
0.3,3) n =100
1 HPPI (0,1.827) (0,1.827) (0,1.780) (0,1.835)
CP% 0.972 0.972 0.972 0.971
LPI 1.827 1.827 1.780 1.834
2 HPPI (0,2.031) (0,2.045) (0,1.864)  (0,2.039)
CP% 0.972 0.972 0.972 0.972
LPI 2.031895 2.045 1.864 2.039
3 HPPI (0,2.061914) (0,2.102) 0,1.873)  (0,2.093)
CP% 0.972 0.972 0.972 0.972
LPI 2.061 2.102 1.873 2.093
4 HPPI (0,2.082) (0,2.121) (0,1.874) (0,2.117)
CP% 0.972 0.972 0.972 0.972
LPI 2.082 2.121 1.874 2.116
5 HPPI (0,2.08818) (0,2.126) (0,1.876)  (0,2.127)
CP% 0.972 0.972 0.973 0.972
LPT 2.088 2.126 1.876 2.127
n =300
1 HPPI (0,1.906) 0,1.872) (0,1.906) (0,1.858)
CP% 0.974 0.973 0.974 0.972
LPI 1.906 1.872 1.906 1.858
2 HPPI (0,2.064) (0,2.088) (0,2.064) (0,2.063)
CP% 0.974 0.974 0.974 0.973
LPI 2.064 2.088 2.064 2.063
3 HPPI (0,2.102) (0,2.124) (0,2.102) (0,2.105)
CP% 0.973 0.974 0.973 0.973
LPI 2.102 2.124 2.102 2.105
4 HPPI (0,2.110) (0,2.134) (0,2.110) 0,2.117)
CP% 0.973 0.974 0.973 0.973
LPI 2.110 2.134 2.110 2.117
5 HPPI (0,2.112) (0,2.136) 0,2112)  (0,2.122)
CP% 0.973 0.974 0.973 0.973
LPI 2.112 2.136 2.112 2.121
n = 500
1 HPPI (0,1.964 ) (0,1.927) (0,1.964) (0,1.885)
CP% 0.975 0.974 0.975 0.932
LPI 1.964 1.927 1.964 1.885
2 HPPI (0,2.120) (0,2.110) (0,2.120)  (0,2.098)
CP% 0.975 0.974 0.975 0.951
LPI 2.120 2.110 2.120 2.098
3 HPPI (0,2.140) (0,2.136) (0,2.140) (0,2.127)
CP% 0.974 0.974 0.974 0.945
LPI 2.140 2.136 2.140 2.127
4 HPPI (0,2.144) (0,2.148) (0,2.144) (0,2.138)
CP% 0.973 0.973 0.973 0.952
LPI 2.144 2.148 2.144 2.138
5 HPPI (0,2.148) (0,2.150) (0,2.148) (0,2.142)
CP% 0.973 0.973 0.973 0.934
LPT 2.148 2.150 2.148 2.142
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Table 6: 95% HPP intervals for the prediction of PLINAR(1) simulated data

(@,0) h conditional mean  conditional mean Bootstrap Bayesian
(MELE) (Whittle)
0.5,3) n =100
1 HPPI (0.002, 1.64) (0.001, 1.616 ) (0.002,1.64) (0,1.594)
CP% 0.9712865 0.970 0.971 0.971
LPI 1.638 1.615 1.638 1.594
2 HPPI (0,1.98) (0.001,1.944) (0,1.980) (0,1.923)
CP% 0.972 0.971 0.972 0.971
LPL 1.980 1.943 1.980 1.923
3 HPPI (0,2.086 ) (0.001,2.082) (0,2.086) (0,2.053)
CP% 0.972 0.971 0.972 0.971
LPI 2.086 2.081 2.086 2.053
4 HPPI (0.002,2.128) (0.001,2.149) (0.002,2.128) (0,2.110)
CP% 0.972 0.971 0.972 0.971
LPI 2.126 2.148 2.126 2.110
5 HPPI (0.002,2.152) (0.001,2.182) (0.002,2.152) (0,2.135)
CP% 0.972 0.971 0.972 0.971
LPI 2.150 2.181 2.150 2.135
n =300
1 HPPI (0.002,1.572) (0.001,1.525) (0.002,1.572)  (0.004,1.594 )
CP% 0.968 0.968 0.968 0.969
LPI 1.570 1.524 1.570 1.590
2 HPPI (0.002, 2.046 ) (0.002,1.989) (0.002,2.046)  (0.003,1.992)
CP% 0.973 0.972 0.973 0.972
LPI 2.044 1.987 2.044 1.989
3 HPPI (0.002,2.168 ) (0.002,2.123) (0.002,2.168)  (0.004,2.122)
CP% 0.974 0.973 0.974 0.972
LPIL 2.166 2.121 2.166 2.118
4 HPPI (0.002,2.202)) (0.002,2.176) (0.002,2.202)  (0.003,2.175)
CP% 0.973 0.973 0.973 0.972
LPI 2.200 2.174 2.200 2.171
5 HPPI (0.002,2.216) (0.002, 2.205) (0.002,2.216)  (0.004,0.202)
CP% 0.973 0.974 0.973 0.972
LPT 2.214 2.203 2.214 2.198
n =500
1 HPPI (0,1.514) (0.002,1.532) (0,1.514) (0,1.537)
CP% 0.967 0.967 0.967 0.968
LPI 1514 1.530 1514 1.536
2 HPPI (0,2.044) (0.004 , 2.039) (0,2.044) (0,2.003)
CP% 0.974 0.973 0.974 0.973
LPI 2.044 2.035 2.044 2.002
3 HPPI (0,2.166) (0.004,2.174) (0,2.166) (0,2.143)
CP% 0.974 0.974 0.974 0.974
LPL 2.166 2.170 2.166 2.143
4 HPPI (0,2.21) (0.004,2.224) (0,2.210) (0,2.184)
CP% 0.974 0.974 0.974 0.974
LPI 2.210 2.220 2210 2.184
5 HPPI (0,2.227) (0.004 , 2.240) (0,2.227) (0,2.205)
CP% 0.974 0.974 0.974 0.973
LPI 2.227 2.236 2.227 2.205
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Finally, in Tables (3), (4) and (5), we present the h-step prediction interval of X;]?Jrh

in the form (Xi, Xy;), where X = % Z;Ijﬂ X(Lk) and Xy = % }:,Ic\lzl Xg) with X(Lk) and
XZ() being respectively the left and right interval values of k-th repetition simulation,
k=1,...,N. In the Bayesian method X; and Xj; are based on Nm sample observations,
ie, Xy = Nl—m ZIk\I:1 Y X(Ll’k) and Xy = Nl—m ZkN:1 i X(ul’k), where X(Ll’k) and X(Lll’k) are
respectively the left and right interval value of i-th, i = 1,...,m, sample in Step 2 of
Algorithm 2 for k-th repetition simulation. In this table, the 95% coverage probability
(CP) and the length of prediction interval (LPI) are also presented.

Based on the results, we conclude that CP is close to 95% and LPI decreases as n
increases, which indicate that the HPP method can produce reliable prediction interval
for the PLINAR(1).

6 Real Data Analysis

In this section, we discuss the possible application of the PLINAR(1) model for anorexia
real count time series data. The data gives monthly numbers of submissions to animal
health laboratories from January 2003 to December 2009, from a region in New Zealand
(Aghababaei Jazi, Jones and Lai (2012)), see Table (7). The sample path, autocorrelation
function (ACF) and partial autocorrelation function (PACF) are illustrated in Figure (1),
suggesting that, the AR(1)-type model is a suitable one to model the proposed data set.
As it can be seen, the data is empirically overdispersed with mean and variance equal
to 0.8214 and 2.8954. Mohammadpour et al. (2018) applied the overdispersion test
described in Schweer and Weif3(2014) with the significance level « = 0.05. They showed
that the observed value of the index of dispersion exceeds the critical value; hence, the
data series do not stem from an equidispersed Poisson INAR(1) process. Therefore,
the Poisson-Lindley or negative binomial could appear to be more appropriate than
the Poisson model for this series. Besides, they show that the skewness and kurtosis
of the Poisson-Lindley distribution are smaller than those of the negative binomial
distribution. The sample skewness and sample kurtosis of the data are 3.38 and 17.7,
respectively. Hence, the Poisson-Lindley distribution seems to be more flexibility to
model the data than the negative binomial.

The performance of the prediction methods is checked using the first 79 observati-
ons to estimate the parameters, and predicting the last 5 observations. In Table
(8), we report the point predictions for the last 5 observations using the conditional
mean prediction method, when the parameters are estimated using MLE, MELE and
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Table 7: Anorexia data set

R. Nasirzadeh and A. Zamani

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2003 0 1 3 1 4 1 1 4 11 2 1 1
2004 2 2 0 0 0 0 0 0 0 0 0 0
2005 0 0 0 0 0 0 0 0 0 0 0 1
2006 0 0 0 0 0 0 3 5 6 3 2 1
2007 0 0 0 0 0 0 1 0 2 0 0 0
2008 0 0 0 0 0 0 0 2 4 0 1 0
2009 1 0 0 0 2 1 0 0 0 0 0 0

Whittle methods. The bootstrap prediction method was employed as well, when the
parameters are estimated using Bootstrap and MLE. In this method, the third step was
repeated 1000 times, the mean of the prediction was calculated and assumed as the
prediction of data. Moreover, prediction methods based on the Bayesian method, i.e.,
mean, median, mode and MCMC methods, are given.

The 95% HPP intervals are calculated for all prediction methods. As we see, all
intervals covered the observed data. The predictions based on Bayesian methods are
nearest to the real observed values. So, we suggest using Bayesian predictors for data
prediction in the PLINAR(1) process.

Table 8: Prediction analysis of Anorexia data

observed value 0 0 0 0 0
conditional mean (MELE estimation) prediction 0.45737  0.67827 0.78496  0.83648  0.86137
lower limit 0 0 0 0 0
upper limit 3 3 3 3 3
conditional mean (Whittle estimation) | prediction 0.72207  1.0633 127008 1.36278  1.40954
lower limit 0 0 0 0 0
upper limit 4 4 5 5 5
conditional mean (MLE estimation) prediction 0.58979 0.81395 0.89914 0.93152  0.94383
lower limit 0 0 0 0 0
upper limit 2 2 2 3 3
Bayesian Mean Method 0.16 0.53 0.44 0.45 041
Median Method 0 0 0 0 0
Mode Method 0 0 0 0 0
MCMC 0.00769  0.01002 0.01072 0.01094 0.01100
lower limit 0 0 0 0 0
upper limit 2.85 3.32 3.5 3.51 3.53
Bootstrap (Bootstrap estimation) prediction 0.620 0.814 1.042 1.194 1.180
lower limit 0 0 0 0 0
upper limit 3 3 3 3 3
Bootstrap (MLE estimation) prediction 0.706 0.873 0.972 1.030 0.984
lower limit 0 0 0 0 0
upper limit 3 3 3 4 4
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Figure 1: Sample path; ACF and PACF of Anorexia data set
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