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Abstract. There are several methods to make inferences about the parameters of the
sampling distribution when we encounter the missing values and the censored data. In
this paper, through the order statistics and the projection theorem, a novel algorithm is
proposed to impute the missing values in the multivariate case. Then, the performance
of this method is investigated through the simulation studies. In an attempt to validate
the proposed method and compare it with some other methods a real data is used.
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1 Introduction

In many types of researches, some data values are missing or not recorded. In this
situation, many software and the conventional statistical methods, usually are remove
the missing values and use the usual analysis methods for incomplete data. Due to
removing the missing values in the data set, the sample size will be reduced and make
it difficult to have accurate estimation of the parameters of population distribution. In
addition, it is possible that the characteristics of the missing values are different from
other values, therefore the large bias occurs in the estimation of parameters Allison
(2001). In general, three different assumptions make mechanism of the missing values:
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missing completely at random (MCAR), missing at random (MAR) and non-ignorable
Rubin (1976). In the first one, using the incomplete data can produce the unbiased
estimators for the parameters Little and Rubin (2019). In the second one, the estimator
of parameters might be consistent with some conditions on types of variables, including
the existence of only two categorical random variables in the data set Fleiss et al. (2013).
But, in the third one, the third, none of the parameter estimations are consistent and
any statistical inference requires some assumptions on the relationship between the
variables with missing and non-missing values Kim and Yu (2011); Yuan and Yin
(2010). The EM algorithm is also a public method to estimate the parameters in an
incomplete data. Dempster et al. (1977) and McLachlan and Krishnan (2007) proposed
a new algorithm based on EM algorithm that estimates the parameters of the nonlinear
structural equations from the random missing data.

There are some other common methods, including imputation of the missing
values by mean, median or mean of the nearest observed value, which try to keep
the sample size and improve the accuracy of the estimated parameters. Although
the mean imputation is the simplest imputation method, it is not attractive, because
imputation of all missing values with the mean leads to the two problems; the random
perturbations in the distribution of data and underestimation of variance Haitovsky
(1968). The other imputation method is regression imputation. In this method, the
missing values are replaced by the predicted values obtained by the regression of the
variable containing missing values as a response variable, and the other variables as the
independent variables Greenland and Finkle (1995); Gold and Bentler (2000); Musil et
al. (2002).

In the recent decade, many types of researches have been done over the reconstruct-
ion of the order statistics from the observed data. In this regards, an upper bound for
the mean of the order statistics is obtained Klimczak and Rychlik (2005). Then, through
the inverse hazard rate and based on the left censured sample, the reconstruction of
the past failure times is investigated for the proportional models Asgharzadeh et al.
(2012). Then, some point and interval reconstruction are computed for the missing
order statistics in the exponential distribution using the classic approach Razmkhah et
al. (2010). This study was examined using the Bayes approach Khatib et al. (2013). A
novel method based on the projection theorem, is proposed by Almasi et al. (2017) to
reconstruct the missing order statistics.

Considering the missing at random in some values in the response of the linear
regression model, we propose a new algorithm to reconstruct them based on the order
statistics. The rest of the article is organized as follows. In Section 2, we describe the
imputation method through the order statistics and propose the best reconstruction for
the i-th order statistic in the random sample from the arbitrary distribution, especially
the standard uniform distribution. In Section 3, the proposed imputation method
is presented in the linear regression model. Then, two cases are considered for the
underlying distribution of residuals in the linear regression model which contains the
missing values in the response variable in Section 4. Moreover, the mean square error
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of the proposed method and some other considered methods are compared through
the simulation study. To validate the proposed method, we apply it to the real data in
Section 5. Finally, the results are discussed in Section 6.

2 Imputation in the Order Statistics

Suppose that Y1, . . . ,Yn denote a random sample from a population with cumulative
distribution function (CDF), FY(y), and Y(1), . . . ,Y(n) are its corresponding order statistics.
Assume that some of the order statistics are censored or missed. Thus, the vector
of observed order statistics is reduced to (Y(1), . . . ,Y(r),Y(s), . . . ,Y(n)) for all 0 ≤ r <
s < n + 1. It is proved that the projection mapping of Y(l) , r < l < s, onto
M(Y(1), . . . ,Y(r),Y(s), . . . ,Y(n)) and M(Y(r),Y(s)) are the same Almasi et al. (2017). In
addition, the best mean square predictor of Y(l) in M(Y(r),Y(s)), where M(Y(r),Y(s)) =
{Z ∈ L2 : Z = φ(Y(r),Y(s)) for some φ : Rn

→ R}, is the conditional expectation
E(Y(l)|Y(r),Y(s)) Brockwell and Davis (1991). Therefore, considering µi = E(Y(i)), σ2 =
Var(Y(i)), and ρi, j = Corr(Y(i),Y( j)) for all i, j = r, l, s, the best linear reconstruction,
prediction, of the l-th order statistic proposed by Almasi et al. (2017) is as follows:

Ŷ(l) = a0 + arY(r) + asY(s); 0 ≤ r < l < s < n + 1,

where,

ar =
ρr,l − ρr,sρl,s

1 − ρ2
r,s

.
σl

σr
; as =

ρl,s − ρr,sρr,l

1 − ρ2
r,s

.
σl

σs
; a0 = µl − arµr − asµs. (2.1)

The determination of a0, ar and as is usually time consuming and that’s why we
introduce an approximation of best linear reconstruction based on order statistics
according to the standard uniform distribution. First, in the following, the best linear
reconstruction of the l-th order statistic is obtained when the underlying distribution
of variables is the standard uniform distribution.

Theorem 2.1. Let U(1), . . . ,U(r),U(s), . . . ,U(n) be the order statistics according to the random
sample from the standard uniform distribution, then the best reconstruction of l-th order statistic
for all 0 ≤ r < l < s < n + 1 is as follows:

Û(l) = U(r) +
l − r
s − r

(U(s) −U(r)), l=r+1,. . . , s-1. (2.2)

Proof. U(i) for all 1 ≤ i ≤ n is the i-th order statistic from the standard uniform
distribution, then by Balakrishnan and Cohen (2014)

µi = E(U(i)) =
i

n + 1
; σ2

i =
i(n + 1 − i)

(n + 1)2(n + 2)
; ρi, j =

( i(n + 1 − j)
j(n + 1 − i)

) 1
2 .

Therefore, the coefficients, a0, ar and as in equation (2.1) are computed as follows:

ar =
s − l
s − r

; as =
l − r
s − r

; a0 = 0.
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Therefore, the theorem is proved. Considering s = n + 1(U(n+1) = 1) and r = 0(U(0) = 0),
the right and left censors are accrued, respectively. �

Let U1, . . . ,Un and Y1, . . . ,Yn denote a random sample from a standard uniform
distribution and distribution function, FY(y), respectively. If the inverse distribution

function F−1 is defined by F−1(u) = sup{x : F(x) ≤ u}, then, for i = 1, . . . ,n, Y(i)
d
=

F−1(U(i)), where U(i) and Y(i) are i-th order statistics in samples U1, . . . ,Un and Y1, . . . ,Yn,
respectively, Balakrishnan and Cohen (2014).

Remark 1. If (y(1), . . . , y(r), y(s), . . . , y(n)) be the vector of order statistics from distribution
function, FY(y), from the above point, then (F(y(1)), . . . ,F(y(r)),F(y(s)), . . . ,F(y(n))) is a
realization of order statistics from standard uniform distribution. Thus, F−1(U(l)) may
be considered as a reconstructor for Y(l) i.e., for l = r + 1, . . . , s − 1,

Y(l) = F−1(U(l)). (2.3)

By substituting (2.2) into (2.3), we obtain approximated best linear reconstructor of the
l-th order statistic in the distribution function, FY(y), as follows:

Ŷ(l) = F−1(F(Y(r)) +
l − r
s − r

(F(Y(s)) − F(Y(r)))) l = r + 1, . . . , s − 1, (2.4)

That the given results corresponds to the unbiased conditional reconstructor introduced
by Razmkhah et al. (2010).

3 The Introduced Algorithm for Imputation Missing Data

The regression method is a conventional method for imputing. Let

Y j = β0 +

k∑
i=1

β j xi j + ε j, j = 1, 2, . . . ,n, (3.1)

where Y j and xi j are the response variable and j-th observation of the i-th predictor,
respectively. Suppose that there are no missing values in the independent variables, but
there are m missing values in the response variable, Y. Assume that the missing values
follows the missing at random mechanism Rubin (1976). Without loss of generality,
let yobs = (y1, y2, . . . , ym) and ymis = (ym+1, ym+2, . . . , yn) are the observation and missing
values for the response variable, respectively. In regression method, missing values are
imputed as follows,

Ŷ j = β0 +

k∑
i=1

β j xi j, f or j = m + 1, . . . ,n.

In our method, a missing value is imputed k times, based on each auxiliary variable,
separately. Then a weighting average from the given values is computed.
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Let X = (xi j), i = 1, 2, . . . , k, and j = 1, 2, . . . ,n be the n × k matrix, without missing
values of the observations of the independent variables. Denote R = (ri j) as the n × k
rank matrix where ri j is the rank of the observation xi j in the i-th column of X. The
introduced algorithm includes the following steps.

Step 1. The coefficient correlation of yobs and xi, called r∗i , is computed.

Step 2. Through (2.4), the estimation of y j based on orders given from xi orders given
from xi, which is denoted as y∗i j, is computed as follows:

y∗i j =


F−1( l

2 F(y(1))) if ri j = 1,
F−1( 1

2 (F(y(ri j−1)) + F(y(ri j)))) if ri j = 2, 3, . . . ,m,

F−1(
ri j−m

n−m+1 +
n−ri j+1
n−m+1 F(y(m)) if ri j = m + 1, . . . ,n,

 , (3.2)

where y( j) is the j-th order statistic from yobs and ri j is determined as follows:

ri j =

{
ri j if r∗i > 0,
n + 1 − ri j if r∗i < 0. (3.3)

Step 3. The estimation of elements of ymis are computed as follows:

y∗j =

k∑
i=1

wiy∗i j, j = m + 1,m + 2, . . . ,n, (3.4)

where wi =
r∗i

2∑k
i=1 r∗i

2 .

4 Simulation Study

In this section, we consider two scenarios for the underlying distribution of the
random error component in the linear regression model (3.1); normal and Cauchy
distributions. Considering the missing values in the response variable, first, we
compare the performance of the proposed imputation method (PI), with three other
methods; the non-missing data (NM), the mean imputation (MI) and the conditional
mean imputation (CMI), through a Monte Carlo simulation. Our objective is to
compare mean square errors (MSEs). The MSE is averaging 1

n−m
∑n

j=m+1(y j − y∗j)
2 over

all N = 10000 simulation iterations. Without loss of generality, we take n = 12, 16, and
consider that the half of the y values are missing. In the first scenario, we consider
two cases for the linear regression; the simple linear regression and the multiple linear
regression model, k = 2. We set E(εi) = 0 and var(εi) = σ2, for all i = 1, 2, . . .n. In Case
1, ρ is taken from {0,±0.01, . . . ,±0.99}. The random sample, n = 12, are then generated
from the bivariate normal with parameters µ1 = 0, µ2 = 0, σ1 = 1 and σ2 = 1.

The results shown in Figure 1 (I), demonstrates that the PI method has a less MSE
compared to MI and CMI methods, when 0.4 ≤ |ρ| ≤ 0.8. In this situation, when there
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is low correlation between the response and the independent variable, |ρ| < 0.4, the PI
and CMI method have poor performance than the MI. In the contrary, the regression
method has more performance than the others while there is a high correlation between
these two variables, 0.8 < |ρ| < 1.

Figure 1(II) illustrates the same results when n = 16 and m = 8. In Figure 1(III), we
investigate how much the estimation of parameters µ, σ, and ρ through the mentioned
methods are close to its assumed values. For this purpose, after the imputation of the
missing values through the proposed and other mentioned methods, the parameters
µ, σ, and ρ are estimated again. Subfigure 1(III)A shows that the estimated means
are around zero, which is close to µ = 0 in all methods. Subfigure 1(III)B depicts
that the estimate of parameter σ is closer to the initial value of σ = 1 through the PI
method than the other methods when 0 < ρ < 0.65. The same is true for the CMI
method when 0.65 ≤ ρ < 1. In this Subfigure, we can see that the estimation of the
mentioned parameter is not suitable for the MI method. Subfigure 1(III)C demonstrates
that the CMI method presents the best estimate for ρ, whereas the PI has an acceptable
performance for 0.7 ≤ ρ < 1. This method overestimate the parameter when 0 < ρ < 0.7.
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Figure 1: Imputation methods, PI, MI, CMI and NM in the simple linear regression
model. The underlying distribution of the residuals is considered the normal
distribution with the location and scale parameters, µ = 0, and σ = 1, respectively.
Subfigures (I) and (II) show the MSE comparison through these methods when
n = 12,m = 6 and n = 16,m = 8, respectively and |ρ| ≤ 1, and Subfigure (III) shows the
validation of the mentioned methods when n = 12,m = 6, |ρ| ≤ 1.

In Case 2, the random vector (Y,X1,X2) is generated from the standard trivariate
normal distribution with parameters ρ1, ρ2 and ρ3, which the first two parameters
are the correlation between y and xi for i = 1, 2, and the last one is the correlation
between x1 and x2. For the minimum correlation between x1 and x2, we set ρ3 = 0.1.
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We consider various values for ρi, i = 1, 2, such that ρ2 = 0.1ρ1 to ρ2 = 0.3ρ1, and
set ρ1 from .01 to .99 by increments of 0.1. In addition, the simulation is replicated
N = 10000 times. Then, the mean square errors (MSE) are computed for the proposed
method and other mentioned methods in each iteration. Figure 2(I) depicts the results.
We can see that the PI method has less MSE than the MI and CMI methods when
0.35 ≤ ρ1 < 0.85. In addition, the regression and proposed methods do not have
acceptable MSE, whereas the MI and regression methods have the minimum MSE
while ρ1 < 0.35 and 0.85 ≤ ρ1 ≤ 1, respectively. Then, we set ρ2 = 0.4ρ1 to ρ2 = 0.6ρ1.
Take ρ1 ∈ {0,±0.01, . . . ,±0.99}. Figure 2(II) shows that the PI method has the minimum
MSE when 0.29 ≤ ρ1 ≤ 0.81, whereas the MI and regression methods have the minimum
MSE for ρ1 < 0.29 and 0.81 < ρ1 ≤ 1, respectively. Then, we set ρ2 = 0.7ρ1 to ρ2 = 0.9ρ1,
and ρ1 from .01 to .99 by increments of 0.1. Figure 2(III) shows that the PI method has
the minimum MSE when 0.35 ≤ ρ1 ≤ 0.85, whereas the MI and regression methods
have the minimum MSE while ρ1 < 0.35 and 0.85 < ρ1 ≤ 1, respectively.
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Figure 2: Imputation methods, PI, MI, CMI and NM in the multiple linear regression
model, k = 2 when n = 12,m = 6, and ρ1 ∈ {0.1, 0.11, . . . , 0.99}. Subfigures (I)A,
(I)B, and (I)C are correspond to ρ2 = 0.1ρ1, ρ2 = 0.2ρ1, and ρ2 = 0.3ρ1, respectively.
Subfigures (II)A, (II)B, and (II)C are correspond toρ2 = 0.4ρ1, ρ2 = 0.5ρ1, andρ2 = 0.6ρ1,
respectively. Subfigures (III)A, (III)B, and (III)C are correspond toρ2 = 0.7ρ1, ρ8 = 0.2ρ1,
and ρ2 = 0.9ρ1, respectively.

In the second scenario, it is assumed that the underlying distribution of εi is Cauchy
distribution in the linear regression model (3.1). In order to reconstruct the missing
values, we use the median imputation (MeI), and apply the PI and other mentioned
methods in the linear regression model. In this regard, the vector (Y,X1,X2) is generated
by the Heavy Package in R software. By Heavy Package, we can obtain prediction for
missing values that indicated in results by the Heavy imputation (HI). We set ρ1 = ±ρ2
taken from {0.1, 0.11, . . . , 0.99} and ρ3 = 0.1. Then, the six values, m = 6, are removed
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from the response variable and replicated the simulation N = 10000 times. Finally,
MSEs are computed for all 10000 replications. Figure 3 (I) illustrates the results. We
can see that the PI method, as well as the NM method, have less MSEs compared to the
other methods when 0.35 ≤ |ρ| ≤ 0.75. When |ρ| < 0.35 and 0.75 < |ρ| ≤ 1, the MI and
the regression method (HI) has the minimum MSE, respectively.

In Figure 3(II), we check the accuracy of the estimation of parameters µ, σ, and ρ in
the mentioned methods comparing to their assumed values. For this purpose, after the
imputation of the missing values through the all mentioned methods, the parameters
µ, σ, and ρ are estimated again. Subfigures (II)A shows that the estimation of mean is
about zero and it is close to µ = 0 in the PI and HI methods. But, the MeI presents a
biased estimation for µ = 0. Subfigure (II)B shows that the estimation of parameter σ
is closer to the assumed value of σ = 1 through the PI and HI methods than the MeI
methods. In this Subfigure, the MeI method does not present a suitable estimation
for the mentioned parameter. In this regards, Subfigure C demonstrates that the HI
method provides the best estimation for ρ, whereas the PI has an acceptable estimation
for it when 0.6 ≤ ρ < 1. This method overestimates it when 0 < ρ < 0.6.
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Figure 3: Imputation methods, PI, MeI, HI and NM in the simple linear regression
model. The underlying distribution of the residuals is considered the standard Cauchy
distribution. Subfigures (I) shows the MSE comparison through these methods when
n = 12,m = 6 and, |ρ| ≤ 1. Subfigure (II) depicts the validation of the mentioned
methods.
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5 Real Data

The real data is about the relationship between the percent of fruit worm, y, and the
number of fruits, x, on the twelve trees (Table 6.9.1 Snedecor and Cochran (1967)). The
correlation between these variables is −0.88. Considering the first four values in the
response variable as the missing values, we apply PI and CMI methods on the data.
Then, this carries out for the second and third four values of the response variable.
Table 1 contains the results. The bold values show the better predictions. Although the
correlation value is out of the suitable bound for the correlation value, 0.4 < |ρ| < 0.7,
we can see that the PI method is reconstructing the missing values much closer to the
initial values of the response except in the second value of the response.

Table 1: Performance of the PI and MCI methods on the relationship between the fruit
worm and the fruits number of the trees

Case number y x MCI PI
1 59.0 8.0 55.36 55.27
2 58.0 6.0 58.23 61.45
3 56.0 11.0 52.58 52.47
4 53.0 22.0 40.82 40.85
5 50.0 14.0 50.07 50.54
6 45.0 17.0 47.22 48.52
7 43.0 18.0 47.22 48.52
8 42.0 24.0 39.67 36.33
9 39.0 19.0 45.54 44.71
10 38.0 23.0 41.27 39.71
11 30.0 26.0 39.15 34.99
12 27.0 40.0 19.55 30.49

MSE 32.24 25.92

6 Conclusion

The missing values might be an obstacle in analyzing any data. In this article, we
proposed a new imputation method that can be applied to analyze the linear regression
model with the missing values in the response variable. This method is based on
imputation using the order statistics. We present this method based on two assumptions
on the distribution of error component, normal and Cauchy distributions, in the linear
regression model. Through the simulation studies, we show that the proposed method
has a better performance than the conventional methods mentioned in this article
when the underlying distribution of the error component is normal and 0.4 < |ρ| < 0.7.
In addition, we show that the proposed method has a better performance while the
underlying distribution is Cauchy and 0.3 < |ρ| < 0.8.
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