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Abstract. In this paper, we introduce the concept of quantile-based generalized
cumulative residual entropy of order (a, f) for residual and past lifetimes and study
their properties. Further, we study the proposed information measure for series and
parallel systems when random variables are untruncated or truncated in nature and
some characterization results are presented. Atthe end, we study generalized weighted
dynamic cumulative residual entropy in terms of quantile functions.
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1 Introduction

A probability distribution can be specified either in terms of distribution function
or by the quantile function. Although both convey the same information about the
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distribution, with different interpretations, the concepts and methodologies based on
distribution functions are traditionally employed in statistical theory and practice. Let
X be a random variable with distribution function F(x) and quantile function Q(u).
Then, the quantile function of X is defined by

Q) = FY(u) = inf{x | F(x) > u}, 0<u<1. (1.1)

Here and throughout the article, X is a absolutely continuous nonnegative random
variable with probability density function (pdf) f(x) and survival function F(x). If f(.)

is the pdf of X, then f(Q(u)) and g(u) = % are, respectively, known as the density
quantile function and the quantile density function. Using (1.1), we have F(Q(u)) = u
and, by differentiating with respect to u, we obtain

q(u) f(Qu)) = 1. (1.2)

The mean of X is assumed to be finite and is calculated as

1 1
E(X) = fo Qp)p = fo (A - Pa)dp. (13)

An important quantile measure useful in reliability analysis is the hazard quantile
function, defined as

fQw) _ 1
=~ G-’

K(u) = l(Qu)) = (1.4)

where h(x) = 1J_[ Ef()x) is the hazard rate of X. Another useful measure closely related to

hazard quantile function is the mean residual quantile function, which is given by

1
M) = m(Q@) = (1 - )™ f (A= pap)ip, (L5)

where m(t) = E(X — {|X > t) is the mean residual life function (MRLF) of X. Further the
relationship between the quantile density function and mean residual quantile function
is presented by

_ M(u) = (1 —u)M’(u)
- (1-u) '
For a detailed and recent study on quantile function and its properties in modeling and
analysis, we refer to Parzen (2004), Nair and Vinesh Kumar (2011), Nair et al. (2013),

q(u) (1.6)
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Sreelakshmi et al. (2018) and the references therein. There are some models that do
not have any closed form expressions for distribution and density function, but have
simple QFs or quantile density functions refer to, van Standen and Loots (2009) and
Hankin and Lee (2006).

The average amount of uncertainty associated with the nonnegative continuous
random variable X can be measured using the differential entropy function

H) == [ foytog fs, 1.7)

a continuous counterpart of the Shannon (1948) entropy in the discrete case.

Rao et al. (2004) pointed out some basic shortcomings of the Shannon differential
entropy measure. Rao et al. (2004) introduced an alternative measure of uncertainty
called the cumulative residual entropy (CRE) of a random variable X with survival
function F, given by

E(X) = — fo ) F(x)log F(x)dx .

Asadi and Zohrevand (2007) have considered the dynamic cumulative residual entropy
(DCRE) as the cumulative residual entropy of the residual lifetime X; = [X — ¢|X > {]

which is presented by
* F(x) F(x)
E(Xy) = —f —— log =——=dx. (1.8)
A ORES0)
Di Crescenzo and Longobardi (2009) introduced a dual measure based on the cumulative
distribution function F(x), called the cumulative entropy (CE) and its dynamic version
which is analogous to CRE, as follow

EX)=- vfooo F(x)log F(x)dx, (1.9)

E(X) = - f i((’t‘))l gl;((’t‘))dx (1.10)

There have been attempts by several authors for the parametric generalization of CRE.
Kumar and Taneja (2011) introduced a generalized cumulative residual entropy of
order (a, p) as

5(04‘8) - (ﬁ a) log (f pa+ﬁ—1(x)dx) BEa,p-1l<a<pBpf>1. (1.11)
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For a component/system which has survived for t units of time, the dynamic cumulative
residual entropy of order (¢, ) of random variable X (see, Kumar and Taneja, 2011 )is
given as

09 1 [ E00
<x, = B—a) log(jt‘ Fob i) dx). (1.12)

This measure is much more flexible due to the parameters a and f, and enables
several measurements of uncertainty within a given distribution and increases the
scope of application. Also, it forms a parametric family of entropy measures that give
completely different weights to extremely rare and regular events. Some properties
and applications of these theoretical information measures in reliability engineering,
computer vision, coding theory and finance have been also studied by several researcher,
refer to Rao (2005), Wang and Vemuri (2007), Navarro et al. (2010), Sheraz et al.
(2015), Kumar and Singh (2018), Khammar and Jahanshahi (2018), and Baratpour and
Khammar (2018).

The study of entropy functions using quantile functions is of recent interest. Sanka-
ran and Sunoj (2017) have introduced the quantile version of the dynamic cumulative
residual entropy (DCRE), which is defined by

log(1—u) [ o
£ = 060 = <5 [ (1= pigpidp - (L= [ log(t - p)1 - pieIp.
' ' (1.13)
When u — 0, (1.13) reduces to & = — fol (log(1 = p))(1 = p)q(p)dp, a quantile version of
CRE. For more details and applications of quantile-based generalized CRE measures
refer to Kang and Yan (2016), Sunoj etal. (2017) and Sunoj etal. (2018). When traditional
approachs are either diffcult or failed in obtaining desired results, then quantile-based
studies are carried out. Qunatile functions (QFs) have several properties that are
not shared by distribution functions. these functions can be properly employed to
formulate properties of entropy function and other information measures for nonnegat-
ive absolutely continuous random variables. We refer readers to Sunoj and Sankaran
(2012), Sunoj et al. (2013), Sankaran et al. (2016), Qiu (2018), Kumar and Rani (2018),
Kumar and Singh (2019) and many others.

Motivated by these, in the present study, we consider the survival and distribution
function based generalized dynamic entropy measures based on Varma entropy in
terms of quantile function. In the present manuscript, we introduce the quantile
version of GCRE of order (a, ) for residual and reversed residual (past) lifetimes and
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prove some of their characterization results for extreme order statistics.

The text is organized as follows. In Section 2, we introduce the generalized
cumulative residual quantile entropy (GCRQE) in residual and past lifetimes and
various properties of these measures are discussed. Section 3 proves some characterizat-
ion results based on the measures considered in Section 2. In Section 4, we extend the
quantile-based generalized cumulative residual entropy in the context of extreme order
statistics and study its properties. In Section 5, we derive the generalized weighted
quantile entropy of order (a,f) and study some characterization results. Finally in
Section 6, we give an example where generalized entropy has application in codding
theory.

2 Generalized Cumulative Residual Quantile Entropy

The quantile version of the generalized cumulative residual entropy (GCRE) of the nonnegat-
ive random variable X is defined as

. 1 1 i
I:I;@:(ﬁ_—a)log( fo (1-p)*f 1q<p>dp), @.1)

and it is called the generalized cumulative residual quantile entropy (GCRQE). When a — 1
and § =1, I;Ig?’ﬁ ) reduces to — fol(log(l - p)(1 = p)q(p)dp, a quantile version of CRE,
sugggested by Sankaran and Sunoj (2017). There are some models that do not have any
closed form expressions for cdf or pdf, but have simple quantile function or quantile
density functions (see Nair et al. (2011)). Accordingly, in the following example, we
obtain I;Ig?’ﬁ ) for which q(.) exists.

Examples 2.1. Suppose X is distributed with quantile density function g(u) = (1 -
u)™ (- log(1 - u))_M, 0 < u <1, where M and A are real constants. This quantile
density functions contains several distributions as special cases, such as Weibull when
A=1,M= % with shape parameter ¢ = kA, uniform when A = 0, M = 0, Pareto when
A >1,M=0and rescaled beta when A < 1, M = 0. Then the quantile-based generalized
cumulative residual entropy is obtained as

Hﬁ?’ﬁ) _ ﬁ—% {log(y(1 -M)) - (1 -M)log(1+ (a+B—-1)—-A)},

where y(.) represents the gamma function.
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Examples 2.2. A lambda family of distribution, which is of interest in reliability, is the
Davis distribution proposed by Hankin and Lee (2006) with quantile function

Q) =CuM1 —u)™;0<u<1,C A, Ay > 0.

Thisis a flexible family for right skewed nonnegative data that provides good approxim-
ations to the exponential, gamma, lognormal and Weibull distributions. The GCRQE
of the Davis distribution is given as:

HOP = ﬁ log {CA1B(A1, (@ +B=1) = A2+ 1) + CAoB(A + L, (@ + = 1) = A2)} .
2.2)

As A, — 0, (2.2) reduces to I;Ig?'ﬁ )= 1 log (CA1B(A1, (@ + B)), corresponding to the

- ()
power distribution. Also as A1 — 0, (2.2) reduces to I;Ig?’ﬁ ) = (51 ) log( @ +ﬁC_A12)_ /\2)’

corresponding to the Pareto I distribution.

Examples 2.3. If X be a random variable following the Govindarajulu’s distribution
(1977) with the quantile function Q(u) = a{(b + Dub — bub*1}, 0 < u < 1;a,b > 0, then

HOP) = e log {ab(b + 1B, (@ + p = 1) +2)}.

In the context of reliability and survival analysis, when the current age of a component
need to be taken into account. In such cases, measuring uncertainty using I;Ig?’ﬁ ) is not

appropriate and a modified version of I;I;?’ﬁ )(u) is essential for such a residual random
variable, X; = (X — X > t). An equivalent definition for the generalized dynamic
cumulative residual entropy (GDCRE) in terms of quantile function is given by

@By _ 1L 1 ' atpe
B0 = 5= 1og((1_u)a+ﬁ_1 f (1—p)**F 1q<p>dp)- (2.3)

This measure can be considered as the generalized dynamic cumulative residual quantile
entropy (GDCRQE) measure. When @« — 1, f = 1, the measure (2.3) reduces to (1.13).
Rewriting (2.3) and using (1.6), we come to

(a,p)

—Q u 1 1 a - 1 ! o — !
) = N (—(1 o f (1 - p)™F2M(p)dp e f (1 - p)y*F1M (p)dp).
u u

By applying integrating by parts on the last term and simplifying, we obtain

(e 1
(1= 1O M1 - 0y = 2 - - a) f L=p) 2 Mp)dp.  (24)



Quantile Approach of GCR Information Measure of Order (a, f3) 73

Differentiating (2.4) with respect to u# on both sides, and using (1.4) reduces (2.4) to

R ﬁu ) _ (8 - a)H )| -, (2.5)
where prime denotes the derivative with respect to u. Equation (2.5) provides a direct

relationship between quantile density function g(u) and I;Ig‘;’ﬁ )(u). Therefore I;I(a’ﬁ )(u) uniquely
determines the underlying distribution. Table 1 provides the quantile functions of some
important models and the corresponding proposed measures.

Table 1: Mean residual quantile function M(1) and GDCRQE I;Ig?’ﬁ )(u) for some lifetime
distributions

Distribution Quantile function Q(u) M(u) H(a B (u)
Uniform a+(b-au w (ﬁla) og( Z+?3 (11 u))
Exponential -A"log(1 — u) % (=0 a) log /\(mﬁ T )
Gompertz @ (1 - W) % (b m log( Mﬁ i )
Pareto II al(1- u)’% —-1] % (E ) log([miﬁ#)
Generalized Pareto % [(1 — )T — 1] b(1 — u)~a W log (%)
Finite Range b (1 -(1- u)%) b(laij)% (ﬁ o log (a(gfﬁ_—_“iil)
Log logestic 1 ((ﬂu))% % (ﬁla) 1 (—E”;Z((la_tﬁ;};j)
Govindarajulu’s a{(b + Dub — bub*1) ”fl(li;)ﬁ_u(b, 3) (ﬁla) log(W)
Tukey lambda %ﬂ 5(1'1(3,2)) + (1;,1),\ (ﬁ} (ﬁ(ﬁ)ﬁﬁ)l (agﬁ_jll)):;t)
Power au aféﬁ(—’l’;i) 7l (afl u)gj)l)

Here, B.(a, b) stands for the incomplete beta function defined as ﬁ_x (a,b) = fx ' y”‘l 1- y)b‘ld Y,
a,b>0,x>0.

In what follows, we see how the monotonicity of I;I(a’ﬁ )(u) is affected by an increasing transform-

ation. The following lemma helps us to prove the results on monotonicity of I;Igg’ﬁ ().

Lemma 2.1. Let f(u,x) : R2 — R, and g: R, — R, be any two functions. Iffu(>O f(u,x)dx is

increasing and g(u) is increasing (decreasing) in u, then fu - f(u, x)g(x)dx is increasing (decreasing) in
u, provided the integrals exist.

For more details, refer to Nanda et al. (2014).
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Theorem 2.1. Let X be a nonnegative and continuous random variable with quantile function Qx(.)
and quantile density function gx(.). Define Y = ¢(X), where ¢(.) is a nonnegative, increasing and
convex (concave) function.

(i) For0 < a+p < 2 HP(u)is increasing (decreasing) in u whenever HP)is increasing (decreasing)

7ty
inu.
( ii) Fora+p > 2, Ij(;’ﬁ)(u) is decreasing (increasing) in u whenever I;Ig?"g )(u) is increasing (decreasing)
inu.
Proof. (i) The probability density function of Y = ¢(X) is g(y) = qbf (((7:;1(8;), hence the density

quantile function is g(Qy(u)) = qyl(u) = J;)%Zl))) = 5w ¢'1(Qx(u))‘ Thus we have

@p oy 1 1 ' atfe
Hy "7 (u) = G- 10g( (1= w1 fu 1-py? 1qY(P)dP)

= 1 lo ( 1 f‘l(l_ )a+ﬁ—1 ()qb’(Q ( ))d) (26)
G- 8l amer J, AP ax®)¢ Qxphdp). .

From the given condition we have (ﬁ}T log (W fu1(1 — p)a+hl QX(P)dP) is increasing in 1,

which gives that log (W ful(l - p)t _1qY(p)dp) is increasing in u. We can rewriten (2.6) as

a 1 ! a+p— /
(8 - a)Hy"(u) = log (m f (1= p)" " ax(p)g (Qx(P))dP) . 27)
Since 0 < a+f < 2and ¢ isnonnegative, increasing and convex (concave), we have [¢’ (Q(p))]>*F
isincreasing (decreasing) and nonnegative. Hence, by Lemma 2.1, (2.7) is increasing (decreasing).
This completes the proof of (i). When a + 8 > 2, [¢"(Q(p))[>*F = W is decreasing in p,
since ¢ is increasing and convex. Hence we have

., 1 1 !
B0 = 7= log((l_u)mﬁ_l f (1=p)™ 1qy<p>dp),

is decreasing (increasing) in u. Therefore, the proof is completed. m]

Remark 1. For any absolutely continuous random variable X ,let Y =aX + b,a > 0,0 > 0 then

H P () = loga + HP (). (2.8)

1
(B-a)
In many realistic situations, the random variable is not necessarily related to future only, but
they can also refer to the past. Suppose at time £, one has undergone a medical test to check
for a certain disease. Let us assume that the test is positive. If we denote by X the age when
the patient was infected, then it is known that X < f. Now the question is, how much time
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has elapsed since the patient had been infected by this disease. In this situation, the random
variable ;X = [t — X|X < t], which is known as inactivity time, is suitable to describe the time
elapsed between the failure of a system and the time when it is found to be "down’.

The past lifetime random variable ;X is related with two relevant ageing functions, the

%, and mean inactivity time (MIT) defined by m(t) =

Et-X|X<t)= % fot F(x)dx. The quantile versions of reversed hazard rate function and mean
inactivity time (MIT) are given as

reversed hazard rate defined by up(x) =

R(u) = R(Q(w) = u™' f(QW)) = [ugw)]™, 2.9)
and y -
. 4 B _1
¥ = mQa) =™ [ 10 -l =, | paterap, @.10)
respectively. The relationship (1.6) for inactivity time becomes
q(u) = w (2.11)

refer to Nair and Sankaran (2009). Analogous to generalized cumulative residual entropy of
order («, f), Minimol (2017) proposed a cumulative entropy (CE) measure of order (¢, f) and its
dynamic version, which are given as

5(11 B _ (ﬁ a) log (f‘” F(a+ﬁ—1)(x)dx), (2.12)
and .
o < L e
£ - (B- a)l (fo Fla+p-1)(¢) ) t>0, (2.13)

respectively. Sankaran and Sunoj (2017) have considered the quantile version of cumulative
past entropy as

Eu) = £ Qo) = 28" f pap)dp — 1! f p(log Pa(p)dp. (2.14)
0 0

In analogy to (2.3), we propose a generalized cumulative past quantile entropy (GCPQE) that
computes the uncertainty related to past. It is defined as

Fy P ) = F P QM) = (ﬁfa) 1og(ua+l,g_1 fo - 1q<p>dp) (215)

Using (2.11), equation (2.15) can be written as

~r(@,p) — 1 1 a+p-2 1 ' a+p=1 1
Hy " (u) = G- log(uwrﬁ_lj(; p M(p)dp + —— = A p M (p)dp]. (2.16)
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After integration by parts on the last term and simplifying, we obtain
e _ U _
uttFLeB=ath ) — MuyuF = (B - @) f P2 M(p)dp. (2.17)
0

If we differentiating (2.17) with respect to u and simplify the resulting equation, we get

~r(ap) - (a +B-1
q(u) = e(ﬁ_a)Hx (u) (ﬁ — Q)H'g(’ﬁ)(u) + %) . (218)
Equation (2.18) provides a direct relationship between quantile density function g(u) and

Hg?’ﬁ )(u). Therefore IEI(a”S )(u) uniquely determines the underlying distribution.

There are some models that do not have any closed form expressions for cdf or pdf, but
have simple quantile function or quantile density functions (see Nair et al. (2013)). Accordingly

in the following example, we obtain I:Iggﬁ )(u) for which g(.) exists.

Examples 2.4. Let X be a random variable having the Tukey lambda distribution with the

quantile function Q(u) = ”A_(+”)A, 0 < u < 1; defined for all nonzero lambda values. Then, the

generalized cumulative past quantile entropy for Tukey lambda distribution is given as

~r(@B) N _ 1 1 ‘ a+p-1y,A-1 _ A1
H (u)—(ﬁ_a)bg[uw_lfop " +1-p) }dp],

which can be written as

L0 = gy oo

where B, (a, b) represents the incomplete beta function.

uA " ﬁu (0( + ,8/ /\)
(a+p-1+41) ya+p-1 )7

Examples 2.5. Let X be distributed with quantile density function g(u) = Ku®(1 — u)~+9),
0 <u <1, whereK, d, and A are real constants. This form contains several distribution which
include the exponential (6 = 0; A = 1), Pareto (6 = 0; A < 1), the rescalded beta (6 = 0; A > 1), the
log logestic distribution (6 = A — 1; A = 2) and Govindarajulu’s distribution (6 = - 1, A = —f)
with quantile function (6 + o{(B + 1)uf — puf*'}). Then GCPQE (2.15) becomes

@ 1 KBu(a+p+06,1-A-9)
I:Ig( ﬁ)(u) = (ﬁ _ (X) 1Og( ﬁ io&ﬁfl :

3 Characterizing of Lifetime Distribution Functions

By considering a relationship between the generalized dynamic cumulative residual quantile entropy

H(a’ﬁ )(u) and the hazard quantile function K(u), we characterize some lifetime distributions based
on the quanlile entropy measure (2.3). We give the following theorem.
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Theorem 3.1. Let X be a random varible with hazard quantile function K(u). The relationship

a, 1 1

where ¢ = ( is a parameter, holds for all u € (0,1) if and only if X follows generalized

a+l )
(@+p-D)a+1)-a
Pareto distribution with quantile function Q(u) = S [(1 —u)" T — 1]; b>0,a>-1.
1 -
(I-u)q(u) —

. From Table 1, the quantile-based generalized residual entropy of order (a, ) of

Proof. The hazard quantile function of generalized Pareto distribution is K(u) =
(@+1)(1—u) a1
b

GPD s

wp b(1 — )@
Hy ™ () = B-a) Og((a+1)(a+ﬁ—1)—ﬂ)l

which can be written as

(@,p) _ (El+1) _ 1 b _ _ﬁ
Hy (u)_(ﬁ—a)log((a+1)(a+ﬁ—1)—a) (ﬁ—az)log(a+1)(l uy .

This proves the if part of the theorem. To prove the only if part, consider (3.1) to be valid.
Substituting in (2.3) and simplifying, we get

1 1 — y)l@+p-1)
[ a-pes gy - T

Using (1.4), we have
1
f (1= p) P gp)dp = c(1 - u)*Pq(u).
u
After differentiation both sides with respect to # and some algebraic simplification, we have

q () (C(a +B) - 1) 1

qu) c (I-u

This gives
g(u) = AL - u): =P,

where A is the constant of integration. Substituting the value of ¢, this gives
() = AL =)™,

which characterizes the generalized Pareto distribution. Hence, the proof is completed. ]
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Corollary 3.1. The relationship

() —
P w) =

1
G- logc - G- log K(u),

where c is some constant, holds if and only if for (i) ¢ =
, X follows Pareto I distribution (iii) ¢ >

(a +ﬁ 17, X follows exponential distribution (ii)

(M/; Ty (a+ﬁ g X follow finite range distribution.

Next we extend the result to a more general case where c is a function of u.

Theorem 3.2. Let X be a nonnegative absolutely continuous random variable with hazard quantile
function K(u) and the GDCRQE I;Ig’ﬁ ) (1) be of the form

@h ) = 7 i > log c(u) — (ﬁi—a) log K(u1), u > 0, (3.2)
then
o
q(u) = exp (m] . (33)

Proof. Let (3.2) hold. Then

1 1 1 i 1 c(u)
F—a log{(l v f (1-p)** 1q(P)dp} =5 a log(@)-

Substituting the value of K(u) from (1.4), we have

1
[ a=pr g = cngoa - .
u
If we differentiate both sides with respect to u and do some algebraic simplification, we get,

g _@+p) 1w
g~ A—u)  (A-wew cw’

Integrating with respect to u in the above expression and simplifying results in the following

equation:
log (c(u)(1 - u)*Pq(u)) = kfﬁ (1= w)e(u) 1oc<u>

In particular, if c(u) = au + b and a, b > 0 then

-1

1 au+b \"?*
10 = AP + ) (b(l _ u)) : (3.4)
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Furthermore, we note that expression (3.4), for a = 0, gives the characterization result given by
Theorem (3.1).
The following theorem gives another characterization of the generalized Pareto distribution

using the relationship between Hg?’ﬁ (1) and mean residual quantile function M(u), the proof of
which follows the same line as Theorem (3.1), hence omitted.

Theorem 3.3. Let X be a random varible with mean residual quantile function M(u) for all u € (0,1).
The relationship

ep, 1 1
HP () = a logc + = log M(u), (3.5)

where ¢ is SOME constant, holds if and only if X follows generalized Pareto distribution.

In the following theorem, we characterize the power distribution, when GCPQE IEI(“"B )(u) is
expressed in terms of K(u).

Theorem 3.4. Let X be a nonnegative continuous random variable with reverse hazard quantile function
R(u) for all u € (0,1) and GCPQE H()?ﬁ )(u) is given by

Fh) 1 Z
H u) = logc — log K(u), 3.6
(u) G- o8 (ﬁ_a)g() (3.6)
if and only if X follows the power distribution function.
Proof. The reverse hazard quantile function of the power distribution is K(u) = @ Taking

c= b(a+ﬂ+1)+1 proves the if part of the theorem. To prove the only if part, consider (3.6) to be
valid. Using (2.12), it gives

Lp ey ¢
patp-1 "~ R@u)’

Substituting K(u) = , results in

uq(u

[ taone = ety
By differentiating both sides with respect to u and simplifying, it can be shown that

q(u) (1-cla+p))1
q(u)‘( c )ﬂ’

which leads to )
q(u) = Aue™P,
where A is a constant. This expression characterizes the power distribution function for ¢ =

b
batp-Drl" o



80 V. Kumar et al.

Next we characterize the lifetime models when GCPQE (2.15) is expressed in terms of quantile
version of mean inactivity time M(u). The proof follows on the same line as Theorem (3.4),
hence omitted.

Theorem 3.5. Let X be a nonnegative continuous random variable with mean residual quantile function
M(u) . The relationship

B ) =

logc + log M(u),

1 1
f-a) B -a)
where c is constant, hold for all u € (0,1), if and only if, X follow the power distribution function.

4 GDCROE for Order Statistics X;.,

Suppose Xi, X», ..., X, be a random sample from a population with probability density function
f and cumulative distribution function F(.) and let X1, < Xo.y < ...Xj be the order statistics
obtained by arranging the preceding random sample in increasing order of magnitude. Then
the pdf of the i order statistics X;., is given by

fin®) = gy ECN T E@ @),

where B(a,b) = E x*1(1 = x)"~1dx; a,b > 0, is the beta function. The corresponding quantile-
based density function of f;.,(x) is

uifl(l _ u)n—i
B(i,n—i+1)g(u)

fi:n(u) = fln(Q(”)) =

Sunoj et al. (2017) introduced a quantile-based entropy of order statistics and studied its
properties. Order statistics play an important role in system reliability. These statistics have
been used in a wide range of problems, including robust statistical estimation, detection of
outliers, characterization of the probability distribution and goodness-of-fit tests, analysis of
censored samples, reliability analysis, quality control and strength of materials. For more
details, we refer readers to Arnold et al. (1992), David and Nagaraja (2003), and references
therein. Similar results on generalized residual entropy for order statistics have been derived
by Abbasnejad and Arghami (2011), Zarezadeh and Asadi (2010), Thapliyal et al. (2015), Kayal
(2016), and Kumar (2018).

Thapliyal and Taneja (2012) proposed the two parameter generalized entropy for the i
order statistics X;.,, as

1
(p—a)

Hy () =

log {fow(ﬁ:n(x))‘”ﬂ‘ldx},ﬁ faf-1<a<pp=1. (4.1)



Quantile Approach of GCR Information Measure of Order (a, f3) 81

and studied some of its properties. Kumar and Nirdesh (2019) proposed quantile-based
generalized entropy for the i’ order statistics, which is given as

1 a+p-1 ) )
HEPQ) = gy lo f(—B(inim)) PN (L= p) s D g )P,

and studied its properties. Unlike (4.1), H 5 K )( f) will be more useful in cases we do not have a
tractable distribution function but have a closed quantlle function. In analogy with (1.11), the
generalized cumulative residual entropy for the i order statistic X;,, is defined as

(,p) _ sa+p—1
Hxi:,, F-a )logf F., (x)dx

1 B (i,n — i+ 1)\

= logf (M) dx, (4.2)

B-a) o \ Bln—i+1)
where F;,(x) = % is the survival function of the i order statistics. The generalized

cumulative residual quantile entropy of order («, ), (4.2) becomes
1/75 (= . a+p-1

@p) 1 Bp(i,n—i+1)
H, " = 1 - dp, 4.3
5 Xin (ﬁ _ a) Ogﬁ ( ﬁ(i/n _ l + 1) L](P) P ( )
where %‘(El:__:ll)) is the quantile form of survival function Fj.,(x). In system reliability, the first

order statistic represents the lifetime of a series system while the n'* order statistic measure the

lifetime of a parallel system. For a series system (i = 1), we have

H(a/ﬁ) _ 1 lo (fl(l _ )n(a+ﬁ—1) ( )d ) (4 4)
I, = gomlosl ), @ q(p)dp |, :

and, for or the parallel system (i = 1), we have

1
@p _ 1 ( f (@)
H," = lo 1-p" (p)dp]. (4.5)
Xin (’8 — a) g 0 P q p p
The residual lifetime of a system, when it is still operating at time ¢, is (X; = X - {|X > ¢)
&

which has the probability density function f(x,t) = £=,x >t > 0. The generahzed dynamic

E’
cumulative residual entropy (GDCRE) measure for X, is given by

o PP ()
H(a,ﬁ) — 1 1 f in dxl.
0= Og[t R
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For the i order statistics X;,, the quantile version of GDCRQE is
1/2 (4 . a+p-1 . . a+p-1
@B, — @) _ 1 Bpli,n—i+1) Bli,n—i+1)
H =H =— 1 A Ly d
I () = Hy " (Q(u)) ) og{fu (ﬁ(i,n—i+1) BGn—it1) q(p)dp

__1 { 1
CB-w 8 (Bui,n — i+ 1))a+p-1

1
f (Ep(i,n—i+1))“+’3‘1q(P)dP}, (4.6)

% is the quantile form of survival function F;,(x), see David and Nagaraja (2003).

An equivalent representation of (4.6) is of the form

where

(‘B—a)H(a'ﬂ) = . . 1 1 = . 1
exp’ X (B (i, — i+ 1)) = f (Bp(i,n — i + 1) 1q(p)dp.
Differentiating both sides of (4.6) with respect to u and doing some algebraic simplification, we

have ( 5-1) 11 i
_ a+B—-1Du" — )t ~ ~ WP\ (- a)H( )
q(u) - { Eu(i;n —i+ 1) (ﬁ a)HXizn } (47)

Equation (4.7) provides a direct relationship between quantile density function q(u) and I;I(a,__’ f ) (u),

which shows that H;f () uniquely determines the underlying distribution.

In system reliability, the minimum and maximum values are examples of extreme order
statistics and are defined by Xy., = min{Xy, X, ..., X;;} and X,., = max{Xj, Xo, ..., X;;}. The extreme
X1:n and Xy, are of special interest in many practical problems of distribution analysis. The
extremes aries in the statistical study of floods and droughts, as well as in problems of breaking
strength and fatigue failure. Substituting (i = 1) in (4.6), the GDCRQE of the first order statistic
X1 is given as

H P ) = {; f 1(5 (1 n))qu(p)dp}
B- a) (Bu(1,mx+s-1 J, PP

1 1 1
= _ \i(a+p-1)
B-a) log { (1 — u)n(@+p-1) f 1-p) q(p)dp}- (4.8)
The GDCRQE for the sample maxima X,.., can be obtained from (4.6) by taking (i = n), as

HYP
s Xnn( ) (‘3 )1 {(‘Bu(Tl 1))a+ﬁ 1

= L _ yma+p-1 }
B-a) log{(l_un)a+ﬁ—1 f A =p")*"q(p)p ;- (4.9)

For various specific univariate continuous distributions, the expression (4.8) is evaluated as in
Table 2.

f By, 1) 1q<p>dp}
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Table 2: Quantile function and Hg?lﬁ )(u) for various lifetime distributions
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Generalized Pareto

a-wa -1]

Distribution Quantile function Q(u) Hg?{i) (u)
Uniform a+b-au ,% log {%}
Exponential —Alog(1 —u) ﬁ—ar log { n)\(a+ﬁ T
Pareto I b(1 —u)~ ﬁ 0g {%}
Folded Cramer ﬁ ,g%a log {W}lﬂ}(lu)}

1 b(1—u)a+1
,571 & | a+1)( aiﬁ =

Finite Range b {1 -(1- M)%} B-a Fa log { at ai—ﬁu)lﬂﬂ}
Log logestic ,1-, (af”))g ﬁL 0og {Bl,;[: 1n (i;,ﬁul;;)_nl ]}
Generalized lambda A+ )\12 (“’:\3’31 %) ﬁL { te 1;6;3/2 i;(ﬁﬁnl)ﬂl T {,1((;;{‘14” 1 4}}
Skew lambda au’ = (1 - pralo {Mﬁ?f;)(ﬁi o g L'1))+A}
Govindarajulu’s a {(b +Dub - bu(b”)} ,% og {W}

Examples 4.1. A lambda family of distribution that is of interest in reliability is the Davis
Distribution, proposed by Hankin and Lee (2006) with quantile function Q(u) = Cu(1 — u)™,
0 <u<1,C A1, Ay 20. This s a flexible family for right skewed nonnegative data and provides
a good approximation to the exponential, gamma, lognormal and Weibull distributions. A
special feature of these families is that they are expressed in terms of quantile functions and the
distribution functions are not available in closed form to facilitate the conventional analysis.
The GDCRQE entropy of sample minima for Davis distribution is given by

BuA,n(a+B—-1)— A+ 1)
(1 _ u)n(a+[§—1)

BuMi+ Ln(a+p—1)—Ay)

H@P)
() = log|CA4 (1 = )y D

Hi0 - 5

(@.p) _ 1 CA
As Ay — 0, (4.10) reduces to H - (u) = =) log <—(1—u)A(n(afﬁ—1)—A2)

+CAy

(4.10)
), corresponding to the Pareto
I distribution.
Also, as A; — 0, (4.10) reduces to I;I(alf )(u) =
power distribution.

1 CA1EM(/\1,n(a+ﬁ—1)+1)
B-a) log(

oy @D ), corresponding to the

Next, we obtain the characterization result based on the first (minima) and the last (maxima) in
a random sample Xj, Xy, ..., X;; of size n from a positive and continuous random variable X.

Theorem 4.1. Let Xy., denote the first order statistic with survival function Fy.,(x) and hazard quantile
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function Kx,, (). Then

(ﬂﬁ)( )

logc - log Kx,., (1), (4.11)

1 1
B -a) (f-a)

where ¢ is some constant, holds for all u € (0, 1) ifand only if X follows the generalized Pareto distribution
(GPD).

Proof. The hazard quantile function for the sample minima X;., for GPD is given by

Frn(Q(u)) _ n _ n(a+1)(1 — u)w
(1 =FQ@)) (1 —u)q(u) b :

Based on Table 2, the if part of the theorem is proved. To prove the only if part, let (4.11) hold.
Then

KX']:n (M) =

1 _
1-— u)n(a+ﬁ 1)

1 — pyta+p-1) dp = c(
fu (1-p) q(p)dp T K@

By substituting the value of Kx, (1) and simplifying, we can get
1
n [ =y gy = cant - s
u

A similar calculation as described previously shows that

q'(u) _{n—c(n(a+ﬁ—1)+1)} 1
qu) c (1-u)

This gives
gi) = A(1 — 1)t asp--1

n(a+1)

P a+p-D—a’ W€ obtain

Substituting the value of ¢ =

() = A1 - ) ),
which characterizes the generalized Pareto distribution. This completes the proof. O

Corollary 4.1. Let Xy, denote the first order statistic with the survival function Fy.,(x) and the hazard
quantile function Kx,,, (u) for all u € (0,1). Then,

(0‘ /3)(1/1)

X1 g logc -

1 1
(ﬁ _ CY) (ﬁ _ CY) IOg KXl:n (u)

holds, if and only if for (i) ¢ = u+/3 1, X follows the exponential distribution (ii) c <

the Pareto I distribution (iii) ¢ > ——

u+/3 —5, X follows

+ﬁ 7, X follows the finite range distribution.
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In the following theorem, we give the characterization result of some well known distributions
in terms of GDCRQE for the sample minima Xj.,.

Theorem 4.2. Let Xy, denote the first order statistic with survival function Fy.,(x). Then, foru € (0,1),
the I;Ig?lf)(u) is given by
(a,B) _ -C
(B— )by ") = 37—, (4.12)
where C is some constant, if and only if X is distributed as
(i) the uniform distribution for C = 1.

(ii) the exponential distribution for C = 0.
(iii) the Pareto I distribution for C = =L.

Proof. The necessity part follows from Table 2. For sufficient part, let us assume that the
relationship (4.12) holds. From (4.8) and (4.12), we get

~ (1 _ u)n(a+ﬁ_1)q(u) N n(a + ‘B — 1) _ C
[ =pyessgapdp 1o Lo

After simplifying, we have

1
g1 — )" = n(a + B~ 1)+ C) f (1 = ) @D g(p)dp.

After differentiation both sides with respect to # and doing some algebraic simplification, it can
be shown that
—q)(1 = )" P (@ + = 1) + 1} + (1 - w)" PV () = — {n(a + g~ 1) + C}
(1 - w)" P Vg(u),
or equivalently

qgm 1-C
qu)  1-u

7

which leads to
qu) = (1 - u)='et,

where A is the constant of integration. Now, if C =1 and A = log(b —a); b > a, it is implies that
Q(u) = a + (b — a)u. Thus, we have the uniform distribution. If C = 0 and A = —logA;A > 0,
It can be concluded that Q(u) = —A~'log(1 — u). Thus, we have the exponential distribution
with parameter A. If, C = =L and A = log(g), such that a and b are positive constants we have

Qu) =b(1 - u)’%. This means, we have the Pareto I distribution. O



86 V. Kumar et al.

Theorem 4.3. Let X, denote the first order statistic with survival function Fy.,(x) and hazard quantile
function Kx,, (u). Then, for all u € (0,1), the H(a]’f )(u) is expressed as

a,p) n
na+p-1)+1-C e(ﬁ_“)HXm(”) =—,
{ ( ﬁ ) } KXl:n (u)

(4.13)
where C is some constant, if and only if X is distributed as

(i) the uniform distribution for C = 0.

(ii) the exponential distribution for C = 1.

(iii) the Pareto I distribution for C =1+ 1.

Proof. The necessity part follows from Table 2. For sufficiency part, let us assume that the

relationship (4.13) holds. Substituting Kx,,, (1) = (1_14”% and (4.8), we have

1 = py et Dgudp

{na+p-1)+1-C} (= 2y D

= (1= u)q(u).
Differentiating both sides with respect to 1 and after some algebraic simplification, we get
n@+p-1+1-CHA-w)“*FVgu) = {n(a +p - 1) + 1} 1 - )" P Vg(u)-
(1 _ u)n(a+ﬂfl)+lq/(u)'

By the above equation, we have
7 _ C
qu)  1-u’

This gives
‘7(”) = (1 - u)7C&/

where A is the constant of integration. Now, for C = 0, C = 1and C = 1+ and with appropriate
A’s, similar Theorem (4.2), we get the stated results. ]

The mean residual quantile function for the sample minima Xj., is given as

Jouw Frn(Qp)A(Q(u)

My, (1) = Mx,,(Q(w)) = F1..(Qu))

 Jou FQE)Y'd(QMw)
- (FQu)y
For the sample minima Xj.,, the It can be concluded that (1.6) becomes (1 — u)q(u) = nMx,,, (u) —

1
(- f (1 - u'q(p)dp.

(1 —u)M, . (). We state a characterization result using the relationship between Hg?lf )(u) and
Mx,, (), the proof of which follows the same line as given in Theorem (3.4), hence omitted.
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Theorem 4.4. Let Xy., denote the first order statistic with survival function Fy.,(x) and mean residual
quantile function Mx,,, (1), for all u € (0,1). Then the relationship

(0‘ Ig)( )

Hy' logc+ ——

1
(ﬁ ) G- log Mx,,, (1), (4.14)

where c is a constant, holds if and only if X has the generalized Pareto distribution with quantile function
b —a
Q) ==[1-uy# -1];b>0,a>-1.

Corollary 4.2. Let Xy, denote the first order statistic with survival function Fy.,(x) and mean quantile
function Mx,, (u). Then the relationship

HYP () = log ¢ + —— log Mx,, ().
’X1 (ﬁ @) ) (ﬁ ) g Mx.,
where ¢ is some constant, holds for all u € (0,1) if and only if for (i) c = (a+,s 1), X follows the
exponential distribution (i) ¢ < 5= +ﬁ 7y, X follows the Pareto I distribution (iii) ¢ > 5= +’3 73, X follows

the finite range distribution.

Let X,,., be the largest order statistic in a random sample of size n from an absolutely continuous
nonnegative random variable X. Then, the generalized cumulative past entropy for sample

maxima is as follow i)
o, 1 PR (x
(,,5)( )= log f (21+ﬁ—1)( )dx ’
(B—a) o FrP=D(p)

The quantile version of the above equation can be expressed as

- @ 1 T
IZI( nf)(”) = IZI( ni)(Q(u)) = =) log(un(a+ﬁ_1) j(; preth 1)q(p)alp). (4.15)

Let X have the power distribution with quantile function aut. In the following theorem, we
show that the power distribution can be characterize in terms of Hg‘;é )(u).

Theorem 4.5. Let X,,., denotes the last order statistics with the survival function F.,(x) and the reverse
hazard quantile function Kx,, (1), then the generalized cumulative past quantile entropy for sample

. —(a, .
maxima H(X p )(u) is expressed as
nn

a, 1
) = 5= loge— 2

if and only if X has the power distribution function.

- - log Ky, (u), (4.16)
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Proof. The reverse hazard quantile function for the sample maxima X, of power distribution
is Ry, (u) = 2800 _ 2/QW) — gives the if part of the

-1
_ -1 _ nbu® . _ b
FustOt) = FQua) = @)™ = . Taking ¢ = gy
theorem. To prove the only if part, consider (4.16) be valid. Using (4.15), it gives

fO” pn(a+ﬁ—1)q(p)dp B [s
un(a+ﬁ—1) B KX’I:I‘I (u) .

Substituting K, (1) = 7y, We have

nj; pn(a+ﬁ—1)q(p)dp — Cun((x+,8—1)+1q(u)‘
By differentiating both sides with respect to # and simplifying, we have

qw) (n-cin(@+p-1)+1}\1
q(u) _( c u

7

which leads to
qu) = Aug—{n(a+ﬁ—1)+1},

nb

arp-Di1- o

where A is a constant. This equation characterizes the power distribution for c =

Also we have this characterization in terms of Mx
Theorem (4.6), hence omitted.

(u). The proof follows on the same line as

nn

Theorem 4.6. Let X, denotes the last order statistics with the survival function F.,(x) and the
quantile version of mean inactivity time M., (u), then the generalized cumulative past quantile entropy

nn

for sample maxima Hg?ﬁ )(u) is expressed as

Sap, 1 1
M., )= 5= )

where c is a constant. If and only if X has the power distribution function.

logc + log Mx,,, (1), (4.17)

Remark 2. If ¢ =
distribution.

n(af/i+11)+1’ then equation (4.16) presents a characterization of the uniform

5 Generalized Weighted Quantile Entropy of Order («, )

Sometimes, in statistical modeling, standard distributions are not suitable for our data and we
need to study weighted distributions. This concept has been applied in many areas of statistics,
such as analysis of family size, human heredity, world life population study, renewal theory,
biomedical and statistical ecology. Associated to a random variable X with pdf f(x) and to a
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nonnegative real function w(x), we can define the weighted random variable X* with density
function f“(x) = Zggg&;? , 0 < E(w(X)) < co. When w(x) = x, X" is called the length (size) biased
random variable. Using f“(x), the corresponding density quantile function is given by

w(Q)) f(Q(w))

fEQMw) =

where u = fol w(Q(P) f(Qp))d(Q(p)) = fol w(Q(p))dp. The weighted entropy has been used to
balance the amount of information and the degree of homogeneity associated with a partition

of data in classes. The quantile-based generalized weighted entropy is of the form

HSP Q) =

1 1 ' a+p— —a—
) log( T fo [w(QENI*** (4(p))? ﬁdp)-

In case of the length (size) biased random variable, the above expression is known as length
biased weighted generalized quantile entropy and is given by

() 1 1 ! (a+p-1) 2-a—
H; ™(Qw) = T IOg( e fo Q) q(p)) ﬁdﬁ)- (6.1)

For some specific univariate continuous distributions, the expression (5.1) is evaluated as given
below in Table 3.

Consider a random variable Y with density function fy(x) = ?, where u = E(X) < co. Then, Y
is called the equilibrium random variable of the original random variable X, and its distribution
is known as equilibrium distribution of original random variable. The equilibrium distribution

arises as the limiting distribution of the forward recurrence time in a renewal process. We

have fy(Q(u)) = w = 1_7“ Thus quantile density function for equilibrium distribution is

gy(u) = m = % From (2.3), the generalized dynamic cumulative residual quantile entropy

(GDCRQE) for equilibrium distribution is

H(“lﬁ) _ 1 1 1 ! 1 a+p-1 d 5.2
1,7 (QW)) = G- Og((l_u)a+ﬁ_1 fu( - qv(p) p)- (5.2)

Theorem 5.1. Let X be a nonnegative random variable. Then the relation I;Igf’ﬁ ) (Qu)) = ﬁ log ( (a+—§—1))
holds if and only if X follow the equilibrium distribution.

Proof. The if part of the theorem is easy to prove. For the proof of the only if part, let us assume
that I;I(;’ﬁ Q) = q;_#a) log (ﬁ) From equation (5.2), we have

1 _yatp-1
_ )@t _ pd—w™
fu (=P Dav(pup = S
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Table 3: Length biased generalized weighted quantile entropy I;I(a’ﬁ )(Q(u)) for some
lifetime distributions

Distribution Quantile function Q(u) H(Larﬁ)(Q(”))
U f N (b _ ) Ll (ha+ﬁ7au+/€)2a+/€fl
niform a ayu B-a ‘08| Gro) T (b—a) T (aip)

) at+p-2,,
Exponential -A"1log(1 - u) ﬁ+a log {%}
1 1 P (b+1) P
Power aub Bfalog “THarp-1)+l
Pareto I b(1 - u)’% {ﬁ log %—j})ﬁ_l
a+p—1 _ —
Finite Range b {1 -(1- u)%} ﬁ%x log {(a+1) i[l(f:il(;::ﬁzl)(a 1)+1]
) 1 aﬁ‘+5‘2ba+ﬁ‘2ﬁ(a+‘6—l+l,a+ﬁ—1—l)
Log logestic i (f’u)h ﬁ}—a lo { (‘6(1+Il’17%))a+b/€—l :
1 a+p-2(1\2-a-p(E-1) 1_
Weibull {—% log(1 - u)}b {ﬁ lo {(ﬂb) ) : b (B g 1)}
(@+p=1)"P*E (14 o1
A _1)a+p(_b_\2-a-B y— 1y(2a+1y_1_
Generalized Pareto 5 {(1 —u)"w — 1} ﬁ%a log {( D) ﬁlﬁfaﬁ-f D), 1]}

1 atf-1(1y3@p-2), o 1
Rayleigh {_% log(1 — u)}z ﬂ%’( log{ Zw(ﬂ)2 yla+p—3 }

1
n 2 (a+f-1)*F 2 2a)1-a

Differentiating with respect to u on both sides and after some simplification, we get gy =
(1—wa which is the quantile density function for equilibrium distribution. Hence, the proof is

completed. ]

Remark 3. The mean residual quantile function satisfies the relation M(Y; Q(#)) = p if and only
if X follow equilibrium distribution.

5.1 Weighted Cumulative Residual Generalized Entropy

Misagh et al. (2011) proposed a weighted information which is based on the CRE, called
weighted cumulative residual entropy (WCRE). This measure is defined as

Eu(X) = - Lw xF(x) log F(x)dx . (5.3)

Several authors studied properties of (5.3) and its dynamic version, refer to Kayal and Moharana
(2017)and Miralietal. (2017). As pointed outby Misaghetal. (2011), in some practical situations
of reliability and neurobiology, a shift-dependent measure of uncertainty is desirable. Also,
an important feature of the human visual system is that it can recognize objects in a scale and
translation invariant manner. However, achieving this desirable behavior using biologically
realistic network is a challenge. The notion of weighted entropy addresses this requirement.
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In, analogy to (5.3), the generalized weighted cumulative residual entropy (GWCRE) and its
residual form are defined as

HYP(x) = G E . log( fo i xF“*ﬁ*(x)dx),ﬁ #ap-l<a<ppz1, (5:4)

and

(5.5)

@F (. py = b
a0 = 5 l°g[ (D

ft xFotp 1(x)dx]
respectively. The factor x in the integral on the right-hand side yields a "length-biased" shift
dependent information measure assigning greater importance to larger values of the random
variable X. For more details and applications of generalized weighted cumulative residual
entropy measures, we refer to Toomaj and Di Crescenzo (2020). From (1.1) and (5.5), we propose
the quantile version of GWCRE and its residual form for a nonnegative random variable X to
be defined as

1
HyP = 7 1 o ( fo Qu)(1 - u)“*ﬁlq(u)du), (5.6)
and
1
@wp 1 J, Q)@ = pyFqp)dp
Hy ) = 5= log T : (5.7)

respectively. The measure (5.7) may be considered as the generalized weighted dynamic cumulative
residual quantile entropy (GWDCRQE) measure. An alternative expression for the GWDCRQE
in terms of mean residual quantile function M(u) of random variable X is

ap_ L [ A=PROeMEMp [ - pr oM p)dp
L, () = ‘m ) (1 — u)o+p-1 - (1 — u)o+p-1

For some well-known univariate continuous families of distributions, the expression (5.7) is
evaluated as given in Table 4.

Examples 5.1. Let X follows lambda family of distribution as given in example (2.2), then
the generalized weighted dynamic cumulative residual quantile entropy (GWDCRQE), (5.6) is
given as

1
HP = (ﬁ_—a) log {C2A1B2A1, a + B = 200) + CPAopRA + 1, (@ + = 1) - 247)}.  (5.8)
As Ay — 0, (5.8) reduces to Hiffﬁ ) = ﬁ log(wﬁc_z%), corresponding to the Pareto II

distribution. Also,as A, — 0, (5.8) reduces to Hgfﬁ ) = (ﬁ}Ta) log (Cz/\l BRAL, a + ﬁ)), correspondi-
ng to the power distribution.
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Table 4: GWDCRQE for several well-known families of distributions
Distribution Quantile function Q(u) Hﬁffﬁ )(u)
: 1 (-a)(1-w) | (b=a)’(1-u) _ (b-a)P(1-u)*
Uniform a+(b—-au (ﬁfa)log z ;m LA "Mﬁ L erMﬁ” }
. - P-log1-u)(2.a+p-1)
Exponential -A"og(1 - u) (ﬁl—a) log {%
1 1 ”Zﬁ-u(gr“ﬂg)
Power aus 7o log {b(l—ubW}
1 B(-w) 7
Pareto I b(l —u)"a ﬁ+a log {%}
1 Bu(2,0+6-3)
Folded Cramer ﬁ W log {W}

Generalized Pareto

Finite Range

ta-w#-1]

b{1 — (1 - u)7}

Log logestic 1 (ﬁ)’l <ﬁ+a) log {ﬁ;z(f(lajz—iﬁ—j)}
Weibull (=1 log(1 - u) }7 7 108 {Gﬁ?lﬁaﬂﬂyfﬁgj +ﬁ_1)}
Rayleigh {—% log(1 - u)}% ﬁ log {m}
Gompertz loéc {1 B w} ﬁ log (a+ﬁ—ll)BlogC ﬂl;%‘;{?gﬁ,ﬁ_l)
Govindarajulu's | af(b+ D ~bu*l) |l log [ PHUHLGAT  CECTR Gt

=2 —a
1 PA-wart  B(-u)it
B-a) lOg a@a+a—2a)  a(aa+a—a)
1 P (1—u)# P(1-u)?
- 108 {a(a+;s—1)+1 ~ alatp-1)+2

In order to provide some characterization results for GWDCRQE of a non-negative random
variable X, let us define the quantile version of the weighted mean residual lifetime (WMRE),
as follows

['a = pQwap)dp
T-uw

M®(u) = m*(Q(u)) = (5.9)

here m“(t) = % is the WMRE of random variable X. In the following theorem, we

characterize rayleigh distribution using a relationship between GWDCRQE and the quantile-
based WMRE.

Theorem 5.2. Let X be an absolutely continuous random variable. Then the relation

HyP () =

M) )), (5.10)

=) log((a+ﬁ—1

holds if and only if X follows the rayleigh distribution.
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Proof. The quantile-based WMRE (5.9), for the rayleigh distribution is given as

w0 | vt o) -4

Besides, the generalized weighted cumulative residual quantile entropy (5.7), for the rayleigh
distribution is

Hy P (w) =

1 o 1
p—a Bl\2a@+p-1)
This prove the if part of the Theorem. To prove the only if part, let (5.10) holds. Then

1 1
(@+p-1) f (1= P QE)a)dp = (1 - )2 f (1 - PQE)(P)p.

Differentiating both sides with respect to u, we have

1
(1 = 0™ g()Q) = (1 - )= f (1 - PQPR)p.

Using (5.9) and (5.10), we get

M¥(u
Qg = X 5.11)

By differentiating both sides with respect to u, we have

dM®(u)  M“(u)
- S - Q).
Substituting (5.11), gives deiu = 0 or equivalently M¥(u) = k (constant), which characterizes
the rayleigh distribution. m]
Theorem 5.3. Let X be a nonnegative random variable for which the relationship

H W) =C, (5.12)

holds, where C is a constant. Then, X follows the rayleigh distribution.

Proof. The necessary part follows from Table 4. For the sufficiency part, let us assume (5.12)
holds. From (5.7), we have

@p) 1
- et [ Q- e Dyt

Taking derivative on both sides with respect to 1 and after some algebraic simplification, it can
be shown that
/(aﬁ)( ) - (@+p-1)

a-w )e(ﬁ_a)Hiﬁm“’) = ~4(W)Q().

((ﬁ Wl
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Using (1.4), this gives

ey @t p-1)) —H Py _ Q)
R e e 61

From (5.13), we get I;I;Ea’ﬁ )(u) = 0. If this value is substituted in the above expression, we get

()
(a+ B = el VEL K W) - Qu) =0,

which leads to % = W—;ﬁ—llw = 2a (constant). Thus, X follows the rayleigh distribution with

the survival function F(x) = exp (— ﬁ) . Hence, the proof is completed. O

6 Application in Coding Theory

In many situations, for describing the lifetime of devices, discrete time is appropriate. For
instance, actuaries and bio-statisticians are interested in the lifetimes of persons or organisms,
measured in months, weeks, or days. Also, in case of equipment operating in cycles, the random
variable of interest is the successful number of cycles before the failure. Let X denote a discrete
lifetime random variable taking values on N = {1,2,3,...,n} where 1 < n < oo is integer with
P(X =1i) = p; . Shannon (1948) conceived the statistical nature of the communication signal
associated with X and introduced the measure of information (or, uncertainty) as

HP)=-) pilogpi, 0<pi<l, Y pi=1, 6.1)
i=1 i=1

associated with this experiment. Corresponding to (6.1), the discrete version of the generalized
information measure of order (a, ) is defined as

1
p—a

Shannon measure of entropy finds beautiful applications in coding theory. One of the important
applications of the information measure for noiseless channel is that it gives bounds for suitable
encoding information under the condition of uniquely decipherable code. Let a finite set
of n input symbols X = (x1,x1, ..., x,) with probabilities P = (p1,p2, ..., p») and utilities U =
(u1,uy, ..., u,) be encoded using a code alphabet of size D(> 2) and let I3, I, ..., I, be the lengths of
the transmitted codewords. Here, ; is a nonnegative real number, independent of p;, accounting
for the utility of occurrence of x;. Guiasu and Picard (1971) considered the problem of encoding
the letter output by means of a single letter prefix code and introduced the quantity

Hi(P) =

log Y (k)" p-1<a<p p=1. 62)
i=0

i=n

pili
LUy =Y (63)
=1 Liz1 Uipi
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as the "useful’ mean codeword length. In the literature of coding theory, researchers have
considered various generalized codeword lengths, shown their correspondence with informati-
on measures and obtained different coding theorems under the condition of uniquely deciphera-
bility. In parallel to that, we define the generalized "useful’ mean codeword length of order
(a, B) as follows

a+ ﬁ -1 z 1L
Lh(p,U) = (—)lo pD"GF) |, p-1<a<p, p=1. (6.4)
‘B —a gD ;
In particular if 1 = I, = ... = [, = |, then L’i(P, U) = I. For p = 1, (6.4) reduces to the useful

mean codeword length of Taneja et al. (1985). Also when o — 1 and = 1, (6.4) reduces
to (6.3) defined by Guiasu and Picard (1971). We take the following example to illustrate the
application of generalized entropy measure of order («, f) in coding theory.

Examples 6.1. Consider the following information transmission scenario where Alice attempts
to communicate the outcome X of rolling a dice experiments to her friend Bob. Assume that
Alice is using an irregular five sided dice for the experiment. Suppose the outcomes (source
alphabets in a communication setup) follow the probability distribution as given in Table 5.
The problem here is to encode the source alphabets with minimum bits possible. Alice chooses

Table 5: Probability Distribution

X[1]23]4]5
pls| 2|11l

an encoding method and encodes the outcomes 1, 2, 3, 4, 5 respectively with 1, 3, 3, 3, 3 bit-
strings. From equations (6.2) and (6.4), we get the results provided in Table 6. Thus we observe
that for a fixed value of parameter § and various values of parameter «, the value of discrete
generalized entropy H:(P) gives the lower bound of the mean codeword length of the message
passes through the communication channel.

Table 6: Generalized entropy is lower bound of mean codeword length

ARG
.10 2.287 2.888
.15 2.270 2.823
.20 2.253 2.757
25 2.235 2.674
.30 2.217 2.595

e N W e
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7 Conclusion

The quantile-based entropy measures possess some unique properties compared with the
distribution function approach. The quantile-based generalized cumulative residual entropy
of order (a, B) has several advantages. The computation of proposed measure is quite simple in
cases where the distribution function are not tractable while the quantile functions have simpler
forms. The results obtained in this article are general in the sense that they are reduced to some
of the result for the quantile-based Shannon and Rernyi entropies, when parameters approaches
unity.
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