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1 Introduction

Different methods are used to evaluate a statistical hypothesis. The two main methods
are significance testing and the Bayesian test. In a significance testing, the smallness
of the P-value means that observations do not support the null hypothesis, and in the
Bayesian test, the large posterior probability indicates the support of H0. Bayesian
statisticians have claimed that the smallness of the P-value cannot be considered as a
reason for the rejection of H0 at least when H0 is a point null and tested against a two-
sided alternative hypothesis. They have shown a hypothesis, for a given observation,
rejected by P-value while having a high posterior probability. A necessary consequence
of many Bayesians is that the P-value is a misleading measure of evidence and has to
be banned or abandoned (see Lindley (1957), Nickerson (2000), and Mayo (2006)).
For many other Bayesians, the p-value needs to be re-calibrated or requirs some
transformation (see e. g. Sellke et al. (2001) and Efron and Gous (2001)). In a
landmark paper, for testing the mean of a normal distribution, Edwards et al. (1963)
demonstrated that the lower bound of the posterior probability of H0 for a class of
prior distributions is always higher than the corresponding P-value. This issue was
expanded by Berger and Sellke (1987), Berger and Delampady (1987), and Chinipardaz
(2003) who used different classes of priors and showed that the P-value overstates the
evidence against H0. Although Berger and Delampady (1987), Delampady (1989) and
Verdinell and Wessermann (1996) verified that the posterior probability of an imprecise
null hypothesis ( H0 : |θ−θ0| ≤ ε against H1 : |θ−θ0| > εwith small constant ε) leads to
the same results even in the presence of nuisance parameter, many statisticians showed
that for one-sided hypotheses testing, H0 : θ ≤ θ0(θ ≥ θ0) against H1 : θ > θ0(θ < θ0)
two approaches are reconcilable (see e.g. Berger (1985) and Casella and Berger (1987)).

We consider a test H0 : θ = θ0 against H1 : θ > θ0(θ < θ0). It is a point null
hypothesis against the one-sided hypothesis and has attracted considerable attention
in various applied settings. For example, in a dose-response experiment, the response
is often expected to be non-decreasing with dose. In such a case, one may be interested
in testing whether the mean response is equal or non-decreasing with dose, which is
equivalent to testing the simple hypothesis against the one-sided hypothesis on the
mean. In econometric modeling, econometric theory often suggests a linear inequality
constraint on a normal linear regression model’s coefficient. It is the test for linear
equality against linear inequality. In this article, we followed this idea to give a prior
distribution, if any, for which the P-value and the postorior probability reconciled.
The materials organized as follows; in Section 2, we set up the problem for point null
against a one-sided hypothesis. In Section 3, we look at the non regular family of
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distributions and generalize the results in Chinipardaz and Noorbaloochi (2003) for a
point null against a one-sided hypothesis. In Section 4, we follow the problem for an
exponential family of distributions. We will show that deriving a prior distribution
of an agreement is based on the complete monotonicity of the hazard rate. Finally, in
Section 5, we present our discussion as well as the conclusion.

2 Setting up the Problem and Preliminary Results

Consider an observation X that is thought to have fθ(x) distribution, where x and the
parameter θ are real numbers. We wish to test H0 : θ = θ0 test against H1 : θ > θ0. In a
Bayesian framework, one considers a discrete-continuous prior distribution

π(θ) = π0I{θ0}(θ) + (1 − π0)π1(θ)I(θ0,∞)(θ),

where π0 = P(H0) is the probability of H0 to be true in prior and IA(w) is 0-1 indicator
function, 1 if w ∈ A and 0 otherwise. Here, π1(θ) is the density, which describes how the
prior mass is spread out over the alternative hypothesis. Then the posterior probability
of H0 is

P(H0|x) = P(θ = θ0|x) =
π0 fθ0(x)

π0 fθ0(x) + (1 − π0)mπ1(x)
,

where mπ1(x) =
∫
∞

θ0
fθ(x)π1(θ)dθ is the predictive function on (θ0,∞). To have equal

posterior probability and P-value, p(x), we require∫
∞

θ0

fθ(x)π1(θ)dθ =
π0

1 − π0

1 − p(x)
p(x)

fθ0(x).

To be an impartial statistician, the prior odds ratio, 1−π0
π0

, is taken to be one. Therefore,
to reconcile between Bayesians and frequentists, we have to seek a prior, π1(θ), on
(θ0,∞) satisfying ∫

∞

θ0

fθ(x)π1(θ)dθ =
1 − p(x)

p(x)
fθ0(x). (2.1)

Similar results can be obtained in the same manner for H0 : θ = θ0 against H1 : θ < θ0
with the prior distribution

π(θ) = π0I{θ0}(θ) + (1 − π0)π1(θ)I[0,θ0)(θ).
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In this case, we seek for π1(θ) on [0, θ0) such that∫ θ0

0
fθ(x)π1(θ)dθ =

1 − p(x)
p(x)

fθ0(x). (2.2)

One might argue that this is a pertinacious requirement and should be simplified such
that this condition is satisfied only with a set of observations, say C, under which the
null hypothesis rejected. There is

C = {x; p(x) < α},

where α is a small pre-assigned value.

Examples 2.1. Consider X1, . . . ,Xn ∼ U(0, θ). To test H0 : θ = θ0 against H1 : θ > θ0,
the considered test statistic is T(X) = X(n) = max1≤i≤n{Xi} and P-value is given by

p(t) = Pθ0(X(n) ≥ t) =

∫ θ0

t

nun−1

θn
0

du = 1 −
( t
θ0

)n
,

where t is the observed value of T. Now, we seek π1(θ) satisfying∫
∞

θ+
0

fθ(t)π1(θ)dθ =
1 − p(t)

p(t)
fθ0(t) =

( t
θ0

)n

1 − ( t
θ0

)n

ntn−1

θn
0
.

The left hand side of this relation is∫
∞

θ+
0

ntn−1

θn π1(θ)dθ = ntn−1
∫
∞

θ0

1
θnπ1(θ)dθ.

There is no prior distribution of π1(θ) satisfying this condition.

In this example for H0 : θ = θ0 against H1 : θ < θ0 the P-value is Pθ0(X(n) ≤ t) =
(

t
θ0

)n
.

Besides, the right hand side of equation (2.2) is ntn−1
[(

1
t

)n
−

(
1
θ0

)n]
and we need π1(θ)

to satisfy ∫ θ0

t

ntn−1

θn π1(θ)dθ = ntn−1
∫ θ0

t

1
θnπ1(θ)dθ = ntn−1

[(1
t

)n
−

( 1
θ0

)n]
.

It can be demonstrated that usingπ1(θ) = n
θ , the posterior probability of H0 and P-value

are reconciled. To show that this is not the only case satisfying this condition, in the
following, we look at a non regular family of distributions.
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3 Non Regular Family of Distributions

Suppose we have the random variable X from a non regularfamily of distributions
which satisfies one of the folllowing forms:

(i) fθ(x) = Q(θ)h(x), x ≤ θ, Q(θ) is a nonincreasing function of θ and h(x) is a
nondecreasing function of x.

(ii) fθ(x) = Q(θ)h(x), x ≥ θ, Q(θ) is a nondecreasing function of θ and h(x) is a
nonincreasing function of x.

It is straightforward to obtain the following lemma based on the definition of P-value.

Lemma 3.1. To test H0 : θ = θ0 against H1 : θ > θ0(θ < θ0) in non regular family of
distributions, P-value is given by:

p − value =


Q(θ0)G1(x) H1 : θ > θ0 (Q(θ) nonincreasing)
Q(θ0)G2(x) H1 : θ < θ0 (Q(θ) nonincreasing)
Q(θ0)G3(x) H1 : θ > θ0 (Q(θ) nondecreasing)
Q(θ0)G4(x) H1 : θ < θ0 (Q(θ) nondecreasing),

where G1(x) =
∫ θ0

x h(u)du, G2(x) =
∫ x

0 h(u)du, G3(x) =
∫
∞

x h(u)du, G4(x) =
∫ x
θ0

h(u)du.

Proof. For the case of H1 : θ > θ0 , p(x) = Pθ0(X ≥ x) = Q(θ0)Gi(x), i = 1, 3, and for
H1 : θ < θ0 , p(x) = Pθ0(X ≤ x) = Q(θ0)Gi(x), i = 2, 4, are P-values. It should be
noted that the case of p(x) = 0 is dropped because the posterior probability of H0 also
vanishes. �

Using this lemma, to set equal P-values with corresponding posterior probabilities

Q(θ0)h(x)

Q(θ0)h(x) +
∫
Θ1

Q(θ)h(x)π1(θ)dθ
= Q(θ0)Gi(x), i = 1, 2, 3, 4.

and after some manipulations, we get Table1. For all the cases, we need to have π1(θ)
satisfying the equation in the last column of Table 1.

3.1 Distribution of θ

There are four cases that can be considered to obtain π1(θ). However, we show that
only two of them lead to the prior distribution π1(θ). Consider the second case where
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Table 1: Relations (2.1) or (2.2) when P-value and posterior probability are taken to be
equal.

Q(θ) H1 Constraint (2.1) or (2.2)
nonincreasing θ > θ0 x ≤ θ G1(x)

∫
∞

θ0
Q(θ)π1(θ)dθ + Q(θ0)G1(x) = 1

nonincreasing θ < θ0 x ≤ θ G2(x)
∫ θ0

x Q(θ)π1(θ)dθ + Q(θ0)G2(x) = 1∗

nondecreasing θ > θ0 x ≥ θ G3(x)
∫ x
θ0

Q(θ)π1(θ)dθ + Q(θ0)G3(x) = 1

nondecreasing θ < θ0 x ≥ θ G4(x)
∫ θ0

0 Q(θ)π1(θ)dθ + Q(θ0)G4(x) = 1

H0 : θ = θ0 is tested against H1 : θ < θ0 when Q(θ) is a nonincreasing function of θ.

Define π̄1(θ) = Q(θ)π1(θ) and set F(x) = Q(θ0) +

∫ θ0

x
π̄1(θ)dθ. In the second row of

Table 1, marked by ∗, we have

F(x)G2(x) = 1. (3.1)

Therefore, Q(θ0) +
∫ θ0

x π̄1(θ)dθ = 1
G2(x) and differentiate with respect to x results in

−π̄1(x) =
−h(x)
G2

2(x)
=⇒ π̄1(x) =

h(x)
G2

2(x)
,

and therefore, π1(θ) =
h(θ)

G2
2(θ)Q(θ)

.

We can use this prior distribution to obtain the posterior probability. One can
check the result by putting this prior distribution to have equal P-value and posterior
probability. In the second row of Table 1:

G2(x)
∫ θ0

x
Q(θ)

h(θ)
G2

2(θ)Q(θ)
dθ + Q(θ0)G2(x) = G2(x)

−1
G2(θ)

∣∣∣∣∣θ0

x
+ Q(θ0)G2(x)

=

[
−G2(x)
G2(θ0)

+ 1
]

+ Q(θ0)G2(x)

= 1.

Since
∫ θ0

0 h(x)Q(θ0)dx = 1, we have G2(θ0) = 1
Q(θ0) . The reader can follow this method

to obtain π1(θ) for H0 : θ = θ0 against H1 : θ > θ0 when Q(θ) is a nondecreasing
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function of θ. Interestingly, for the first and forth rows in Table 1 (H1 : θ > θ0 with
Q(θ) a nonincreasing function and H1 : θ < θ0 with Q(θ) a nondecreasing function) the
method fails to obtain π1(θ).

Examples 3.1. Consider X ∼ U(0, θ) and the hypothesis testing procedure H0 : θ = θ0
against H1 : θ < θ0. From the second row of Table 1, we have

π1(θ) =
h(θ)

G2
2(θ)Q(θ)

=
1

1
θ (

∫ θ
0 dθ)2

=
1
θ
.

Using this prior distribution, we get

P(θ = θ0|x) =

1
θ0

1
θ0

+
∫ θ0

x
1
θ

1
θdθ

=
x
θ0

= Pθ0(X ≤ x) = p(x).

3.2 Extension to a Random Sample

Let X1, . . . ,Xn be members of the non regular family of distributions, taken the form (i)
or (ii). The sufficient statistic, X(n)(X(1)), functions as the test statistic in both significance
testing and the Bayesian test. As the non regular family of distributions is close under
the sufficient statistic, the distribution of X(n) and X(1) are, respectively,

fX(n)(t|θ) = Qn(θ)m1(t), t ≤ θ

fX(1)(t|θ) = Qn(θ)m2(t), t ≥ θ,

where m1(t) = nh(t)Nn−1
1 (t),m2(t) = nh(t)Nn−1

2 (t),N1(t) =
∫ t

0 h(u)du and N2(t) =
∫
∞

t h(u)du.
To test H0 : θ = θ0 agaist H1 : θ > θ0(θ < θ0), we have the following lemma.

Lemma 3.2. To test H0 : θ = θ0 against H1 : θ > θ0(θ < θ0) in non regular family of
distributions, P-value is given by:

p − value =


Qn(θ0)M1(t) H1 : θ > θ0 (Q(θ) nonincreasing)
Qn(θ0)M2(t) H1 : θ < θ0 (Q(θ) nonincreasing)
Qn(θ0)M3(t) H1 : θ > θ0 (Q(θ) nondecreasing)
Qn(θ0)M4(t) H1 : θ < θ0 (Q(θ) nondecreasing),

where M1(t) =
∫ θ0

t m1(u)du, M2(t) =
∫ t

0 m1(u)du, M3(t) =
∫
∞

t m2(u)du, M4(t) =
∫ t
θ0

m2(u)du.
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Now, to equate P-value and posterior probability, Table 1 is modified to Table 2.

Table 2: Relations (2.1) or (2.2) when P-value and posterior probability are taken to be
equal.

Q(θ) H1 Constraint (2.1) or (2.2)
nonincreasing θ > θ0 t ≤ θ M1(t)

∫
∞

θ0
Qn(θ)π1(θ)dθ + Qn(θ0)M1(t)=1

nonincreasing θ < θ0 t ≤ θ M2(t)
∫ θ0

t Qn(θ)π1(θ)dθ + Qn(θ0)M2(t) = 1∗

nondecreasing θ > θ0 t ≥ θ M3(t)
∫ t
θ0

Qn(θ)π1(θ)dθ + Qn(θ0)M3(t) = 1

nondecreasing θ < θ0 t ≥ θ M4(t)
∫ θ0

0 Qn(θ)π1(θ)dθ + Qn(θ0)M4(t) = 1

Here, the same method can be applied to obtain the prior distribution. In this case
for H0 : θ = θ0 against H1 : θ < θ0 in fθ(x) = Q(θ)h(x), x ≤ θ ,we have

π1(θ) =
m1(θ)

M2
2(θ)Qn(θ)

,

and for H0 : θ = θ0 against H1 : θ > θ0, in fθ(x) = Q(θ)h(x), x ≥ θ

π1(θ) =
m2(θ)

M2
3(θ)Qn(θ)

,

where m1(θ),m2(θ),M2
2(θ) and M2

3(θ) are given as before.

Examples 3.2. To extend example 3.1 for n random variables, consider X1, . . . ,Xn ∼

U(0, θ). For testing the hypothesis H0 : θ = θ0 against H1 : θ < θ0, we used the test
statistic T(X) = X(n) then we have Q(θ) = θ−1. Therefore,

π1(θ) =
nθn−1

1
θn (

∫ θ
0 nun−1du)2

=
n
θ
.

Using this prior distribution, we have

P(θ = θ0|t) =

ntn−1

θn
0

ntn−1

θn
0

+
∫ θ0

t
ntn−1

θn
n
θdθ

= (
t
θ0

)n = Pθ0(X(n) ≤ t) = p(t).
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Examples 3.3. Let X1, . . . ,Xn are independent with pdf f (x) = λe−λ(x−θ), x ≥ θ. To test
H0 : θ = θ0 against H1 : θ > θ0, we used the test statistics T(X) = X(1) then we have
Q(θ) = enλθ. Therefore,

π1(θ) =
nλe−nλθ

e−2nλθenλθ = nλ.

Using this prior distribution, we have

P(θ = θ0|t) =
nλe−nλ(t−θ0)

nλe−nλ(t−θ0) +
∫ t
θ0

nλe−nλ(t−θ)dθ
= e−nλ(t−θ0) = Pθ0(X(1) ≥ t) = p(t).

3.3 Other Alternatives

The results in the previous sections can be considered for two special cases in the
alternative hypothesis.

3.3.1 Point Null against Point Alternative Hypothesis

Consider point null against point alternative hypothesis tests, H0 : θ = θ0 against
H1 : θ = θ1. Without loss of generality, we assume θ1 > θ0 and Q(θ) is a nonincreasing

function of θ. Then, p(x) = Q(θ0)G(x), where G(x) =
∫ θ0

x h(u)du. The H0 posterior
probability is

P(θ = θ0|x) =
π0Q(θ0)h(x)

π0Q(θ0)h(x) + (1 − π0)Q(θ1)h(x)
=

Q(θ0)

Q(θ0) + 1−π0
π0

Q(θ1)
.

For the equality of p(x) and p(θ = θ0|x) we need π0 to satisfy

Q(θ0) +
1 − π0

π0
Q(θ1) =

1
G(x)

,

for all x, i.e. the prior distribution depends on x which is meaningless.

This statement holda true no only for this class of distributions, but also for all
distributions.
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3.3.2 Null Point against Closed Interval Alternative Hypothesis

Another case is H0 : θ = θ0 against H1 : θ ∈ (θ0, b] where b is some real finite value.
This case includes a number of real examples.

Because the bounds of integral in third rows of Table 1 and Table 2 are changed from x
to b, the method fails to obtain a π1(θ) prior distribution.

4 Exponential Family of Distributions

Consider one-parameter exponential family of distributions as

fθ(x) = eη(θ)T(x)P(θ)h(x),

where η and P are real-valued functions of the parameter and T(x) is a real-valued
statistic. Often, it is more convenient to use canonical form given by

fθ(x) = eθT(x)Q(θ)h(x),

or even simpler natural form as

fθ(x) = e−θxQ(θ)h(x). (4.1)

As the exponential family of distributions is closed under-sampling, we use only one
observation, x. The result is not different because T(X) will belong to the exponential
family of distributions.

The parameter space considered in this paper is θ = [0,∞) or (−∞, 0]. Without loss
of generality, suppose that H0 : θ = θ0 is tested against H1 : θ > θ0 (or H1 : θ < θ0). It
can be demonstrated that

mπ1(x) =

∫
Θ1

fθ(x)π1(θ)dθ

=

∫
Θ1

e−θxh(x)Q(θ)π1(θ)dθ

= h(x)
∫

Θ1

e−θxQ(θ)π1(θ)dθ.

For the equality of P-value and posterior probability under H0, it is required that∫
Θ1

e−θxQ(θ)π1(θ)dθ =
1 − p(x)

p(x)
fθ0(x)
h(x)

= φ(x),
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where p(x) = Pθ0(X ≤ x) or Pθ0(X ≥ x) depend on H1 : θ > θ0 or H1 : θ < θ0,
respectively. To continue, define π̄(θ) = Q(θ)π1(θ)IΘ1(θ). Then,∫

∞

0
e−θxπ̄(θ)dθ =

1 − p(x)
p(x)

fθ0(x)
h(x)

= φ(x),

and φ(x) is the Laplace transform of π̄(θ). Therefore, there is a proper prior distribution
for θ if and only if φ(x) is completely monotone and φ(0) = 1, i.e.

(−1)nφ[n](x) ≥ 0, φ(0) = 1, (4.2)

and there is prior distribution, not necessary proper, whenφ(x) is completely monotone
andφ(0) , 1.Hereφ[n](x) is the nth derivative ofφ(x) with respect to x. Ifφ(x) is discrete,
the result is true with ∆φ(x) = φ(x + 1) − φ(x) and ∆[ j](x) = ∆∆[ j−1](x) (see Appendix).
To check the complete monotonicity of φ(x), one can remove the positive and constant
value Q(θ0) for simplicity from (4.1).

Examples 4.1. Let X has the exponential distribution with pdf fθ(x) = θe−θx, x > 0, θ >
0. To test H0 : θ = θ0 against H1 : θ > θ0, p(x) = Pθ0(X ≤ x) = 1 − e−θ0x and

φ(x) =
1 − Fθ0(x)

Fθ0(x)
fθ0(x) =

θ0e−2θ0x

1 − e−θ0x .

We have

φ[n](x) = θ0

[
(−2θ0)ne−2θ0x + (−3θ0)ne−3θ0x + · · ·

]
= θ0

∞∑
j=2

(− jθ0)ne− jθ0x = θn+1
0

∞∑
j=2

(− j)ne− jθ0x.

Hence (−1)nφ[n](x) ≥ 0, φ(0) = ∞ , 1. Therefore, there is an improper prior distribution
to reconcile these two approaches. Now, suppose we want to test H0 : θ = θ0 against
H1 : θ < θ0. In this case

φ(x) =
Fθ0(x)

1 − Fθ0(x)
fθ0(x) = θ0(1 − e−θ0x)⇒ (−1)nφ[n](x) = (−1)θ(n+1)

0 e−θ0x,

(−1)nφ[n](x) ≤ 0 which is not completely monotone and therefore, there is no π(θ) for
the agreement of P-value and the posterior probability.
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Examples 4.2. Let X follows the geometric distribution with pdf fp(x) = pqx, x =
0, 1, . . . , q = 1− p. Let θ = − ln(1− p), then p = 1− e−θ and f (x|θ) = e−θx(1− e−θ) belongs
to an exponential family of distributions.

To test H0 : p = p0 against H1 : p < p0, the P-value is p(x) = Pp0(X ≥ x) = qx
0, then

φ(x) =
Fp0(x − 1)

1 − Fp0(x − 1)
p0e−x ln( 1

1−p0
)
= p0(1 − qx

0)

∆φ(x) = φ(x + 1) − φ(x) = p2
0qx

0.

Therefore, (−1)∆φ(x) < 0 and there is no prior distribution to reconcile posterior
probability and P-value. Now, we consider the case where H1 : p > p0. We have

φ(x) =
1 − Fp0(x)

Fp0(x)
p0e−x ln( 1

1−p0
)
=

p0q2x+1
0

1 − qx+1
0

⇒ ∆φ(x) = p0

 ∞∑
j=2

q jx+( j−1)
0 (q j

0 − 1)

 < 0.

So, (−1)∆φ(x) > 0. Similarly, ∆[n]φ(x) = p0

∞∑
j=2

q jx+( j−1)
0 (q j

0 − 1)n, which results in

(−1)n∆[n]φ(x) > 0 showing that there is a prior disribution under which posterior
probabilty and P-value are equal.

Table 3 presents our investigation for some common-used distributions of the
exponential family of distributions.

4.1 The Prior Distribution

The method presented in Section 4 can only be used to check whether a prior distribution
exists for equality of p-value and posterior probability. It does not determine, however,
the structure of the prior distribution. Obtaining the prior distribution requires other
techniques such as those given in Section 3. To follow this, we consider Example 4.2.

Examples 4.3. It was shown that in example 4.2, for H0 : p = p0 against H1 : p > p0,
there exists a prior distribution, say π1(θ) satisfy:

p0(1 − p0)x

p0(1 − p0)x +
∫ 1

p0
p(1 − p)xπ1(p)dp

= 1 − (1 − p0)x+1, (4.3)
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Table 3: The existence or non-existence of prior distribution for some exponential family
of distributions. ("*" means that we could check only some derivatives )

Distribution H1 There exists π(θ)
Exponential θ > θ0 Yes
Exponential θ < θ0 No
Poisson θ > θ0 No
Poisson θ < θ0 Yes ∗

Pareto θ > θ0 Yes
Pareto θ < θ0 No
Geometric θ > θ0 Yes
Geometric θ < θ0 No
Weibull θ > θ0 Yes
Weibull θ < θ0 No
Binomial θ > θ0 No
Binomial θ < θ0 Yes ∗

or ∫ 1

p0

p(1 − p)xπ1(p)dp =
p0(1 − p0)x

1 − (1 − p0)x+1
− p0(1 − p0)x =

p0(1 − p0)2x+1

1 − (1 − p0)x+1
. (4.4)

Differentiating (4.4) with respect to p0 in both sides, we have

−p0(1 − p0)xπ1(p0) =
(1 − p0)2x[1 − 2p0 − 2xp0]

1 − (1 − p0)x+1
−

(x + 1)p0(1 − p0)3x+1

[1 − (1 − p0)x+1]2
.

Therefore,

π1(p) = −
(1 − p)x[1 − 2p − 2xp]

p[1 − (1 − p)x+1]
+

(x + 1)(1 − p)2x+1

[1 − (1 − p)x+1]2
.

Although check (4.2) complex manipulations are needed. More importantly, π1()
changes with x, which indicates that the prior distribution is obtainable. Table 4
presents some prior distributions under which the p-value and posterior probability
are equal.

It should be noted that since the prior distribution must be independent of x, there
is no prior distribution to match the P-value and the posterior probability for each x.



114 P. Zolfaghari et al.

Table 4: The prior distribution to match p-value and posterior probability

x π1(p)
0 1

p

1 −
(1−p)(1−4p)

p2(2−p) +
2(1−p)3

p2(2−p)2

2 −
(1−p)2(1−6p)
p2(3−3p+p2) +

3(1−p)5

p2(2−3p+p2)2

5 Conclusion and Comments

In this paper, we have a fresh look at the paradoxical result in testing the significance
testing and the Bayesian tests. We considered the point null hypothesis against the
one-sided hypothesis testing. We aim to search for a prior distribution in Bayesian
testing so that the P-value and posterior probability are equal. Two different families
of distributions have been examined. In the non regular family of distributions, it was
shown that there are no such prior distributions, in general. However, in some cases,
there are such priors, proper or improper. Obtaining such a prior for the exponential
family of distributions leads to complete monotonicity of a function of the hazard
rate. In most cases in this family, such suitable priors do not exist, or they are very
complicated and rare to find.
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Appendix

A Compleletly Monotone

Definition A.1. The function ofφ on (0,∞) is said to be a completely monotone function
if all of it’s derivatives exist and

(−1)nφ[n](λ) ≥ 0 λ > 0,

is hold.

Lemma A.1. The function φ on (0,∞) has Laplas transform of a distribution function if and
only if φ is completely monotone and φ(0) = 1.

Proof. Feller (1971). �

Lemma A.2. The function φ on (0,∞) is completely monotone if and only if

φ(λ) =

∫
∞

0
e−λxdF(x), λ > 0.

In this case, F is a nonnegative and increasing function but its measure is not necessarily finite.

Proof. Feller (1971). �

Definition A.2. The numerical sequence (finite or infinite) such as c0, c1, . . . , cn is said
to be a completely monotone if we have

(−1)r∆[r](cr) ≥ 0 r = 0, 1, . . . ,

where ∆ci = ci+1 − ci. Note that ∆r = ∆∆r−1.

Lemma A.3. The moments of {ck} of a distribution is a sequence of completely monotone
functions with c0 = 1. Conversely, a sequence of completely monotone functions such as {ck}

with c0 = 1 is a unique moments of distribution function. Function φ on (0,∞) is completely
monotone if and only if

φ(λ) =

∫
∞

0
e−λxdF(x), λ > 0,

and φ(0) = 1.

Proof. Feller (1971). �
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Examples A.1.

g(x) =
1
x

=⇒ g[n](x) =

{
Q(nx−n n = 2k

nx−n(−1)n n = 2k + 1,

g(x) is completely monotone, g(0) = 1 =⇒ g(x) = 1
x =

∫
∞

0 e−xydF(y) =
∫
∞

0 e−xydy F is
nonnegative and nondecreasing function but its measure on (0,∞) is not finite.

Examples A.2.

an =
1
n

=⇒ ∆an =
−1

n(n + 1)
, . . . .

∆[k]an =
(−1)kk!

n(n + 1)(n + 2) · · · (n + k)
.


