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Abstract. It is well-known that the skew-normal distribution can provide an alternative
model to the normal distribution for analyzing asymmetric data. The aim of this
paper is to propose two goodness-of-fit tests for assessing whether a sample comes
from a multivariate skew-normal (MSN) distribution. We address the problem of
multivariate skew-normality goodness-of-fit based on the empirical Laplace transform
and empirical characteristic function, respectively, using the canonical form of the MSN
distribution. Applications with Monte Carlo simulations and real-life data examples
are reported to illustrate the usefulness of the new tests.
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1 Introduction

The normality-based models are initially used for analyzing data in various areas of
sciences due to the mathematical as well as statistical properties and computational
convenience. However, the assumption of multivariate normality is often violated as
the data have a non-normal features (e.g. strong skewness and heavy tails). In the
matter of skewed data, Azzalini (1985) and Azzalini and Capitanio (1999) proposed
the univariate and multivariate skew-normal (MSN) distributions, respectively. The
probability density function (pdf) of a d-dimensional random vectorZwith the standard
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MSN distribution is

f (z;λ, Ω̄) = 2φd
(
z; Ω̄

)
Φ

(
λ>z

)
, z,λ ∈ Rd, (1.1)

where φd
(
·; Ω̄

)
is the pdf of d-dimensional normal distribution with mean vector 0

and correlation matrix Ω̄, denoted by Nd(0, Ω̄), and Φ(·) represents the cumulative
distribution function (cdf) of N1(0, 1). The notation Z ∼ MSN(Ω̄,λ)is used in the
following to indicate that the random vector Z has pdf (1.1). It can be easily seen that
(1.1) tends to the pdf of multivariate normal distribution as λ approaches zero. To
assume a MSN distribution for data possessing some level of skewness, one may need
to assess the skew-normality assumption for obtaining a valid and accurate results in
the analysis. Although various statistical tests were introduced to check the skewness
of a data set (see, e.g., Jarque and Bera (1987)), the literature on testing the MSN
distribution against other distributions is not very extensive. Suppose Z1, . . . ,Zn are
independent and identically random vectors of size n coming from a d-dimensional
generic cdf Fd(z;θ) with parameter θ. Then, we are going to focus on developing two
tests for the multivariate skew-normality with the hypothesis{

H0 : Z follows a MSN distribution with some parameters;
H1 : Z follows a distribution other than the MSN distribution. (1.2)

To cope with the test of (1.2), one may formally be interested in three issues Balakrishnan
et al. (2014). These issues are that the test procedure should (1) have appropriate
statistical performances; (2) have feasible and straightforward computational algorithm
and (3) be mathematically elegant for generalizing to higher dimension. Recently,
Mateu-Figueras et al. (2007) and Meintanis (2007) proposed two tests for the univariate
skew-normality assumption whereas Meintanis and Hlavka (2010) explored a statistical
test for testing multivariate skew-normality based on the moment generating function.
The proposed test of Meintanis and Hlavka (2010) is just computationally available
for the bivariate case and the bootstrap resampling should be used for obtaining its
distribution. Moreover, Balakrishnan et al. (2014) exploited the canonical form of
the MSN distribution Azzalini and Capitanio (1999) to construct tests for multivariate
skew-normality. The proposed tests of Balakrishnan et al. (2014) have some dimension-
al restrictions. Furthermore, their significance level depends on the sample size.
To possess three aforementioned issues, the main objective of this contribution is to
formulate some tests for the multivariate skew-normality. Our proposed tests are
based on the canonical form of MSN distribution, on some statistical relationships
of the MSN distribution with the gamma and Cauchy models, and on the empirical
Laplace transform and empirical characteristic function.

The outline for the rest of this paper is structured as follows. Section 2 is divided
into three parts in which a review of the MSN distribution and its canonical form, the
construction of goodness-of-fit test based on empirical Laplace transform (ELT) and
formulation of goodness-of-fit test based on the empirical characteristic function are
presented. In Section 3, some Monte Carlo (MC) simulation studies are carried out to
examine the performance of the proposed tests. For this purpose we consider some
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specific alternative distributions for the evaluation of the tests’ power. We present four
real examples for illustrative purposes in Section 4. Finally some concluding remarks
are made in Section 5.

2 The Test Statistics

2.1 Canonical form of the MSN Distribution

LetZ ∼MSN(λ, Ω̄). The transformed vectorZ∗ = A∗Z is said to be the canonical form
of the MSN distribution if it admits the following pdf

fZ∗(z;λ) = 2φd (z; Id) Φ (λ∗zm) , z ∈ Rd, m ∈ {1, 2, ..., d},

where A∗ is a d × d non-singular matrix and λ∗ =
(
λ>Ω̄λ

)1/2 is the only non-zero
component of the shape parameter of Z∗. It is interesting to note that the pdf of Z∗ can
be expressed by the product of d − 1 pdfs of N1(0, 1) and a pdf of standard univariate
skew-normal distribution with shape parameter λ∗. Moreover, the marginal univariate
components of Z∗ are independent. Proposition 4 of Azzalini and Capitanio (1999)
ensures that the non-unique A∗ exists. However, it is not applicable to construct a test
statistics. To use the canonical form, one can consider Capitanio (2012) who defined the
canonical representation of MSN distribution in a general form. IfZ ∼MSN(Ω̄,λ), then
the random vector Y = ξ + ωZ follows MSN distribution with a location parameter
ξ and a diagonal matrix ω of scale parameters, such that Ω = ωΩ̄ω is a covariance
matrix, denoted by Y ∼ MSN(ξ,Ω,λ). The following propositions give constructive
approaches to obtain a canonical form for the MSN distributed variable in order to
build test statistics.

Proposition 2.1. Let Y ∼ MSN(ξ,Ω,λ) and consider the non-singular transform Y ∗ =(
C−1P

)>
ω−1(Y − ξ), whereCC> = Ω̄ and P be an orthogonal matrix, with its first column

proportional to Cλ. Then, Y ∗ ∼ MSN(0, Id,λY ∗), where λY ∗ = [λ∗, 0, ..., 0]> and λ∗ =(
λ>Ω̄λ

)1/2.

Proposition 2.2. Capitanio (2012) Let Y ∼ MSN(ξ,Ω,λ) and M = Ω−1/2ΣΩ−1/2, where
Σ is the covariance matrix of Y . Let Q be an orthogonal d × d matrix and Λ a d × d diagonal
matrix such that QΛQ> is the spectral decomposition of M . Then, for H = Ω−1/2Q, the
linear transformation leading Y to the canonical form is Y ∗ = H>(Y − ξ).

2.2 Test Statistics Based on Empirical Laplace Transform

For a sequence of random vectors Y1, . . . ,Yn with a d-dimensional MSN(ξ,Ω,λ), define
Y ∗j = [Y∗1 j, . . . ,Y

∗

dj]
>, j = 1, . . . ,n, where Y∗i j is the linear transformation leading Y to the

canonical form, presented in Proposition 2.2. If H0 in (1.2) is true, then Y∗1 j is a univariate
SN distributed random variable, and all other variables Y∗2 j, . . . ,Y

∗

dj are independently

distributed by the Gaussian model. Then, it can be seen that
∑d

i=1(Y∗i j)
2
∼ χ2

d, where
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χ2
d represents the chi-square distribution with d degree of freedom. Therefore, the

test of the MSN distribution turns into the test of gamma model with the shape and
scale parameters ϑ = d/2 and β = 0.5, respectively. In this regard, one can use the
statistical test of gamma distribution. An efficient goodness-of-fit test for gamma
distribution, exploited in this paper to test multivariate skew-normality, is based on
the ELT developed by Henze et al. (2012). For a gamma distributed random variable
X with parameters ϑ and β, the Laplace transform, theoretically expressed by l(t) =
E[exp(−tX)], is defined as the only solution of the differential equation (1 + βt)y′(t) +
ϑβy(t) = 0, such that y(0) = 1. Under H0 in (1.2), β and ϑ are assumed to be the
parameters of the true underlying gamma distribution, but they should also make
sense under a fixed alternative to H0 (under appropriate conditions). It is pointed
out by Henze et al. (2012) that for a given set of random points of size n, the estimator
β̂n = β̂n(X1, . . . ,Xn) and ϑ̂n = ϑ̂n(X1, . . . ,Xn) of β andϑ, respectively, are scale equivariant
and converge almost surely to some β > 0 and ϑ > 0, respectively. Therefore, to achieve
scale invariance property, the ELT can be considered as Ln(t) = 1

n
∑n

j=1 exp(−tW j),where
the scaled data is W j = X j/β̂n, for j = 1, 2, . . . ,n. Note that based on scale invariant
property β̂n(W1, . . . ,Wn) = 1. Hence, as W1, . . . ,Wn are approximately distributed as
Γ(ϑ, 1) under H0, for large n and some ϑ > 0, a test for H0 can be constructed based on
a measure of deviation from zero of the random function

Dn(t) = (1 + t)L′n(t) + ϑ̂nLn(t).

Subsequently, for a continuous weight function w(t) that fulfills
∫
∞

0 t4w(t) dt < ∞, the
test statistic can be defined as Tn =

∫
∞

0 nD2
n(t)w(t) dt. The null hypothesis H0 will be

rejected if Tn gets large values. As suggested by Henze et al. (2012), we consider two
class of weight functions w1(t) = exp{−at} and w2(t) = exp{−at2

} for a parameter a > 0,
that lead, respectively, to the following closed form test statistics:

T(1)
n,a =

∫
∞

0
nD2

n(t) exp{−at} dt =
1
n

n∑
j,k=1

[
W jWk − ϑ̂n(W j + Wk) + ϑ̂2

n

W j + Wk + a

+
2W jWk − ϑ̂n(W j + Wk)

(W j + Wk + a)2 +
2W jWk

(W j + Wk + a)2

]
,

T(2)
n,a =

∫
∞

0
nD2

n(t) exp{−at2
} dt

=
1

2n

√
π
a

n∑
j,k=1

[
W jWk − ϑ̂n(W j + Wk) + ϑ̂2

n

]
ϕ jk(a)

+
1

4na

n∑
j,k=1

[
W jWk − ϑ̂n(W j + Wk)

] [
2 −

π
a

(W j + Wk)ϕ jk(a)
]

+
1

8na2

n∑
j,k=1

W jWk

[{
π
a

(W j + Wk)2 + 2
√
πa

}
ϕ jk(a) − 2(W j + Wk)

]
,
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where ϑ̂n is the estimate of ϑ based on (W1, . . . ,Wn), and for the error function err f (x) =
2
√
π

∫ x
0 exp(−t2)dt,

ϕ jk(a) =

[
1 − err f

(
W j + Wk

2
√

a

)]
exp

 (W j + Wk)2

4a

 .
2.3 Test Statistics Based on Empirical Characteristic Function

Using the canonical form presented in Section 2.2, let us define the random variables
W1, . . . ,Wn as

W j =

d∑
i=2

Y∗i j

/√
d − 1|Y∗1 j|, j = 1, ..,n. (2.1)

It is straightforward to see that each W j is distributed as the standard Cauchy distributi-

on with pdf fW j(w j) =
(
π(1 + w2

j )
)−1
. This results in testing for the Cauchy distribution

instead of the MSN model. So, using the canonical form ofY1, . . . ,Yn and the transform-
ation on data by (2.1), the hypothesis (1.2) transforms to the goodness-of-fit test of
Cauchy distribution as{

H∗0 : W follows a Cauchy distribution;
H∗1 : W follows a distribution other than the Cauchy distribution. (2.2)

Now, we can follow the strategy of empirical characteristic function for Cauchy goodne-
ss-of-fit test presented by Gürtler and Henze (2000). For the copies of n independent
random variables W1, . . . ,Wn, the null hypothesis of interest can be expressed as H0 :
F ∈ F = {F(·;θ) : θ ∈ Θ}, where θ =

{
(µ, σ); µ ∈ R, σ > 0

}
is a two-dimensional

parameter space, and F(·;θ) is the cdf of Cauchy distribution, C(µ, σ), given by

F(w;θ) = 0.5 + π−1 arctan
(w − µ

σ

)
.

Since the hypothesis (2.2) checks whether data from an unknown distribution belongs
to the location-scale family F generated by the standard Cauchy cdf F0(x) = F(w; (0, 1))
and also since F is closed under affine transformations and the alternatives to H0 are
rarely known in practice, one may be interest to construct affine invariant and consistent
test. In this matter, let ϕn(t) be the empirical characteristic function of the standardized
data V j = (W j − µ̂n)/σ̂n, 1 ≤ j ≤ n, defined by

ϕn(t) = n−1
n∑

j=1

eitV j ,

where µ̂n = µ̂n(W1, ...,Wn) and σ̂n = σ̂n(W1, ...,Wn) are estimators forµ andσ, respectively,
such that for each a > 0 and b ∈ R,

µ̂n(aW1 + b, . . . , aWn + b) = aµ̂n(W1, . . . ,Wn) + b,
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σ̂n(aW1 + b, . . . , aWn + b) = aσ̂n(W1, . . . ,Wn). (2.3)

Since W1, . . . ,Wn and ϕn(t) are free of µ and σ, set µ = 0 and σ = 1 without loss of
generality and define the test statistic as

Dn,c =

∫
∞

−∞

(
ϕn(t) − exp{−|t|}

)2 exp{−c|t|}dt, (2.4)

where c is a fixed positive weighting parameter. We reject H0 if Dn,c gets large values.
Note that the test statistic (2.4) is a weighted L2

−distance between ϕn(t) and the
characteristic function of C(0, 1), exp{−|t|}. Moreover, under H0 and for suitable choice
of

{
(µ̂n, σ̂n)

}
n≥1, ϕn(t) converges in probability to exp{−|t|}. Then, by (2.4), Dn,c can be

obtained through the straightforward calculations as

Dn,c =
2
n

n∑
j,k=1

c
c2 + (V j − Vk)2 − 4

n∑
j=1

1 + c
(1 + c)2 + V2

j + (2n/2 + c)
. (2.5)

2.4 Computational Aspects

In order to apply our propose tests to the real data, estimation of the parameters ξ, Ω and
λ are needed for evaluatingY ∗. In the forthcoming data analyses, we use the maximum
likelihood (ML) estimates of ξ, Ω and λ, which give consistent estimates Balakrishnan
et al. (2014). The use of consistent estimates may provide a close approximation to
the true null distribution. Also, for the fix n, ξ, λ and Ω, we use the procedure in
Algorithm 2.1 to obtain the critical values. Since the power of a test plays important
rule in the statistical inference, we present a convenience procedure in Algorithm 2.2 to
compute the power of the proposed tests by using the obtained critical values. We note
finally that the process of calculating corresponding p-values of the tests are described
in Algorithm 2.3.

Algorithm 2.1. Critical Values Computation Algorithm

1. Simulate a sample of size n from MSN(ξ,Ω,λ).

2. Calculate the ML estimate of the parameters ξ, λ and Ω.

3. Compute the canonical form based on Proposition 2.2.

4. Calculate T(1)
n,a, T(2)

n,a, and Dn,c formulated in Section 2.

5. Repeat steps 1-4 B times.

6. The value of the critical constant T(1)
n,a, T(2)

n,a, and Dn,c is determined with the quantiles
100α from the simulation of T(1)

n,a, T(2)
n,a, and Dn,c, where α is a prespecified significance

level.

Algorithm 2.2. Power Value Computation Algorithm
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1. Simulate a sample of size n from alternative distribution.

2. Estimate parameters of the MSN distribution via ML approach. Based on the canonical
form (Proposition 2.2), compute T(1)

n,a, T(2)
n,a, and Dn,c as described in Section 2.

3. Repeat steps 1-2 B times.

4. The power of the test statistics T(1)
n,a, T(2)

n,a, and Dn,c is determined with the number of T(1)
n,a,

T(2)
n,a, and Dn,c that is grater than the critical constant (obtained in Algorithm 2.1) divided

by B.

Algorithm 2.3. Procedure of Computing p-values of T(1)
n,a, T(2)

n,a, and Dn,c.

1. Obtain the ML estimate of the MSN parameters ξ, λ and Ω for a real data set. and
calculate T(1)

n,a, T(2)
n,a, and Dn,c for the real data set.

2. Generate a sample of size n (same size of the real data) from MSN(ξ̂, Ω̂, λ̂).

3. Calculate T(1)
n,a, T(2)

n,a, and Dn,c based on canonical form presented in Section 2 for the
simulated data and denote them T(1)∗

n,a , T(2)∗
n,a , and D∗n,c.

4. Repeat steps 2 and 3 B times.

5. The corresponding p-values of T(1)
n,a, T(2)

n,a, and Dn,c is determined with the number of T(1)∗
n,a ,

T(2)∗
n,a , and D∗n,c that exceed the values T(1)

n,a, T(2)
n,a, and Dn,c divided by B.

3 Simulation Study

Examples 3.1. In order to evaluate the true significance level, an artificial analysis
is conducted, when data come from a 3-dimensional MSN distribution with various
sample sizes n =100, 200 and 300. The presumed parameters are

ξ =


1
2
3

 , Ω =


1 1 1
1 2.5 1
1 1 5

 , λ =


1
−2
3

 . (3.1)

The parameters set in (3.1) have a Mardia index of skewness 0.5 and a sample from
this distribution would have λ∗ ≈ 3.3. So, they can be considered to generate data from
the MSN distribution with a moderate skewness. Through fitting the MSN model to
the simulated data in each 1000 replication of the trails we obtain ML estimate and
compute three tests T(1)

n,a, T(2)
n,a, and Dn,c. Table 1 shows the significance levels of each

test obtained for α = 0.05. It can be observed from Table 1 that significance levels are
very closed to nominal level of α = 0.05 for all sample sizes, showing that the proposed
tests are less sensitive to the sample size compared with table 1 in Balakrishnan et al.
(2014), and also confirming that all tests can achieve the significance level without any
restriction.
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Table 1: Simulated significance level based on Nominal α = 0.05.

size 100 200 300 100 200 300
a = c = 1.0 a = c = 1.5

T(1)
n,a α 0.048 0.049 0.050 0.049 0.051 0.053

T(2)
n,a α 0.047 0.051 0.051 0.048 0.050 0.050

Dn,c α 0.049 0.050 0.050 0.052 0.051 0.052

Examples 3.2. We conduct a second simulation study aims at investigating the power of
the proposed tests under different conveniently alternatives. Following Balakrishnan
et al. (2014), we consider two family of distributions: (C1) a multivariate skew-t
distribution Azzalini and Capitanio (2003) and (C2) a mixture of two MSN distributions.
To compute the power of tests, Algorithm 2.2 is exploited where the selected number
of iterations is B = 1000 and samples are generated as follows. For C1, the multivariate
skew-t distribution with parameters set (3.1), n = 100, and various degree of freedoms
ν =1, 2, 3, 5, and 10 are considered. As the second group of alternative distributions
C2, data are generated from a mixture of two MSN distributions with pdf

fX (x) = π f1(x) + (1 − π) f2(x),

where π is a mixture proportion, f1(·) and f2(·) are the pdf ofX1 ∼MSN(ξ1,Ω1,λ1) and
X2 ∼ MSN(ξ2,Ω2,λ2). For the sample size 100, 200 and 300, and 1000, the presumed
parameters in (3.1) are considered for generating X1 and

ξ2 =


5

10
−4

 , Ω2 =


1 0 0
0 1 0
0 0 1

 , λ2 =


5
−5
6

 .
Moreover, three mixture proportion 0.5, 0.3 and 0.1 are also chosen to allow different
levels of variation from the MSN distribution. For C1 alternative hypothesis, the
computed power of the proposed tests T(1)

n,a, T(2)
n,a, and Dn,c are summarized in Table

2. The results depicted in Table 2 show reasonable values for the tests power. Since
the multivariate skew-t tends to the MSN model for larger degrees of freedom, it is
expected that the power of the test decreases as ν increased. For the second alternative
hypothesis C2, the power of our proposed tests as well as two tests introduced by
Balakrishnan et al. (2014), T∗ and U, are computed. Table 3 shows the power of the five
considered tests for C2 case, which shows that both couples (T∗,U) and (T(1)

n,a,T
(2)
n,a) have

a very similar behaviour. It can be seen that, for π = 0.5, the power of all implemented
tests is less than those obtained for π = 0.3 and 0.1. One may expected this manner
since under the considered parameters and π = 0.5, the mixed distribution gets close to
the one-component MSN model. However, it is clear that T(1)

n,a and T(2)
n,a have the biggest

power in almost all choose of sample size and π.
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Table 2: Power values when the alternative hypothesis is the multivariate skew-t
distribution.

T(1)
n,a T(2)

n,a Dn,c T(1)
n,a T(2)

n,a Dn,c
df a = c = 1.0 a = c = 1.5
1 0.921 0.930 0.832 0.932 0.936 0.870
2 0.764 0.771 0.601 0.780 0.784 0.638
3 0.561 0.569 0.490 0.580 0.585 0.506
5 0.334 0.340 0.322 0.342 0.345 0.330
10 0.257 0.262 0.205 0.264 0.267 0.212

Table 3: Power values when the alternative hypothesis is the mixture of two MSN
distributions for three choices of sample size.

Distibution n T∗ U T(1)
n,a T(2)

n,a Dn,c
SN mixture 100 π = 0.5 0.757 0.758 0.862 0.865 0.771

π = 0.3 0.993 0.991 0.993 0.997 0.983
π = 0.1 0.978 0.975 0.984 0.987 0.978

200 π = 0.5 0.784 0.783 0.886 0.892 0.841
π = 0.3 0.950 0.946 0.982 0.985 0.970
π = 0.1 0.882 0.882 0.902 0.910 0.871

300 π = 0.5 0.784 0.784 0.836 0.841 0.795
π = 0.3 0.901 0.894 0.938 0.941 0.921
π = 0.1 0.767 0.765 0.810 0.815 0.779

Examples 3.3. In order to compare our proposed tests with those considered by
Meintanis and Hlavka (2010), denoted by MH, and Balakrishnan et al. (2014) the
third simulation study is conducted. We only focus on the bivariate case since the MH
test is not computationally available for d > 2. Aims at comparing significant level of
the tests, in each replication of 1000 trials, we simulate samples from a 2-dimensional
MSN distribution for the various sample sizes n =100, 200, 300, and with true parameter
values

ξ = [1 2]> , Ω =

[
1 ρ
ρ 1

]
, (3.2)

where ρ was chosen as 0.4 and 0.8 and α = [1 2]> and [4 2]>. Moreover, we consider
three choices of bivariate gamma mixtures to compare tests’ power. For this purpose,
we simulate x0, x1, x2, x3 of sizes n =100, 200, or 300, independently from four gamma
distributions with parameters β = 1, 2, 1, 2, and ϑ =1, 1, 2, 3, respectively, and obtain
y1, y2, y3, as

y1 = x0 + x1, y2 = x0 + x2, y3 = x0 + x3.

Then, the considered bivariate gamma mixtures are: a) (y1, y2), b) (y1, y3), and c) (y2, y3).
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Results summarized in Table 4 show that along all sample sizes and all combinations
of real parameters, the significance levels of T(1)

n,a, T(2)
n,a, and Dn,c are very closed to the

nominal level of α = 0.05. In contrast with the MH, T∗ and U tests, these results
confirm that the significance level of our proposed tests does not critically depend on
the parameter and sample size. It can be also observed that the power values of T(1)

n,a,
T(2)

n,a, and Dn,c are much higher than those related to the MH, T∗ and U tests for all
sample sizes.

Table 4: Simulated values of significance levels and power when data are respectively
generated from the bivariate SN distribution and from the bivariate gamma mixtures
model.

Significance level (for MSN generator) Power (for Gamma mixture model)
ρ = 0.4 ρ = 0.4 ρ = 0.8 ρ = 0.8 (a) (b) (c)

Test λ = [1, 2]> λ = [4, 2]> λ = [1, 2]> λ = [4, 2]>

n = 100 T∗ 0.042 0.111 0.047 0.138 0.489 0.345 0.554
U 0.030 0.092 0.026 0.126 0.476 0.330 0.550
MH 0.050 0.054 0.036 0.050 0.476 0.464 0.538
T(1)

n,a 0.052 0.049 0.046 0.052 0.862 0.868 0.795
T(2)

n,a 0.054 0.048 0.055 0.050 0.852 0.855 0.790
Dn,c 0.052 0.050 0.051 0.043 0.682 0.679 0.571

n = 200 T∗ 0.043 0.055 0.058 0.045 0.276 0.121 0.257
U 0.032 0.044 0.035 0.035 0.271 0.114 0.255
MH 0.061 0.048 0.059 0.052 0.297 0.302 0.406
T(1)

n,a 0.051 0.052 0.050 0.050 0.554 0.492 0.596
T(2)

n,a 0.053 0.048 0.052 0.050 0.550 0.499 0.590
Dn,c 0.045 0.049 0.054 0.055 0.487 0.452 0.561

n = 300 T∗ 0.045 0.051 0.049 0.046 0.159 0.053 0.126
U 0.047 0.051 0.054 0.041 0.164 0.050 0.129
MH 0.054 0.049 0.055 0.042 0.199 0.215 0.298
T(1)

n,a 0.052 0.051 0.050 0.050 0.412 0.390 0.461
T(2)

n,a 0.052 0.052 0.049 0.050 0.408 0.395 0.462
Dn,c 0.053 0.049 0.049 0.049 0.371 0.362 0.409

4 Real Data Examples

As illustrative purposes, we apply the proposed methodology on four real-world data
sets. We consider, at first, the well-known biomedical data related to the 102 male and
100 female athletes that are collected by the Australian Institute of Sport. Called AIS
data, Azzalini and Capitanio (1999) fitted the MSN distribution to a subset of the data
for verifying its performance. Moreover, Lin et al. (2014) analyzed the combination
of male and female to examine the ability of two-component mixture of the MSN
distributions. We focus on four variables: body mass index (bmi), sum of skin folds
(ssf), body fat percentage (Bfat) and lean body mass (lbm). In the second real-world
example, the leptograpus crabs data set, previously studied by Campbell and Mahon
(1974), is used. The crabs data contain 5 biological attributes measured on 200 crabs (100
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male and 100 female) from the genus leptograpus. The third considered data is related
to the three variables of the Wisconsin Breast Cancer (WDBC) data Mangasarian et al.
(1995). In the analysis of WDCB, the tests statistic are examined through three variables,
the mean texture, the largest area and the largest smoothness that can be classified
as malignant (212 instances) or benign (357 instances). Finally, for the fourth data
example, the performance of goodness-of-fit tests for MSN distribution are compared
on the five variate open/closed book (OCB) dataset Mardia et al. (1979). The OCB data
are recently analyzed by Kim et al. (2016), who considered three new skewed factor
models, namely the SN, skew-t, and the generalized SN factor models, depending on a
selection mechanism of the factors. The OCB data contain the results of five proficiency
namely mechanics, vectors, algebra, analysis, and statistics tested on n = 88 students.

Table 5: p-values of tests of multivariate skew-normality for three sets of variables from
the AIS data set.

Male Female
Test Three variables Three variables Four variables Three variables Three variables Four variables

(bmi, Bfat, lbm) (ssf, Bfat, lbm) (bmi, ssf, Bfat, lbm) (bmi, Bfat, lbm) (ssf, Bfat, lbm) (bmi, ssf, Bfat, lbm)
U 0.001 ≈ 0 0.097 0.178 0.982 0.185
T∗ 0.001 ≈ 0 ≈ 0 0.289 0.790 ≈ 1
T(1)

n,a 0.120 0.078 0.156 0.459 0.991 ≈ 1
T(2)

n,a 0.112 0.075 0.148 0.420 0.986 ≈ 1
Dn,c 0.092 0.064 0.126 0.381 0.885 0.985

Applying the expectation-maximization algorithm Dempster et al. (1977) to fit the
MSN distribution to the data and finding its ML estimate, we preform Algorithm 2.3
to obtain the p-values of the tests. Tables 5 and 6 show the p-values of the five tests.
Results depicted in Table 5 is related to the AIS data and show that for the three-
variable sets (bmi, Bfat, lbm) and (ssf, Bfat, lbm), and for the four-variable set of the
male group, there is not enough evidence in favour of the MSN distribution. However,
for the female group, most of the considered tests suggest to accept the hypothesis of
the multivariate skew-normality distribution.

The results of Table 6 for the crabs data reveal that our proposed tests show more
evidence in favour of the MSN distribution for each group of the male and female, while
all the tests suggest to reject the null hypothesis when the data are combined. Similarly,
by looking at the test p-values of the WDBC data, one can see sufficient information to
accept when the data are may follow the MSN distribution separately for malignant and
benign classes. But on all classes, we suggest to reject the multivariate skew-normality
assumption since all of the p-values of the considered tests tend to approaches zero.
We note here that the joint distributions of the five-variable crabs and three-variable
WDBC data sets can be at least bimodal, being a mixture of measures coming from a
group of males or females and a group of malignant or benign. It will be of interest to
propose a goodness-of-fit test of multivariate skew-normal mixture models based on
the canonical form.

Finally, the p-values of the proposed tests included in Table 6 lead us to conclude
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in favour of the MSN distribution for the OCB data set, which are significantly greater
than the p-value of the U and T∗ tests.

Table 6: p-values of the tests of multivariate skew-normality for three data sets.

Crabs data WDBC data OCB data
Test (Male, Female) Male Female (Malignant, Benign) Malignant Benign
U ≈ 0 0.332 0.395 0.056 0.487 0.974 0.159
T∗ 0.001 0.359 0.451 0.053 0.468 0.604 0.174
T(1)

n,a ≈ 0 0.891 0.926 0.009 0.682 0.725 0.530
T(2)

n,a ≈ 0 0.907 0.950 0.005 0.664 0.713 0.552
Dn,c 0.002 0.755 0.794 0.012 0.564 0.694 0.503

5 Concluding Remarks

In this paper, we have dealt with proposing some goodness-of-fit tests for assessing
the adequacy of the MSN distribution. To construct the test statistics, we focus on
the canonical form of the MSN model and on both empirical Laplace transform and
empirical canonical form characteristic functions. Three algorithms for computing the
critical values, power values and corresponding p-values of the tests are presented.
Numerical results of simulations and real data examples suggest that the proposed
tests can work well without any computation and/or dimensional restrictions.

The utility of our current approach can be extended to obtain a test statistic of
the multivariate skew-t distribution based on canonical form. Furthermore, another
possible extension of the work herein is to consider a test to assess if a sample comes
from a mixture of the MSN distributions.
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