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Abstract. When modeling time series data using autoregressive-moving average
processes, it is a common practice to presume that the residuals are normally distributed.
However, sometimes we encounter non-normal residuals and asymmetry of data
marginal distribution. Despite widespread use of pure autoregressive processes for
modeling non-normal time series, the autoregressive-moving average models have less
been used. The main reason is the difficulty in estimating the autoregressive-moving
average model parameters. The purpose of this study is to address this intricacy by
approximating maximum likelihood estimators, which is particularly important from
model selection perspective. Accordingly, the coefficients and residual distribution
parameters of the first-order stationary autoregressive-moving average model with
residuals that follow exponential and Weibull families, were estimated. Then based
on the simulation study, the obtained theoretical results were investigated and it was
shown that the modified maximum likelihood estimators were suitable estimators
to estimate the first-order autoregressive-moving average model parameters in non-
normal mode. In a numerical example positive skewness of obtained residuals from
fitting the first-order autoregressive-moving average model was shown. Following
that, the parameters of candidate residual distributions estimated by modified maxim-
um likelihood estimators and one of the estimated models for modeling the data was
selected.
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1 Introduction

One of the most popular and widely used stochastic models for describing time series
is autoregressive-moving average model (ARMA). A common assumption made to
implement this model is the normality of the residuals distribution which generate the
process. Under this assumption, the marginal distribution of the observed values is
normal and the other issues such as model order selection are considered. Box and
Jenkins (1976) provided All the theory behind the ARMA models analysis in the normal
mode.

However, in the real world the normality assumption of the residual process is often
violated. This can cause asymmetry in the marginal distribution of the observations.
This is particularly true about hydrologic datasets such as daily river flow time series
(Duca et al. (2019); Sarlak and Sorman (2007); Weiss (1977); Yakowitz (1973)). The river
flow time series tend to exhibit saw-tooth and skewed behavior that is not consistent
with a normal distribution (Fernandez and Salas (1986); Li and McLeod (1988)).
Some other examples are geophysical, financial and economic datasets. Especially,
for stock price data the distribution of the residuals appears to be heavy tails and
leptokurtic (Fama (1965); Kendall and Hill (1953); Mandelbrot (1967); Mandelbrot
(1997); Mandelbrot and Taylor (1967); Spierdijk (2016)).

Based on this argument, it seems that some form of data transformation is often
required before classical ARMA modeling (Box and Cox (1964)). However, sometimes
simple monotonic transformations do not correct asymmetry (Weiss (1975)). Thus,
new approaches have been developed to model non-normal time series with ARMA-
type dependency structure. ARMA time series model with exponential distribution
was proposed a few years ago by Gaver and Lewis (1980), Li and McLeod (1988) and
several other statisticians. Lognormal and gamma distributions received a great deal
of attention in the ARMA modeling of hydrological datasets and realized volatility
datasets of stocks (Braga and Calmon (2017); Zhang and Li (2019)). In comparison,
the Laplace distribution is more applicable to the modeling of certain types of financial
and engineering datasets (Trindade et al. (2010)), Bayer et al. (2018) proposed a beta
seasonal ARMA model for modeling air relative humidity datasets.

Most researches on non-normal time series modeling and parameter estimation
have been conducted by pure autoregressive processes. Nevertheless, modeling based
on pure autoregressive (AR) or moving average (MA) processes can lead to a high order
model. Generally, in choosing a model, we should try to involve the smallest number
of parameters that will represent the time series in an appropriate manner (Cryer and
Chan (2008)). It is useful to consider autoregressive and moving average sentences in a
single pattern when building a non-normal template. However, the essential problem
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with the implementation of mixed models is estimation of the parameters.

By considering the desirable properties of maximum likelihood estimators (MLE)
in different domains, particularly model selection, they are suggested for estimation
procedures. In some cases, however, MLE cannot be determined because the likelihood
equations consist of complex functions with no explicit solution. Numerous studies
have been carried out as modified methods to estimate AR model parameters by
maximum likelihood (ML) method. Tiku et al. (1999) provided modified MLEs for AR
models based on linearization of the log-likelihood function in complex phrases using
first-order Taylor series expansion. Zamani Mehreyan and Sayyareh (2017) developed
this approach to approximate parameters under non-normal residuals of the first-order
AR model.

The likelihood function for the autoregressive-moving average processes, even in
the normal mode, is more complex than the pure processes. The objective of this
research is to address the likelihood function complexity and approximating MLEs to
estimate the first-order ARMA model coefficients and residual distribution parameters
while the residuals have a non-normal distribution.

2 Modified Maximum Likelihood Estimation

In estimating the parameters of the first-order ARMA models by ML method, we
encounter with complex equations which can then be transformed into simpler ones
using the modified estimation method. Consider the first-order ARMA model

zt = ϕzt−1 + εt − θεt−1, t = 2, 3, ...,n, (2.1)

in which ϕ and θ are autoregressive and moving average coefficients, respectively.
For stationarity and inversion of the process, it is assumed that |ϕ| < 1, |θ| < 1 and
ϕ , θ. The εt’s are independent and identically distributed random variables (i.i.d)
that pursue exponential or Weibull family. Letωbe the vector of considered distribution
parameters. Thus, the vector of population parameters to be estimated is, γ = (ω,ϕ, θ).

Generally, the most important step to study MLEs is to evaluate the likelihood
function. The conditional likelihood function for an AR process is conditioned on
the initial values of zt’s and for a MA process is conditioned on the initial values of
εt’s. Therefore, a common approximation to the likelihood function for an ARMA
process becomes conditional on both, zt’s and εt’s. By conditionalization on z1 and
ε1 for the first-order ARMA model, the join distribution of the (z2, z3, ..., zn) can be
calculated based on the joint distribution of (ε2, ε3, ..., εn) (Wei (2006)). On the basis of
what is commonly obtained for ARMA models in normal case, we can calculate the
conditional likelihood function.

Let us first assumed that the residuals follow a distribution of exponential family.
Canonical form of exponential family is

f η(εt) = exp{
k∑

j=1

η jT j(εt) − A(η)}h(εt) = exp{ηTT(εt) − A(η)}h(εt), t = 2, 3, ...,n.
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The vector η = (η1, η2, ..., ηk) is called the natural parameter vector, η j = c j(ω), j =
1, 2, ..., k, and T(εt) = (T1(εt),T2(εt), ...,Tk(εt)) represents the sufficient statistic. The
function A(η) is referred to as the cumulant function and h(εt) is a function of εt. The
joint probability density function for (ε2, ε3, ..., εn) is f η(ε2, ε3, ..., εn) =

∏n
t=2 f η(εt). By

rewriting model (2.1), we have εt = zt − ϕzt−1 + θεt−1. Also, using an iterative search
technique εt is:

εt =

t−2∑
j=0

θ j(zt− j − ϕzt− j−1) + θt−1ε1, t = 2, 3, ...,n. (2.2)

Although this equation is clearly nonlinear with respect to the parameters, there is a
transformation between (ε2, ε3, ..., εn) and (z2, z3, ..., zn), with Jacobian equal to 1, when
we have conditioned on Z1 = z1 and ε1 = E(εt). Thus, the joint probability density
function of (z2, z3, ..., zn) given Z1 = z1 and ε1 = E(εt) is:

f η(z2, z3, ..., zn|Z1 = z1, ε1 = E(εt)) =

n∏
t=2

exp{
k∑

j=1

η jT j(εt) − A(η)}h(εt)

= exp{
n∑

t=2

k∑
j=1

η jT j(εt) − (n − 1)A(η)}
n∏

t=2

h(εt).

The logarithm of the likelihood function is obtained as:

`(η, ϕ, θ) =

n∑
t=2

k∑
j=1

η jT j(εt) − (n − 1)A(η) +

n∑
t=2

log h(εt)

=

n∑
t=2

ηTT(εt) − (n − 1)A(η) +

n∑
t=2

log h(εt.

Then, MLEs are the answers to the following equations:

∂
∂ϕ
`(η, ϕ, θ) =

n∑
t=2

ηT ∂
∂ϕ

T(εt) +

n∑
t=2

∂
∂ϕ

log h(εt)

=

n∑
t=2

ηT ∂
∂ϕ

T(ε∗t + µε) +

n∑
t=2

∂
∂ϕ

log h(ε∗t + µε) = 0, (2.3)

∂
∂θ
`(η, ϕ, θ) =

n∑
t=2

ηT ∂
∂θ

T(εt) +

n∑
t=2

∂
∂θ

log h(εt)

=

n∑
t=2

ηT ∂
∂θ

T(ε∗t + µε) +

n∑
t=2

∂
∂θ

log h(ε∗t + µε) = 0, (2.4)

∂
∂η j

`(η, ϕ, θ) =

n∑
t=2

T j(εt) − (n − 1)
∂
∂η j

A(η) = 0, j = 1, 2, ..., k, (2.5)

where ε∗t = εt − µε and µε is mean of εt. Applying this concept is useful for writing
recursive relations as well as simplifying Taylor’s expansion relationships. In the case
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of non-normal residuals, for estimating the model coefficients, the listed log-likelihood
equations involve complex functions that there is no explicit solution for them.

Therefore, to make the equations easier, we apply some approximations. For
Equations (2.3) and (2.4) Equations (2.6) and (2.7) are defined, respectively, as:

M1(ε∗t) = ηT ∂
∂ϕ

T(ε∗t + µε) +
∂
∂ϕ

log h(ε∗t + µε), (2.6)

M2(ε∗t) = ηT ∂
∂θ

T(ε∗t + µε) +
∂
∂θ

log h(ε∗t + µε). (2.7)

By linearizing the functions M1(ε∗t), M2(ε∗t) based on the Taylor’s expansion, we have:

M1(ε∗t) 'M1(ε̄c) + M
′

1(ε̄c)(ε∗t − ε̄c), (2.8)

M2(ε∗t) 'M2(ε̄c) + M
′

2(ε̄c)(ε∗t − ε̄c), (2.9)

where ε̄c = ε̄t − µε and ε∗t is defined as:

ε∗t = (zt − µz) − ϕ(zt−1 − µz) + θ(εt−1 − µε),
ε∗t = z∗t − ϕz∗t−1 + θε∗t−1, t = 2, 3, ...,n, (2.10)

where µz is the expected value of Zt. Also, using an iterative search technique and
assigning zero to ε∗1, an equal definition of ε∗t is:

ε∗t =

t−2∑
j=0

θ j[z∗t− j − ϕz∗t− j−1], t = 2, 3, ...,n. (2.11)

After replacing (2.8) in (2.3) and (2.9) in (2.4), the modified MLEs can be derived from
Equations (2.12) and (2.13). However, these equations are based on non-recursive
definition of ε∗t that was given in Equation (2.10),

n∑
t=2

M1(ε∗t) =

n∑
t=2

M1(ε̄c) + M
′

1(ε̄c)[z∗t − ϕz∗t−1 + θε∗t−1 − ε̄c] = 0, (2.12)

n∑
t=2

M2(ε∗t) =

n∑
t=2

M2(ε̄c) + M
′

2(ε̄c)[z∗t − ϕz∗t−1 + θε∗t−1 − ε̄c] = 0. (2.13)

On the other hand, by replacing ε∗t recursive relation given in (2.11) in Equations (2.8)
and (2.9), we get two equivalent Equations (2.14) and (2.15),

n∑
t=2

M1(ε∗t) =

n∑
t=2

[M1(ε̄c) + M
′

1(ε̄c)(
t−2∑
j=0

θ j[z∗t− j − ϕz∗t− j−1] − ε̄c)] = 0, (2.14)

n∑
t=2

M2(ε∗t) =

n∑
t=2

[M2(ε̄c) + M
′

2(ε̄c)(
t−2∑
j=0

θ j[z∗t− j − ϕz∗t− j−1] − ε̄c)] = 0. (2.15)
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Consequently, the straight estimated values of Equations (2.12) and (2.13), that we call
them non-recursive estimators, are as follows:

ϕ̂ =

∑n
t=2 M1(ε̄c) + M′

1(ε̄c)[z∗t + θ̂ε∗t−1 − ε̄c]∑n
t=2 M′

1(ε̄c)z∗t−1

, (2.16)

θ̂ = −

∑n
t=2 M2(ε̄c) + M′

2(ε̄c)[z∗t − ϕ̂z∗t−1 − ε̄c]∑n
t=2 M′

2(ε̄c)ε∗t−1

. (2.17)

From Equation (2.5), the estimates of residuals distribution parameters are obtained
as:

∂
∂η j

A(η) =

∑n
t=2 T j(εt)
n − 1

, j = 1, 2, ..., k. (2.18)

In the same way, the modified MLEs are computed in the Weibull family. Suppose
that the residuals distribution belongs to Weibull family with the following presentation:

f λ,κ(εt) = λ exp{−λH(εt;κ)}h(εt;κ), κ, λ, εt > 0.

In this equation, H(εt;κ) is a non-negative monotonically increasing function and h(εt;κ)
is the derivative of H(εt;κ). Therefore, the log-likelihood of (z2, z3, ..., zn) given Z1 = z1
and ε1 = E(εt) is:

`(λ, κ, ϕ, θ) = (n − 1) logλ − λ
n∑

t=2

H(εt;κ) +

n∑
t=2

log h(εt;κ).

By deriving the log-likelihood function with respect to the unknown parameters and
equalizing it to zero, the subsequent Equations (2.19)-(2.22) are obtained:

∂
∂ϕ
`(λ, κ, ϕ, θ) =

n∑
t=2

N1(ε∗t) = 0, (2.19)

∂
∂θ
`(λ, κ, ϕ, θ) =

n∑
t=2

N2(ε∗t) = 0, (2.20)

∂
∂λ
`(λ, κ, ϕ, θ) =

n − 1
λ
−

n∑
t=2

H(εt;κ) = 0, (2.21)

∂
∂κ
`(λ, κ, ϕ, θ) = −λ

n∑
t=2

∂
∂κ

H(εt;κ) +

n∑
t=2

∂
∂κ

log h(εt;κ) = 0, (2.22)

where

N1(ε∗t) = −λ
∂
∂ϕ

H(ε∗t + µε;κ) +
∂
∂ϕ

log h(ε∗t + µε;κ),

and

N2(ε∗t) = −λ
∂
∂θ

H(ε∗t + µε;κ) +
∂
∂θ

log h(ε∗t + µε;κ).
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Since there are no explicit solutions for (2.19) and (2.20), we substitute the linearization
form of the functions N1(ε∗t) and N2(ε∗t) in the equal Equations as follows:

N1(ε∗t) ' N1(ε̄c) + N
′

1(ε̄c)(ε∗t − ε̄c),

N2(ε∗t) ' N2(ε̄c) + N
′

2(ε̄c)(ε∗t − ε̄c).

The MLEs of unknown parameters and model coefficients are obtained by solving the
estimating equations whose results are as below:

ϕ̂ =

∑n
t=2 N1(ε̄c) + N′

1(ε̄c)[z∗t + θ̂ε∗t−1 − ε̄c]∑n
t=2 N′

1(ε̄c)z∗t−1

, (2.23)

θ̂ = −

∑n
t=2 N2(ε̄c) + N′

2(ε̄c)[z∗t − ϕ̂z∗t−1 − ε̄c]∑n
t=2 N′

2(ε̄c)ε∗t−1

, (2.24)

λ̂ = (n − 1)(
n∑

t=2

H(εt;κ))−1, (2.25)

−λ
n∑

t=2

d
dκ

H(εt;κ) +

n∑
t=2

d
dκ

log h(εt;κ) = 0. (2.26)

Coefficients ϕ and θ can also be calculated by recursive relationships. Thus, some
residual distributions are considered for estimating the first-order ARMA model param-
eters by the gained theoretical results. They are gamma, log-normal and inverse
Gaussian from the exponential family and the Weibull and Rayleigh from the Weibull
family. Consider model (2.1), where the residuals are i.i.d random variables with
gamma distribution, G(α, β),

fω1 (εt) =
1

Γ(α)βα
(εt)α−1 exp{−

εt

β
}, εt, α, β > 0, t = 2, 3, ..,n.

Canonical form of the density function is:

f η1 (εt) = exp{η11εt + η12 log(εt) − A1(η)},

where η11 = −1/β, η12 = α − 1, h1(εt) = 1 and

A1(η) = log Γ(α) + α log β = log Γ(η12 + 1) + (η12 + 1) log(−
1
η11

).

The unknown parameters in the presented model are estimated using Equations (2.16)-
(2.18). The calculations are straightforward and the non-recursive estimators are:

ϕ̂n,1 =

(
(ε̄c+µε)2

β̂n(α̂n−1)
− (ε̄c + µε)

)∑n
t=2 z∗t−1∑n

t=2 z∗t−1
2 +

∑n
t=2 z∗t−1(z∗t + θ̂n,1ε∗t−1 − ε̄c)∑n

t=2 z∗t−1
2 , (2.27)

θ̂n,1 =

(
(ε̄c + µε) −

(ε̄c+µε)2

β̂n(α̂n−1)

)∑n
t=2 ε

∗

t−1∑n
t=2 ε

∗

t−1
2 −

∑n
t=2 ε

∗

t−1(z∗t − ϕ̂n,1z∗t−1 − ε̄c)∑n
t=2 ε

∗

t−1
2 , (2.28)
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β̂n =

∑n
t=2(zt − ϕ̂n,1zt−1 + θ̂n,1εt−1)

(n − 1)α̂n
,

Γd(α) =

∑n
t=2 log(zt − ϕ̂n,1zt−1 + θ̂n,1εt−1)

n − 1
− log(β̂n),

where Γd(α) is di-gamma function, (∂/∂α) log Γ(α), and µε = αβ. In practical situations,
the recursive form of the estimators are more useful. To this end, using Equations (2.14)
and (2.15), the estimators in an equivalent form come from the following relations:

ϕ̂n,1 =

(
(ε̄c+µε)2

β̂n(α̂n−1)
− (ε̄c + µε)

)∑n
t=2

∑t−2
j=0 θ̂

j
n,1z∗t− j−1∑n

t=2(
∑t−2

j=0 θ̂
j
n,1z∗t− j−1)2

+

∑n
t=2

[
(
∑t−2

j=0 θ̂
j
n,1z∗t− j−1)(

∑t−2
j=0 θ̂

j
n,1z∗t− j − ε̄c)

]
∑n

t=2(
∑t−2

j=0 θ̂
j
n,1z∗t− j−1)2

,

n∑
t=2

[(
−(ε̄c + µε)2

β̂n
+ (ε̄c + µε)(α̂n − 1)

) t−2∑
j=0

jθ j−1(z∗t− j − ϕ̂n,1z∗t− j−1)−

(α̂n − 1)
( t−2∑

j=0

jθ j−1(z∗t− j − ϕ̂n,1z∗t− j−1)
)( t−2∑

j=0

θ j(z∗t− j − ϕ̂n,1z∗t− j−1) − ε̄c

)]
= 0,

β̂n =

∑n
t=2

[∑t−2
j=0 θ̂

j
n,1(zt− j − ϕ̂n,1zt− j−1) + θ̂t−1

n,1 µε

]
(n − 1)α̂n

,

Γd(α) =

∑n
t=2 log

[∑t−2
j=0 θ̂

j
n,1(zt− j − ϕ̂n,1zt− j−1) + θ̂t−1

n,1 µε

]
n − 1

− log β̂n. (2.29)

The assumed ARMA process, with respect to the stationarity conditions and consi-
dering

∑
∞

h=0 |γ(h)| < ∞ where γ(h) = cov(zt, zt−h), is ergodic for the mean (Wei (2006)).
A process is said to be ergodic for the mean if the time series average converges to
the population mean. Then accordingly,

∑
t(zt − µz) = op(1) and z̄ is an unbiased and

consistent estimator for µz. Moreover, by considering the weak law of large numbers,

we conclude that ε̄c
p
−→ 0. By looking over the aforementioned points, Equations (2.27)

and (2.28) can be reduced to simpler formulas. Thus, the equations will be converted
to the subsequent relations:

ϕ̂n,1 �

∑n
t=2 z∗t−1(z∗t + θ̂n,1ε∗t−1)∑n

t=2 z∗t−1
2 , (2.30)

θ̂n,1 �

∑n
t=2 ε

∗

t−1(z∗t − ϕ̂n,1z∗t−1)∑n
t=2 ε

∗

t−1
2 . (2.31)

Reduced forms provide acceptable approximations in parameter estimation. From
Equations (2.30) and (2.31) and by replacing definition of ε∗t−1 of Equation (2.11), ϕ
and θ are simply estimable. These estimates become more accurate as the sample
size increases. By applying the recursive equations (2.2) and (2.11), and considering
the fact that εt = ε∗t + µε, µε is estimated. As a result, by substituting ε1 by µε and
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using the estimated values of ϕ and θ, the residual vector of εt can be approximated.
Emphasizing that the method is not exact, relations (2.30) and (2.31) can be calculated
for the other distributions mentioned in this paper. Let us obtain the coefficients and
parameter estimators for other non-negative distributions. If εt’s are distributed as
log-normal distribution, LN(M,S), we have:

fω2 (εt) =
1

εt
√

2πS2
exp{

−1
2S2 (log εt −M)2

}, εt,S > 0, M ∈ R, t = 2, 3, ...,n,

=
1

εt
√

2π
exp{η21

(
log εt

)2
+ η22 log εt − A2(η)},

where η21 = −1/2S2, η22 = M/S2, h2(εt) = 1/(εt
√

2π) and

A2(η) =
M2

2S2 +
1
2

log S2 = −
η2

22

4η21
+

1
2

log(−
1

2η21
).

Afterwards, the modified MLEs are obtained by (2.16)-(2.18) as follows:

ϕ̂n,2 =

(
(ε̄c + µε)(Ŝ2

n − M̂n + log(ε̄c + µε)
)∑n

t=2 z∗t−1(
− Ŝ2

n + M̂n − log(ε̄c + µε) + 1
)∑n

t=2 z∗t−1
2

+

∑n
t=2 z∗t−1(z∗t + θ̂n,2ε∗t−1 − ε̄c)∑n

t=2 z∗t−1
2 ,

θ̂n,2 = −
[ ((ε̄c + µε)(−Ŝ2

n + M̂n − log(ε̄c + µε)
)∑n

t=2 ε
∗

t−1

(Ŝ2
n − M̂n + log(ε̄c + µε) − 1)

∑n
t=2 ε

∗

t−1
2

+

∑n
t=2 ε

∗

t−1(z∗t − ϕ̂n,2z∗t−1 − ε̄c)∑n
t=2 ε

∗

t−1
2

]
,

Ŝ2
n =

∑n
t=2

(
log(zt − ϕ̂n,2zt−1 + θ̂n,2εt−1) − M̂n

)2

n − 1
,

M̂n =

∑n
t=2 log(zt − ϕ̂n,2zt−1 + θ̂n,2εt−1)

n − 1
, (2.32)

where µε = exp{M + 1
2 S2
}. Furthermore based on recursive Equations (2.14) and (2.15),

we have the followings relations:

ϕ̂n,2 =

(
(ε̄c + µε)(Ŝ2

n − M̂n + log(ε̄c + µε)
)∑n

t=2
∑t−2

j=0 θ̂
j
n,2z∗t− j−1(

− Ŝ2
n + M̂n − log(ε̄c + µε) + 1

)∑n
t=2(

∑t−2
j=0 θ̂

j
n,2z∗t− j−1)2

+

∑n
t=2

[
(
∑t−2

j=0 θ̂
j
n,2z∗t− j−1)(

∑t−2
j=0 θ̂

j
n,2z∗t− j − ε̄c)

]
∑n

t=2(
∑t−2

j=0 θ̂
j
n,2z∗t− j−1)2

,

n∑
t=2

[(
(ε̄c + µε)(−1 −

1

Ŝ2
n

log(ε̄c + µε) +
M̂n

Ŝ2
n

) t−2∑
j=0

jθ j−1(z∗t− j − ϕ̂n,2z∗t− j−1)−

(−1 −
1

Ŝ2
n

log(ε̄c + µε) +
M̂n

Ŝ2
n

+
1

Ŝ2
n

)
( t−2∑

j=0

jθ j−1(z∗t− j − ϕ̂n,2z∗t− j−1)
)
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×

( t−2∑
j=0

θ j(z∗t− j − ϕ̂n,2z∗t− j−1) − ε̄c

)]
= 0,

Ŝ2
n =

∑n
t=2

[
log(

∑t−2
j=0 θ̂

j
n,2(zt− j − ϕ̂n,2zt− j−1) + θ̂t−1

n,2 µε) − M̂n

]2

n − 1
,

M̂n =

∑n
t=2 log

(∑t−2
j=0 θ̂

j
n,2(zt− j − ϕ̂n,2zt− j−1) + θ̂t−1

n,2 µε
)

n − 1
. (2.33)

The inverse Gaussian distribution is another distribution that belongs to the two-
parameter exponential family with natural parameters η31 = −ϑ/(2τ2) and η32 = −ϑ/2,

fω3 (εt) =

√
ϑ

2πε3
t

exp{−
ϑ(εt − τ)2

2τ2εt
} εt, ϑ, τ > 0, t = 2, 3, ...,n,

=
1√
2πε3

t

exp{η31εt + η32
1
εt
− A3(η)},

where h(εt) = 1√
2πε3

t

and A3(η) = 2
√
η31η32 −

1
2 log(−2η32). In accordance with previous

methods, the modified MLEs by (2.16)-(2.18) are:

ϕ̂n,3 =

(
(ε̄c + µε)

(
3τ̂2

n(ε̄c + µε) + ϑ̂n(ε̄c + µε)2
− ϑ̂nτ̂2

n

))∑n
t=2 z∗t−1((

− 3(ε̄c + µε) + 2ϑ̂n

)
τ̂2

n

)∑n
t=2 z∗t−1

2

+

∑n
t=2 z∗t−1(z∗t + θ̂n,3ε∗t−1 − ε̄c)∑n

t=2 z∗t−1
2 ,

θ̂n,3 = −
[ ((ε̄c + µε)

(
− 3τ̂2

n(ε̄c + µε) − ϑ̂n(ε̄c + µε)2 + ϑ̂nτ̂2
n

))∑n
t=2 ε

∗

t−1((
3(ε̄c + µε) − 2ϑ̂n

)
τ̂2

n

)∑n
t=2 ε

∗

t−1
2

+

∑n
t=2 ε

∗

t−1(z∗t − ϕ̂n,3z∗t−1 − ε̄c)∑n
t=2 ε

∗

t−1
2

]
,

τ̂n =

∑n
t=2(zt − ϕ̂n,3zt−1 + θ̂n,3εt−1)

n − 1
,

ϑ̂n =
n − 1∑n

t=2(
1

zt − ϕ̂n,3zt−1 + θ̂n,3εt−1
−

1
τ̂n

)
. (2.34)

Additionally, in recursive form using (2.14) and (2.15) we obtain:

ϕ̂n,3 =

(
(ε̄c + µε)(3τ̂2

n(ε̄c + µε) + ϑ̂n(ε̄c + µε)2
− ϑ̂nτ̂2

n)
)∑n

t=2
∑t−2

j=0 θ̂
j
n,3z∗t− j−1((

− 3(ε̄c + µε) + 2ϑ̂n

)
τ̂2

n

)∑n
t=2(

∑t−2
j=0 θ̂

j
n,3z∗t− j−1)2

+
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∑n
t=2

[
(
∑t−2

j=0 θ̂
j
n,3z∗t− j−1)(

∑t−2
j=0 θ̂

j
n,3z∗t− j − ε̄c)

]
∑n

t=2(
∑t−2

j=0 θ̂
j
n,3z∗t− j−1)2

,

n∑
t=2

[( (ε̄c + µε)(−3τ̂2
n(ε̄c + µε) − ϑ̂n(ε̄c + µε)2 + ϑ̂nτ̂2

n)

τ̂2
n

) t−2∑
j=0

jθ j−1(z∗t− j − ϕ̂n,3z∗t− j−1)−

(
− 3(ε̄c + µε) + 2ϑ̂n

)( t−2∑
j=0

jθ j−1(z∗t− j − ϕ̂n,3z∗t− j−1)
)( t−2∑

j=0

θ j(z∗t− j − ϕ̂n,3z∗t− j−1) − ε̄c

)]
= 0,

τ̂n =

∑n
t=2

(∑t−2
j=0 θ̂

j
n,3(zt− j − ϕ̂n,3zt− j−1) + θ̂t−1

n,3 µε
)

n − 1
,

ϑ̂n =
n − 1∑n

t=2

( 1∑t−2
j=0 θ̂

j
n,3(zt− j − ϕ̂n,3zt− j−1) + θ̂t−1

n,3 µε
−

1
τ̂n

) , (2.35)

where µε = τ.

Likewise, we can estimate the parameters of the first-order ARMA model in the
case of Weibul family. Consider the first-order ARMA model with Weibull distribution
for residuals, W(κ, ξ),

fω4 (εt) =
1
ξκ

(κεκ−1
t ) exp{−(

εt

ξ
)κ}, εt, κ, ξ > 0, t = 2, 3, ...,n,

where H(εt;κ) = εκt and λ41 = 1/ξκ. The modified MLEs are acquired using Equations
(2.23)-(2.26). The resulting relationships are shown as below:

ϕ̂n,4 =

(
(ε̄c + µε)

(
κ̂n(ε̄c + µε)κ̂n − (κ̂n − 1)ξ̂κ̂n

n

))∑n
t=2 z∗t−1(

(κ̂n − 1)ξ̂κ̂n
n + κ̂n(κ̂n − 1)(ε̄c + µε)κ̂n

)∑n
t=2 z∗t−1

2
+

∑n
t=2 z∗t−1(z∗t + θ̂n,4ε∗t−1 − ε̄c)∑n

t=2 z∗t−1
2 ,

θ̂n,4 = −
[ ((ε̄c + µε)

(
− κ̂n(ε̄c + µε)κ̂n + (κ̂n − 1)ξ̂κ̂n

n

))∑n
t=2 ε

∗

t−1(
− (κ̂n − 1)ξ̂κ̂n

n − κ̂n(κ̂n − 1)(ε̄c + µε)κ̂n

)∑n
t=2 ε

∗

t−1
2

+

∑n
t=2 ε

∗

t−1(z∗t − ϕ̂n,4z∗t−1 − ε̄c)∑n
t=2 ε

∗

t−1
2

]
,

ξ̂n =
[∑n

t=2(zt − ϕ̂n,4zt−1 + θ̂n,4εt−1)κ̂n

n − 1

] 1
κ̂n

,∑n
t=2(zt − ϕ̂n,4zt−1 + θ̂n,4εt−1)κ log(zt − ϕ̂n,4zt−1 + θ̂n,4εt−1)∑n

t=2(zt − ϕ̂n,4zt−1 + θ̂n,4εt−1)κ
−

1
κ

−

∑n
t=2 log(zt − ϕ̂n,4zt−1 + θ̂n,4εt−1)

n − 1
= 0, (2.36)

where µε = ξΓ(1 + 1/κ). Moreover, according to relations (2.2) and (2.11), recursive
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equations can be calculated as depicted in equation (2.37):

ϕ̂n,4 =

(
(ε̄c + µε)

(
κ̂n(ε̄c + µε)κ̂n − (κ̂n − 1)ξ̂κ̂n

n

))∑n
t=2

∑t−2
j=0 θ̂

j
n,4z∗t− j−1(

(κ̂n − 1)ξ̂κ̂n
n + κ̂n(κ̂n − 1)(ε̄c + µε)κ̂n

)∑n
t=2(

∑t−2
j=0 θ̂

j
n,4z∗t− j−1)2

+

∑n
t=2

[
(
∑t−2

j=0 θ̂
j
n,4z∗t− j−1)(

∑t−2
j=0 θ̂

j
n,4z∗t− j − ε̄c)

]
∑n

t=2(
∑t−2

j=0 θ̂
j
n,4z∗t− j−1)2

,

n∑
t=2

[(
− κ̂n(ε̄c + µε)κ̂n+1 + (κ̂n − 1)ξ̂κ̂n

n (ε̄c + µε)
) t−2∑

j=0

jθ j−1(z∗t− j − ϕ̂n,4z∗t− j−1)−

(
(κ̂n − 1)ξ̂κ̂n

n + κ̂n(κ̂n − 1)(ε̄c + µε)κ̂n
)( t−2∑

j=0

jθ j−1(z∗t− j − ϕ̂n,4z∗t− j−1)
)
×

( t−2∑
j=0

θ j(z∗t− j − ϕ̂n,4z∗t− j−1) − ε̄c

)]
= 0,

ξ̂n =
[∑n

t=2

(∑t−2
j=0 θ̂

j
n,4(zt− j − ϕ̂n,4zt− j−1) + θ̂t−1

n,4 µε
)κ̂n

n − 1

] 1
κ̂n

,∑n
t=2

(∑t−2
j=0 θ̂

j
n,4(zt− j − ϕ̂n,4zt− j−1) + θ̂t−1

n,4 µε
)κ

log
(∑t−2

j=0 θ̂
j
n,4(zt− j − ϕ̂n,4zt− j−1) + θ̂t−1

n,4 µε
)

∑n
t=2

(∑t−2
j=0 θ̂

j
n,4(zt− j − ϕ̂n,4zt− j−1) + θ̂t−1

n,4 µε
)κ −

1
κ

−

∑n
t=2 log

(∑t−2
j=0 θ̂

j
n,4(zt− j − ϕ̂n,4zt− j−1) + θ̂t−1

n,4 µε
)

n − 1
= 0. (2.37)

A popular distribution in the Weibull family is the Reyligh distribution and occurs
when κ = 2, H(εt; 2) = ε2

t /2 and λ51 = 1/σ2. The density of this distribution is:

fω5 (εt) =
εt

σ2 exp
{
−
ε2

t

2σ2

}
, εt, σ > 0, t = 2, 3, ...,n,

and µε = σ
√
π/2. Then, the modified MLEs by Equations (2.23)-(2.26) are:

ϕ̂n,5 =

(
(ε̄c + µε)

(
(ε̄c + µε)2

− σ̂2
n

))∑n
t=2 z∗t−1(

σ̂2
n + (ε̄c + µε)2

)∑n
t=2 z∗t−1

2
+

∑n
t=2 z∗t−1(z∗t + θ̂n,5ε∗t−1 − ε̄c)∑n

t=2 z∗t−1
2 ,

θ̂n,5 = −
[ ((ε̄c + µε)

(
− (ε̄c + µε)2 + σ̂2

n

))∑n
t=2 ε

∗

t−1(
− σ̂2

n − (ε̄c + µε)2
)∑n

t=2 ε
∗

t−1
2

+

∑n
t=2 ε

∗

t−1(z∗t − ϕ̂n,5z∗t−1 − ε̄c)∑n
t=2 ε

∗

t−1
2

]
,

σ̂n =
[∑n

t=2(zt − ϕ̂n,5zt−1 + θ̂n,5εt−1)2

2(n − 1)

] 1
2

. (2.38)
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Using Equations (2.2) and (2.11), we have:

ϕ̂n,5 =

(
(ε̄c + µε)

(
(ε̄c + µε)2

− σ̂2
n

))∑n
t=2

∑t−2
j=0 θ̂

j
n,5z∗t− j−1(

σ̂2
n + (ε̄c + µε)2

)∑n
t=2(

∑t−2
j=0 θ̂

j
n,5z∗t− j−1)2

+

∑n
t=2

[
(
∑t−2

j=0 θ̂
j
n,5z∗t− j−1)(

∑t−2
j=0 θ̂

j
n,5z∗t− j − ε̄c)

]
∑n

t=2(
∑t−2

j=0 θ̂
j
n,5z∗t− j−1)2

,

n∑
t=2

[(
− (ε̄c + µε)3 + σ̂2

n(ε̄c + µε)
) t−2∑

j=0

jθ j−1(z∗t− j − ϕ̂n,4z∗t− j−1)−

(
σ̂2

n + (ε̄c + µε)2
)( t−2∑

j=0

jθ j−1(z∗t− j − ϕ̂n,5z∗t− j−1)
)( t−2∑

j=0

θ j(z∗t− j − ϕ̂n,5z∗t− j−1) − ε̄c

)]
= 0,

σ̂n =
[∑n

t=2(
∑t−2

j=0 θ̂
j
n,5(zt− j − ϕ̂n,5zt− j−1) + θ̂t−1

n,4 µε)
2

2(n − 1)

] 1
2

. (2.39)

Since the introduced estimators are the modified versions of the MLEs for estimating
the first-order ARMA model parameters, we expect them to reflect the desirable
properties of the MLEs. One of the most important properties to be assessed for
the modified estimators is their asymptotic normality. Asymptotic theory gives us a
more complete picture of the estimator’s behavior as the sample size increases. The
asymptotic distribution of the modified MLEs vector is provided in Theorem 2.1.

Theorem 2.1 (Asymptotic distribution). Suppose that {Zt}
n
t=1 is a stationary time series

modeled by Equation (2.1), and the εt’s are i.i.d random variables generated by f(.). Then the
asymptotic distribution of the estimator γn is as follows:

√
n(γ̂n − γ0) d

→ N(0,nC).

where C = I−1
n (γ0)Jn(γ0)I−1

n (γ0), In(γ) = −E
[∂2`

f
n(γ)

∂γ∂γT

]
,Jn(γ) = E

[(∂` f
n(γ)
∂γ

)(∂` f
n(γ)
∂γT

)]
and γ0

is the true value of parameter.

Proof. Assuming the regularity conditions are established, we write the Taylor expansion
of (∂/∂γ)` f

n(γ̂n) = (∂/∂γ)(
∑n

t=2 log f γ̂n(εt)) around γ0 as follows:

∂
∂γ
`

f
n(γ̂n) =

∂
∂γ
`

f
n(γ)|γ0 +

∂2

∂γ∂γT `
f
n(γ)(γ̂n − γ)|γ0 + op(1).

The notation op(1) demonstrates a quantity which is convergent to zero in probability
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when n tends to infinity. Since
∂
∂γ
`

f
n(γ̂n) = 0 , the relationship can be rewritten as:

√
n(γ̂n − γ0) = −

n
1
2
∂
∂γ
`

f
n(γ)|γ0

∂2

∂γ∂γT `
f
n(γ)|γ0

+ op(1).

Using the weak law of large numbers, it can be concluded that

−
∂2

∂γ∂γT `
f
n(γ)|γ0

p
→ In(γ0).

On the basis of the regularity conditions, the derivative and integration operations are

interchangeable, so we have E
[
∂
∂γ
`

f
n(γ)|γ0

]
= 0. Now from the multivariate central limit

theorem, we have
∂
∂γ
`

f
n(γ)|γ0

d
→ N(0, Jn(γ0)), and, consequently,

√
n(γ̂n − γ0) d

→ N(0,nI−1
n (γ0)Jn(γ0)I−1

n (γ0)).

In other words,
γ̂n ∼ N(γ0, I−1

n (γ0)Jn(γ0)I−1
n (γ0)).

�

3 Simulation

In this section, simulation studies have been used to investigate and analyze the results
of section 2. We have shown that the modified MLEs obtained in the previous section
are appropriate estimators for the first-order ARMA model parameters. The studies
have been conducted in two parts. In the first part, we have focused on examining the
estimators’ capability to estimate different values of model coefficients and parameters
based on different distributions. In the second part, different estimation methods,
including recursive, non-recursive and reduced forms, have been compared in terms
of capability and accuracy in estimating model parameters. For both parts, the time
series vector data have been generated in the same way. To construct the time series
vector first, the samples of residuals under non-negative distributions, discussed in this
article, were randomly generated in different sizes. Following that, for each sample
using various values of coefficients ϕ and θ, the time series observation vectors were
produced. Then, the model coefficients and parameters were estimated by modified
method based on just generated time series vector or generated residual and time series
vectors.

This simulation was coded in R software in which various packages, such as
rootSolve and BB, were utilized to solve a nonlinear equations system in some cases.
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In Tables (1)-(7) for each estimator, a column was made to demonstrate the mean
square error values (MSE). The MSE values were used to measure the average squared
difference between the estimated and the actual values. Furthermore, in order to study
the results more accurately, approximate confidence intervals were calculated based on
the modified MLEs and their results were also listed in Tables (1)-(7).

The approximate ML confidence intervals (MLCI) are some asymptotic versions of
confidence sets that are used in more complicated situations. Such confidence intervals
are created entirely on the basis of the asymptotic properties of the MLEs. If X1,X2, ...,Xn
are i.i.d of f (x|Θ) in which Θ ∈ Rk and θ̂i is the MLE of θi, a two-side MLCI for θi in
the confidence level of (1 − α), considering the asymptotic normal distribution of the
MLEs, can be constructed as:

θ̂i − Z α
2

√
v̂ar(θ̂i) < θi < θ̂i + Z α

2

√
v̂ar(θ̂i), i = 1, 2, ..., k.

The true variance of the MLE is approximated with respect to the asymptotic efficiency
property of the MLEs. With this approch, the Cramer-Rao Lower Bond can be used
as an estimation of the variance of the MLE. Accordingly, v̂ar(θ̂i) = λI−1

n (Θ)λT where

λ = (λ1, λ2, ..., λk), λi =
∂
∂θi

Θ and In(Θ) = −
∂

∂Θ∂ΘT `
f
n(Θ)|Θ=Θ̂ is an approximation for

the Fisher information matrix. Description of this finding can be found in Casella and
Berger (2001), Cramér (1946) and Huber (1967).

In the first part, since the reduced and recursive methods are constructed based on
the non-recursive method in parameter estimation, the parameters were approximated
using non-recursive method. Tables (1)-(4) display the non-recursive parameter estima-
tion results along with the corresponding MSEs, MLCIs and lengths of the MLCIs (LCI).
Each of the Tables (1)-(4) includes two sections: a and b; each pair of a and b belongs
to the parameter estimation results in the first-order ARMA model under an identical
residual distribution. The model coefficients selected for estimation in these tables are
the combination of even and odd numbers with different signs. It is not possible to
investigate all states of ϕ and θ, due to their high diversity. Therefore, it is attempted
to consider the modalities that cover all situations well as much as possible. In this
case ϕ = −0.5,−0.1, 0.2, 0.8 and θ = −0.6,−0.4, 0.3, 0.5 were considered. The number of
replicates were 104 and the sample sizes were n = 50, 150, 500.

It can be seen in Tables (1) to (4) that the proximity or distance of the model
coefficients, as well as their signs, do not affect the performance of the modified
estimators in estimating the distribution parameters and model coefficients. For
example, in the case of ϕ = 0.2 and θ = 0.3, the estimated values and their MSEs
have similar accuracy to those of ϕ = 0.8 and θ = −0.6. On the other hand, the
accuracy of the estimated values of the model coefficients does not change by varying
the residual distributions. Comparing the results of Tables (1.b) to (4.b) implies that
the accuracy of the estimators and their MSEs is approximately the same in estimating
the model coefficients according to the different residual distributions. These results
demonstrate the capability of the proposed estimators in estimating the various model
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coefficient values and distribution parameters.

In addition, all the calculated MLCIs in all the tables contain the correct values of
their respective model parameters and coefficients. In other words, there is not any case
that a parameter or a coefficient would be outside of its confidence interval. Even in
estimating ϕ coefficient, whose LCIs are shorter than those of other parameters, there
is no coefficient value outside the confidence interval. Cencerning the accuracy of
estimators, using the results of Tables (1)-(4), it can be found that when the sample size
increases, the estimated values get closer to the true parameter values. In this case, both
the MSEs and LCIs decline with increasing the sample size. A notable case observed
in the Tables is the large values of MSEs and LCIs in estimating the shape parameter
of the inverse Gaussian distribution (ϑ) compared to the similar values calculated
in estimating the other distribution parameters (Table (3.a)). Large amounts of the
MSEs and LCIs in estimating the shape parameter of the inverse Gaussian distribution
decrease rapidly with increasing the sample size.

In the second part, time series data were generated on the basis of log-normal
distribution residuals with parameters M = 0 and S = 0.75 to compare different
parameter estimation approaches. The results of estimating the model parameters
and coefficients using each of the non-recursive, recursive and reduced methods have
been summarized in Tables (5), (6) and (7). The coefficients for these analyses were
ϕ = −0.6, 0.3, and θ = −0.7, 0.2 and the sample sizes were n = 50, 350, 1000. Similar to
previous situation, the number of iterations was 104.

It can be concluded from the results given in Tables (5) and (6) that, although
the non-recursive estimators are slightly more accurate in estimating the distribution
parameters than the recursive estimators, there is generally no significant difference
in the analogous estimated values. In other words, both recursive and non-recursive
estimation techniques work with approximately equal precision in terms of parameter
estimations. Minor differences in the accuracy of estimating the distribution parameters
between recursive and non-recursive methods can be better seen in the first 6 columns
of the Tables 5 and 6 when the sample size is 50. A comparison of the columns 1
and 4 in both tables shows that the estimated values of the lognormal distribution
parameters, M and S, by non-recursive method are a bit closer to the true parameter
values than the parameters estimated by the recursive method. Moreover, MSEs of the
estimators listed in columns 2 and 5 of both tables are greater in the recursive state than
in the non-recursive state. This discrepancy in estimating the distribution parameters
by recursive and non-recursive methods decreases with increasing the sample size.
However, both methods have similar accuracy in estimating model coefficients.

Table (7) shows the results of the parameter estimation by the reduced method. The
estimated values of the model coefficients that are demonstrated in the columns 7 and
10 of this table are as good as the estimated values based on the recursive and non-
recursive methods. Nonetheless, the estimated values of the distribution parameters
using reduced method are more distanced from the actual parameter values than the
estimated values of the recursive and non-recursive methods. This distance is not large
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and decreases as the sample size increases. In all cases, the estimated MSE values by
reduced model are greater than MSEs measured by the two other methods. The greater
MSEs suggest a higher error rate in estimating model parameters using the reduced
approach than recursive and non-recursive approaches. Furthermore, the confidence
intervals constructed based on the results of all three approaches cover the actual values
of the distribution parameters and model coefficients.

Overall, it can be inferred that the distribution parameters and model coefficients
are well estimated with a slight difference using all three methods. In Tables (1)-
(7), the general trend improved estimators’ accuracy with increasing the sample size.
Moreover, the modified estimators derived from different residual distributions, estima-
te the model coefficients with the same precision.

4 Case Study and Results

To demonstrate the capability of the modified MLEs in estimating the first-order ARMA
model parameters in non-normal mode a numerical example has been presented. The
data consist of annual percentages of the unemployment rate among the population of
the United States in the range of 15-64 age group from January 1960 to 2018 that can be
accessed from Federal Reserve Economic Data of the US.

Figure 1: Annual Unemployment Rate in the US

According to the graph shown in Figure (1), over the 58-year period, there was not
a significant upward or downward trend in the dataset. However, we can use some
statistical tests such as the KPSS test (Kwiatkowski et al., 1992) to analyze the absence
of trend and non-stationarity of the dataset more precisely. The null hypothesis of this
test is that the dataset is stationary, and the alternative hypothesis is that the dataset is
not stationary. In the significant level of α = 0.05, the calculated p-value of the test is
0.112 that is greater than α. Therefore, the assumption of non-stationarity of the time
series is rejected.
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To identify the proper order of the ARMA model, one method is to analyze the
sample autocorrelation function (ACF) and partial autocorrelation function (PACF)
graphs (Figure (2)). In the sample ACF graph, relatively strong autocorrelations at
lags 1 and 2 dominate. Nevertheless, again, there is a clear sign of the damped
oscillatory. In the PACF graph, lags 1 and 2 have significant values and, by ignoring
the partial autocorrelation in lag 11, it can be concluded that the partial autocorrelation
is interrupted after two significant lags. From the ACF and PACF graphs, it seems
that an AR(2) model should be selected for data modeling. On the other hand, in the
ACF graph, after lag 2 and up to 13th lag, the sample autocorrelations do not show
significant values, whereas the autocorrelations are significant in lags 13, 14, and 15.
Therefore, it is better to use other criteria for a more accurate analysis of the model
order.

One of the most widely used criteria for selecting the ARMA model order is Akaike
information criterion (AIC) (Akaike et al., 1973).

Figure 2: The sample ACF and PACF of unemployment rate series

This criterion states that the model which minimizes

AIC = −2 log likelihood + 2k,

should be chosen, where k = p + q + 1 and p and q are the orders of the AR and MA
parts, respectively. AICc is another criterion that has been introduced to overcome the
AIC bias problem (Hurvich & Tsai, 1989). AICc is defined as follows:

AICc = −2 log likelihood + 2k
n

n − k − 1
.

The Schwarz Bayesian Information Criterion (BIC) (Schwarz, 1978) is another approach
to determine the ARMA model order that is closely related to the AIC,

BIC = −2 log likelihood + k log(n).



Modified MLEs for ARMA(1, 1) 51

According to Table (8), the minimum obtained values of the information criteria
are for the first-order ARMA model and, with a very slight difference, to AR(2)
model. Therefore, the first-order ARMA model is our selection for data modeling.
The estimated parameters by the ML method and under the assumption of residual
normality are φ̂ = 0.6782, θ̂ = 0.5159, and, consequently, the estimated model is
zt = 0.6782zt−1 + εt − 0.5159εt−1.

We use residual analysis to assess the fitness of the estimated model. An important
diagnostic tool for examining the independence of the residuals is the sample ACF
graph. By comparing the ACF values of residuals in Figure (3) with the standard error
lines ±2/

√
n, the lack of meaningful autocorrolation in the estimated model residuals

can be concluded. The density of the residuals can be assess by a histogram (Figure (4)).
The histogram shows the non-normality and slight right skewness of residual density.
For more confidence about the non-normality of the residuals, we use the Shapiro-Wilk
normality test in the confidence level of 0.95 (Shapiro & Wilk, 1965). Regarding the
p-value of the test (1.80 × 10−8) the null hypothesis that the residuals are normally
distributed is rejected.

Table 8: The estimated values of information criteria

ARMA(p,q) AIC AICc BIC
ARMA(0,1) 1.118 1.159 0.188
ARMA(0,2) 0.892 0.938 -0.002

ARMA(1,0) 0.938 0.979 0.008
ARMA(1,1) 0.754 0.801 -0.139
ARMA(1,2) 0.786 0.839 -0.072

ARMA(2,0) 0.762 0.808 -0.132
ARMA(2,1) 0.779 0.832 -0.079
ARMA(2,2) 0.829 0.891 0.005

Figure 3: The sample ACF of residuals of the estimated first-order ARMA model

Now, by considering the positive domain of the residuals, we assign each of the
distributions described in section 2 as candidate residual distributions and estimate
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Figure 4: Histogram of residuals of the estimated first-order ARMA model

the model parameters by the recursive modified MLEs (Table (9)). By comparing the
results of Table (9), it is observed that the estimated values of the first-order ARMA
model coefficients based on different residual distributions are slightly different. Thus,
we expect to obtian a similar result from the reduced method, which estimates the
coefficients of the first-order ARMA model without considering the parameters of
residual distribution. The estimated values of the first-order ARMA model coefficients
using the reduced method are φ̂ = 0.6822 and θ̂ = 0.4927. These values are appriximate-
ly equal to the estimated values of the model coefficients with the recursive method
based on different of residual the distribution. Therefore, it can be concluded that the
reduced method with less computational volume than the recursive method is capable
to estimate the model coefficients.

Table 9: The estimated values of the first-order ARMA model parameters by modified
MLEs

Residual distribution First parameter Second parameter ϕ θ

G(α, β) 2.654 0.472 0.6722 0.4925

LN(M,S) 0.027 0.664 0.6821 0.4824

INVG(τ, ϕ) 1.255 2.126 0.6827 0.4923

W(κ, ξ) 1.638 1.410 0.6791 0.4931

R(σ) - 1.063 0.6818 0.4891
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Information criteria and the Kolmogorov-Smirnov (K-S) test are the methods that
we use to select the appropriate model from among the estimated models to fit to
unemployment rate data in the United States. Parameter K, defined in information
criteria, is the number of the estimated parameters now. The lowest value of the
calculated information criteria belongs to the gamma and then to the log-normal
distributions (Table (10)). Furthermore, The null hypotheses that the residuals come
from the estimated gamma and log-normal distributions are not rejected because the
p-values of K-S test are greater than α = 0.05.

Table 10: The estimated values of information criteria and p-values of K-S test

Residual distribution AIC AICc BIC p-value of K-S test

G(α, β) 139 139.74 138.08 0.806

LN(M,S) 141 141.73 140.07 0.582

INVG(τ, ϕ) 154 154.75 153.06 0.043

W(κ, ξ) 157 157.74 156.08 0.040

R(σ) 168 168.44 167.29 0.031

Therefore, model zt = 0.6722zt−1 + εt − 0.4925εt−1 with residuals distributed of
G(2.654, 0.472) and model zt = 0.6821zt−1 + εt − 0.4824εt−1 with residuals distributed of
LN(0.027, 0.664) are suitable for modeling the data of unemployment rate in the United
States. Figure (5), reveals that the gamma density is the closest density to the residual
empirical density compared with other estimated ones.

Figure 5: Histogram of the residuals of the estimated first-order ARMA model with
curves of the estimated residual densities
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Table 1.a: Modified MLEs for the first-order GARMA models

zt = ϕzt−1 + εt − θεt−1, εt = G(2, 3)
ϕ θ n α̂n MSE MLCI LCI β̂n MSE MLCI LCI

-0.5 -0.6 50 2.265 0.098 (1.88,2.08) 0.20 2.947 0.125 (2.88,3.25) 0.37
150 2.043 0.0066 (1.91,2.09) 0.17 3.042 0.0086 (2.87,3.19) 0.32
500 2.009 0.00087 (1.97,2.07) 0.10 3.043 0.0015 (2.88,3.05) 0.18

-0.5 -0.4 50 2.241 0.067 (1.91,2.12) 0.21 2.962 0.106 (2.82,3.18) 0.36
150 2.019 0.0071 (1.91,2.09) 0.18 3.073 0.0098 (2.86,3.18) 0.32
500 2.009 0.00091 (1.94,2.05) 0.11 3.045 0.0020 (2.91,3.09) 0.17

-0.5 0.3 50 2.246 0.078 (1.87,2.07) 0.20 2.989 0.129 (2.88,3.25) 0.37
150 2.031 0.0063 (1.90,2.09) 0.19 3.064 0.0095 (2.88,3.20) 0.32
500 2.029 0.00096 (1.95,2.06) 0.11 3.029 0.0018 (2.89,3.07) 0.18

-0.5 0.5 50 2.267 0.090 (1.88,2.09) 0.21 2.952 0.133 (2.86,3.23) 0.36
150 2.039 0.0087 (1.95,2.14) 0.19 3.044 0.0099 (2.83,3.14) 0.31
500 2.003 0.00093 (1.95,2.05) 0.10 3.046 0.0016 (2.91,3.08) 0.17

-0.1 -0.6 50 2.401 0.073 (1.94,2.15) 0.21 2.892 0.098 (2.80,3.15) 0.35
150 2.108 0.0076 (1.93,2.11) 0.18 3.003 0.0090 (2.85,3.17) 0.32
500 2.061 0.00088 (1.95,2.05) 0.10 3.025 0.0015 (2.91,3.08) 0.17

-0.1 -0.4 50 2.438 0.096 (1.89,2.10) 0.21 2.821 0.129 (2.86,3.23) 0.37
150 2.070 0.0050 (1.92,2.10) 0.18 3.024 0.0078 (2.84,3.16) 0.32
500 2.053 0.00090 (1.94,2.04) 0.10 3.000 0.0022 (2.92,3.10) 0.18

-0.1 0.3 50 2.469 0.085 (1.93,2.14) 0.21 2.791 0.114 (2.81,3.16) 0.35
150 2.080 0.0083 (1.90,2.08) 0.18 3.011 0.0091 (2.89,3.21) 0.33
500 2.03 0.00083 (1.95,2.05) 0.10 3.003 0.0016 (2.90,3.08) 0.18

-0.1 0.5 50 2.385 0.090 (1.92,2.13) 0.21 2.876 0.120 (2.82,3.18) 0.36
150 2.051 0.0066 (1.90,2.08) 0.18 3.045 0.0096 (2.88,3.20) 0.32
500 2.037 0.00093 (1.96,2.06) 0.10 3.030 0.0010 (2.89,3.07) 0.18

0.2 -0.6 50 2.470 0.091 (1.87,2.08) 0.21 2.849 0.124 (2.88,3.25) 0.37
150 2.113 0.0069 (1.94,2.13) 0.18 3.031 0.0084 (2.83,3.14) 0.31
500 2.063 0.00087 (1.94,2.05) 0.11 3.041 0.0024 (2.92,3.09) 0.17

0.2 -0.4 50 2.424 0.076 (1.90,2.11) 0.21 2.918 0.115 (2.85,3.22) 0.37
150 2.090 0.0080 (1.97,2.16) 0.18 3.037 0.0086 (2.79,3.10) 0.31
500 2.035 0.00092 (1.95,2.05) 0.10 3.061 0.0016 (2.91,3.10) 0.19

0.2 0.3 50 2.350 0.074 (1.93,2.14) 0.21 2.886 0.094 (2.80,3.16) 0.36
150 2.060 0.0065 (1.94,2.13) 0.19 3.026 0.0085 (2.83,3.14) 0.31
500 2.032 0.00075 (1.94,2.04) 0.10 3.033 0.0018 (2.91,3.10) 0.19

0.2 0.5 50 2.374 0.065 (1.89,2.10) 0.21 2.915 0.090 (2.84,3.20) 0.36
150 2.060 0.0073 (1.86,2.05) 0.18 3.032 0.0095 (2.92,3.25) 0.33
500 2.049 0.00072 (1.97,2.07) 0.10 3.020 0.0021 (2.91,3.07) 0.16

0.8 -0.6 50 2.499 0.096 (1.90,2.10) 0.20 2.810 0.143 (2.87,3.24) 0.37
150 2.064 0.0083 (1.97,2.16) 0.18 3.015 0.0095 (2.80,3.11) 0.31
500 2.053 0.00095 (1.95,2.05) 0.10 3.001 0.0017 (2.91,3.09) 0.17

0.8 -0.4 50 2.360 0.059 (1.87,2.08) 0.21 2.893 0.108 (2.87,3.24) 0.37
150 2.080 0.0063 (1.95,2.13) 0.18 2.995 0.0079 (2.82,3.13) 0.31
500 2.005 0.00093 (1.94,2.05) 0.11 3.036 0.0017 (2.92,3.10) 0.18

0.8 0.3 50 2.362 0.090 (1.87,2.08) 0.21 2.923 0.150 (2.89,3.26) 0.37
150 2.207 0.0039 (1.88,2.06) 0.18 2.978 0.0068 (2.88,3.21) 0.32
500 2.019 0.00082 (1.95,2.05) 0.10 2.995 0.0014 (2.90,3.09) 0.19

0.8 0.5 50 2.402 0.108 (1.95,2.16) 0.21 2.897 0.114 (2.80,3.15) 0.35
150 2.061 0.0067 (1.91,2.09) 0.17 3.020 0.0090 (2.87,3.20) 0.32
500 2.037 0.00091 (1.93,2.03) 0.10 3.010 0.0014 (2.94,3.12) 0.18
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Table 1.b: Modified MLEs for the first-order GARMA models

zt = ϕzt−1 + εt − θεt−1, εt = G(2, 3)
ϕ θ n ϕ̂n,1 MSE MLCI LCI θ̂n,1 MSE MLCI LCI

-0.5 -0.6 50 -0.502 0.000040 (-0.51,-0.48) 0.03 -0.597 0.022 (-0.68,-0.50) 0.17
150 -0.496 0.000037 (-0.51,-0.49) 0.02 -0.595 0.0071 (-0.63,-0.55) 0.08
500 -0.499 0.000036 (-0.51,-0.49) 0.02 -0.598 0.0021 (-0.61,-0.57) 0.04

-0.5 -0.4 50 -0.497 0.000039 (-0.51,-0.48) 0.03 -0.397 0.022 (-0.47,-0.29) 0.18
150 -0.496 0.000035 (-0.51,-0.48) 0.03 -0.396 0.0070 (-0.44,-0.35) 0.08
500 -0.499 0.000032 (-0.51,-0.49) 0.02 -0.398 0.0022 (-0.42,-0.38) 0.04

-0.5 0.3 50 -0.495 0.000041 (-0.51,-0.48) 0.03 0.311 0.020 (0.22,0.39) 0.17
150 -0.495 0.000038 (-0.51,-0.49) 0.02 0.304 0.0066 (0.26,0.35) 0.09
500 -0.497 0.000038 (-0.51,-0.49) 0.02 0.305 0.0019 (0.28,0.32) 0.04

-0.5 0.5 50 -0.492 0.000036 (-0.51,-0.48) 0.03 0.512 0.020 (0.42,0.59) 0.17
150 -0.495 0.000037 (-0.51,-0.49) 0.02 0.503 0.0068 (0.46,0.54) 0.08
500 -0.502 0.000035 (-0.51,-0.49) 0.02 0.501 0.0017 (0.48,0.52) 0.04

-0.1 -0.6 50 -0.104 0.000048 (-0.11,-0.08) 0.03 -0.579 0.026 (-0.67,-0.49) 0.18
150 -0.106 0.000046 (-0.11,-0.09) 0.02 -0.601 0.0072 (-0.63,-0.54) 0.09
500 -0.105 0.000032 (-0.11,-0.09) 0.02 -0.601 0.0016 (-0.62,-0.57) 0.05

-0.1 -0.4 50 -0.104 0.000048 (-0.11,-0.08) 0.03 -0.382 0.027 (-0.46,-0.29) 0.17
150 -0.103 0.000040 (-0.11,-0.08) 0.03 -0.402 0.0061 (-0.44,-0.35) 0.09
500 -0.101 0.000038 (-0.11,-0.09) 0.02 -0.402 0.0020 (-0.42,-0.37) 0.05

-0.1 0.3 50 -0.095 0.000046 (-0.11,-0.08) 0.03 0.326 0.022 (0.23,0.41) 0.18
150 -0.095 0.000041 (-0.11,-0.09) 0.02 0.307 0.0073 (0.26,0.34) 0.08
500 -0.097 0.000035 (-0.11,-0.09) 0.02 0.304 0.0022 (0.28,0.32) 0.04

-0.1 0.5 50 -0.093 0.000037 (-0.12,-0.09) 0.03 0.523 0.025 (0.43,0.60) 0.17
150 -0.097 0.000035 (-0.11,-0.09) 0.02 0.503 0.0066 (0.46,0.55) 0.09
500 -0.096 0.000032 (-0.11,-0.09) 0.02 0.506 0.0025 (0.48,0.52) 0.04

0.2 -0.6 50 0.191 0.000042 (0.18,0.21) 0.03 -0.585 0.024 (-0.68,-0.50) 0.18
150 0.193 0.000039 (0.18,0.21) 0.03 -0.603 0.0064 (-0.63,-0.54) 0.09
500 0.194 0.000031 (0.19,0.21) 0.02 -0.604 0.0018 (-0.62,-0.58) 0.04

0.2 -0.4 50 0.191 0.000038 (0.18,0.21) 0.03 -0.384 0.026 (-0.47,-0.28) 0.19
150 0.193 0.000031 (0.19,0.21) 0.02 -0.403 0.0068 (-0.43,-0.35) 0.08
500 0.198 0.000033 (0.19,0.21) 0.02 -0.406 0.0021 (-0.41,-0.37) 0.04

0.2 0.3 50 0.201 0.000036 (0.18,0.21) 0.03 0.320 0.026 (0.23,0.41) 0.18
150 0.200 0.000033 (0.19,0.21) 0.02 0.305 0.0069 (0.26,0.34) 0.08
500 0.201 0.000031 (0.19,0.21) 0.02 0.303 0.0018 (0.28,0.32) 0.04

0.2 0.5 50 0.202 0.000041 (0.18,0.21) 0.03 0.525 0.024 (0.43,0.61) 0.18
150 0.201 0.000039 (0.19,0.21) 0.02 0.502 0.0066 (0.46,0.55) 0.09
500 0.201 0.000036 (0.19,0.21) 0.02 0.511 0.0019 (0.48,0.52) 0.04

0.8 -0.6 50 0.798 0.000026 (0.793,0.805) 0.012 -0.553 0.025 (-0.65,-0.46) 0.19
150 0.799 0.000021 (0.793,0.805) 0.012 -0.595 0.0069 (-0.63,-0.54) 0.09
500 0.799 0.000021 (0.795,0.805) 0.010 -0.599 0.0018 (-0.62,-0.58) 0.04

0.8 -0.4 50 0.798 0.000026 (0.792,0.805) 0.013 -0.369 0.023 (-0.45,-0.27) 0.18
150 0.799 0.000022 (0.793,0.805) 0.012 -0.392 0.0071 (-0.43,-0.34) 0.09
500 0.800 0.000020 (0.794,0.805) 0.011 -0.400 0.0023 (-0.42,-0.37) 0.05

0.8 0.3 50 0.786 0.000026 (0.792,0.804) 0.012 0.292 0.034 (0.24,0.43) 0.19
150 0.791 0.000020 (0.794,0.805) 0.011 0.294 0.0065 (0.26,0.35) 0.09
500 0.796 0.000018 (0.794,0.805) 0.011 0.294 0.0018 (0.28,0.32) 0.04

0.8 0.5 50 0.798 0.000024 (0.793,0.804) 0.011 0.531 0.023 (0.44,0.62) 0.18
150 0.799 0.000020 (0.794,0.805) 0.011 0.505 0.0064 (0.47,0.55) 0.08
500 0.8001 0.000019 (0.794,0.805) 0.011 0.503 0.0020 (0.48,0.52) 0.04
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Table 2.a: Modified MLEs for the first-order LNARMA models

zt = ϕzt−1 + εt − θεt−1, εt = LN(2, 0.5)
ϕ θ n M̂n MSE MLCI LCI Ŝn MSE MLCI LCI

-0.5 -0.6 50 1.969 0.066 (1.83,2.12) 0.29 0.532 0.029 (0.29,0.77) 0.48
150 1.990 0.016 (1.91,2.07) 0.16 0.511 0.0071 (0.39,0.63) 0.24
500 1.994 0.0050 (1.94,2.03) 0.09 0.504 0.0018 (0.44,0.56) 0.12

-0.5 -0.4 50 1.979 0.068 (1.83,2.12) 0.29 0.533 0.024 (0.28,0.78) 0.50
150 1.998 0.014 (1.91,2.07) 0.16 0.506 0.0062 (0.39,0.63) 0.24
500 2.001 0.0050 (1.95,2.04) 0.09 0.502 0.0016 (0.44,0.56) 0.12

-0.5 0.3 50 1.979 0.061 (1.82,2.11) 0.29 0.530 0.030 (0.28,0.77) 0.49
150 1.997 0.015 (1.91,2.07) 0.16 0.505 0.0060 (0.39,0.62) 0.23
500 2.002 0.0053 (1.95,2.04) 0.09 0.501 0.0017 (0.44,0.56) 0.12

-0.5 0.5 50 1.972 0.064 (1.83,2.13) 0.30 0.532 0.032 (0.27,0.78) 0.51
150 1.997 0.014 (1.91,2.07) 0.16 0.504 0.0034 (0.39,0.62) 0.23
500 1.998 0.0053 (1.95,2.04) 0.09 0.503 0.0056 (0.44,0.56) 0.12

-0.1 -0.6 50 1.988 0.055 (1.85,2.13) 0.28 0.518 0.023 (0.29,0.77) 0.48
150 1.987 0.015 (1.92,2.08) 0.16 0.513 0.0062 (0.39,0.62) 0.23
500 1.989 0.0049 (1.95,2.04) 0.09 0.510 0.0018 (0.44,0.57) 0.13

-0.1 -0.4 50 1.983 0.046 (1.83,2.13) 0.30 0.517 0.023 (0.28,0.77) 0.49
150 1.986 0.013 (1.92,2.08) 0.16 0.513 0.0054 (0.38,0.62) 0.24
500 2.001 0.0054 (1.95,2.04) 0.09 0.510 0.0020 (0.44,0.56) 0.12

-0.1 0.3 50 1.997 0.061 (1.84,2.13) 0.29 0.511 0.029 (0.28,0.76) 0.48
150 1.998 0.015 (1.91,2.07) 0.16 0.505 0.0062 (0.39,0.62) 0.23
500 1.995 0.0053 (1.95,2.04) 0.09 0.503 0.0021 (0.44,0.56) 0.12

-0.1 0.5 50 2.000 0.054 (1.85,2.13) 0.28 0.509 0.020 (0.26,0.77) 0.51
150 1.992 0.015 (1.91,2.07) 0.16 0.510 0.0052 (0.39,0.62) 0.23
500 2.001 0.0050 (1.95,2.04) 0.09 0.507 0.0017 (0.44,0.57) 0.13

0.2 -0.6 50 2.007 0.059 (1.85,2.14) 0.29 0.516 0.027 (0.27,0.75) 0.48
150 2.000 0.015 (1.92,2.08) 0.16 0.504 0.0060 (0.39,0.62) 0.23
500 2.000 0.0050 (1.95,2.04) 0.09 0.501 0.0017 (0.44,0.56) 0.12

0.2 -0.4 50 2.002 0.058 (1.85,2.14) 0.29 0.517 0.026 (0.28,0.76) 0.48
150 2.000 0.016 (1.92,2.08) 0.16 0.503 0.0058 (0.38,0.62) 0.24
500 1.999 0.0048 (1.96,2.04) 0.08 0.503 0.0016 (0.44,0.57) 0.13

0.2 0.3 50 1.999 0.063 (1.84,2.13) 0.29 0.507 0.018 (0.25,0.77) 0.52
150 1.990 0.016 (1.92,2.08) 0.16 0.511 0.0069 (0.39,0.62) 0.23
500 2.001 0.0050 (1.95,2.04) 0.09 0.506 0.0022 (0.44,0.56) 0.12

0.2 0.5 50 1.993 0.060 (1.86,2.14) 0.28 0.523 0.027 (0.26,0.76) 0.50
150 1.997 0.014 (1.91,2.08) 0.17 0.506 0.0053 (0.39,0.63) 0.24
500 2.000 0.0051 (1.95,2.03) 0.08 0.502 0.0019 (0.44,0.57) 0.13

0.8 -0.6 50 2.009 0.062 (1.85,2.14) 0.29 0.509 0.025 (0.28,0.75) 0.47
150 1.994 0.014 (1.93,2.08) 0.15 0.507 0.0056 (0.38,0.62) 0.24
500 2.000 0.0049 (1.95,2.04) 0.09 0.503 0.0017 (0.44,0.56) 0.12

0.8 -0.4 50 2.024 0.059 (1.88,2.16) 0.28 0.506 0.024 (0.28,0.76) 0.48
150 2.001 0.015 (1.91,2.07) 0.16 0.503 0.0060 (0.39,0.62) 0.23
500 2.002 0.0050 (1.96,2.04) 0.08 0.501 0.0018 (0.44,0.57) 0.13

0.8 0.3 50 2.010 0.057 (1.87,2.15) 0.28 0.509 0.025 (0.27,0.77) 0.50
150 2.002 0.015 (1.93,2.09) 0.16 0.503 0.0059 (0.39,0.62) 0.23
500 2.002 0.0052 (1.96,2.04) 0.08 0.502 0.0019 (0.44,0.56) 0.12

0.8 0.5 50 2.007 0.056 (1.87,2.15) 0.28 0.517 0.026 (0.27,0.77) 0.50
150 1.999 0.016 (1.93,2.08) 0.15 0.502 0.0052 (0.38,0.62) 0.24
500 2.003 0.0056 (1.95,2.04) 0.09 0.501 0.0017 (0.43,0.56) 0.13
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Table 2.b: Modified MLEs for the first-order LNARMA models

zt = ϕzt−1 + εt − θεt−1, εt = LN(2, 0.5)
ϕ θ n ϕ̂n,2 MSE MLCI LCI θ̂n,2 MSE MLCI LCI

-0.5 -0.6 50 -0.500 0.000021 (-0.509,-0.490) 0.018 -0.598 0.028 (-0.73,-0.45) 0.28
150 -0.499 0.000016 (-0.508,-0.491) 0.017 -0.603 0.0065 (-0.68,-0.51) 0.17
500 -0.499 0.000014 (-0.508,-0.491) 0.017 -0.600 0.0019 (-0.65,-0.54) 0.11

-0.5 -0.4 50 -0.500 0.000024 (-0.508,-0.491) 0.017 -0.405 0.026 (-0.54,-0.26) 0.28
150 -0.500 0.000022 (-0.508,-0.491) 0.017 -0.398 0.0067 (-0.48,-0.30) 0.18
500 -0.500 0.000020 (-0.508,-0.492) 0.016 -0.396 0.0018 (-0.44,-0.34) 0.10

-0.5 0.3 50 -0.500 0.000022 (-0.508,-0.491) 0.017 0.305 0.027 (0.18,0.44) 0.26
150 -0.500 0.000018 (-0.508,-0.491) 0.017 0.302 0.0067 (0.22,0.39) 0.17
500 -0.499 0.000020 (-0.507,-0.492) 0.015 0.302 0.0020 (0.25,0.35) 0.10

-0.5 0.5 50 -0.500 0.000023 (-0.508,-0.491) 0.017 0.502 0.027 (0.37,0.63) 0.26
150 -0.499 0.000018 (-0.508,-0.491) 0.017 0.502 0.0063 (0.41,0.59) 0.18
500 -0.499 0.000017 (-0.507,-0.492) 0.015 0.502 0.0019 (0.44,0.54) 0.10

-0.1 -0.6 50 -0.099 0.000032 (-0.117,-0.082) 0.035 -0.577 0.019 (-0.72,-0.44) 0.28
150 -0.101 0.000026 (-0.118,-0.081) 0.037 -0.598 0.0063 (-0.68,-0.51) 0.17
500 -0.101 0.000024 (-0.115,-0.085) 0.030 -0.596 0.0027 (-0.65,-0.55) 0.10

-0.1 -0.4 50 -0.1003 0.000034 (-0.116,-0.083) 0.033 -0.388 0.020 (-0.52,-0.24) 0.28
150 -0.1002 0.000030 (-0.118,-0.081) 0.037 -0.398 0.0064 (-0.48,-0.30) 0.18
500 -0.1005 0.000026 (-0.114,-0.085) 0.029 -0.399 0.0028 (-0.45,-0.35) 0.10

-0.1 0.3 50 -0.0997 0.000027 (-0.115,-0.084) 0.031 0.319 0.019 (0.18,0.45) 0.27
150 -0.1004 0.000027 (-0.118,-0.081) 0.037 0.305 0.0067 (0.20,0.39) 0.19
500 -0.1001 0.000023 (-0.115,-0.084) 0.031 0.299 0.0012 (0.25,0.35) 0.10

-0.1 0.5 50 -0.099 0.000033 (-0.114,-0.085) 0.029 0.521 0.020 (0.37,0.66) 0.29
150 -0.098 0.000029 (-0.117,-0.082) 0.035 0.503 0.0067 (0.42,0.59) 0.17
500 -0.1000 0.000025 (-0.114,-0.086) 0.028 0.500 0.0026 (0.45,0.55) 0.10

0.2 -0.6 50 0.199 0.000028 (0.188,0.211) 0.023 -0.570 0.027 (-0.71,-0.43) 0.28
150 0.199 0.000027 (0.187,0.212) 0.025 -0.596 0.0066 (-0.67,-0.50) 0.17
500 0.199 0.000025 (0.188,0.211) 0.023 -0.596 0.0019 (-0.65,-0.55) 0.10

0.2 -0.4 50 0.199 0.000028 (0.188,0.211) 0.023 -0.379 0.0265 (-0.51,-0.23) 0.28
150 0.199 0.000026 (0.186,0.213) 0.027 -0.396 0.0064 (-0.47,-0.30) 0.17
500 0.199 0.000028 (0.187,0.212) 0.025 -0.397 0.0019 (-0.44,-0.34) 0.10

0.2 0.3 50 0.200 0.000029 (0.185,0.214) 0.029 0.324 0.020 (0.17,0.46) 0.29
150 0.199 0.000030 (0.187,0.212) 0.025 0.301 0.0076 (0.23,0.39) 0.16
500 0.200 0.000027 (0.189,0.210) 0.021 0.303 0.0027 (0.24,0.35) 0.11

0.2 0.5 50 0.199 0.000027 (0.185,0.214) 0.029 0.515 0.028 (0.39,0.65) 0.26
150 0.199 0.000026 (0.187,0.212) 0.025 0.503 0.0066 (0.42,0.59) 0.17
500 0.200 0.000024 (0.188,0.211) 0.023 0.501 0.0020 (0.45,0.55) 0.10

0.8 -0.6 50 0.798 0.000016 (0.795,0.805) 0.010 -0.568 0.029 (-0.70,-0.43) 0.27
150 0.799 0.000013 (0.795,0.804) 0.009 -0.598 0.0068 (-0.67,-0.50) 0.17
500 0.799 0.000011 (0.795,0.804) 0.009 -0.601 0.0020 (-0.64,-0.54) 0.10

0.8 -0.4 50 0.799 0.000015 (0.795,0.806) 0.011 -0.360 0.029 (-0.50,-0.22) 0.28
150 0.799 0.000011 (0.795,0.804) 0.009 -0.394 0.0071 (-0.48,-0.30) 0.18
500 0.799 0.000012 (0.795,0.804) 0.009 -0.394 0.0020 (-0.44,-0.34) 0.10

0.8 0.3 50 0.799 0.000017 (0.795,0.804) 0.009 0.333 0.029 (0.20,0.46) 0.26
150 0.799 0.000012 (0.795,0.803) 0.008 0.306 0.0040 (0.22,0.39) 0.17
500 0.799 0.000010 (0.795,0.804) 0.009 0.303 0.0018 (0.25,0.35) 0.10

0.8 0.5 50 0.799 0.000016 (0.795,0.804) 0.009 0.528 0.026 (0.39,0.66) 0.27
150 0.800 0.000010 (0.795,0.804) 0.009 0.505 0.0074 (0.43,0.59) 0.16
500 0.800 0.000012 (0.796,0.805) 0.009 0.505 0.0019 (0.45,0.55) 0.10
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Table 3.a: Modified MLEs for the first-order INVGARMA models

zt = ϕzt−1 + εt − θεt−1, εt = INVG(1, 3)
ϕ θ n τ̂n MSE MLCI LCI ϑ̂n MSE MLCI LCI

-0.5 -0.6 50 1.005 0.032 (0.84,1.17) 0.32 2.923 0.57 (1.83,4.19) 2.36
150 0.998 0.0064 (0.91,1.09) 0.18 2.979 0.16 (2.32,3.67) 1.35
500 1.001 0.0030 (0.95,1.05) 0.10 3.003 0.041 (2.62,3.37) 0.74

-0.5 -0.4 50 1.001 0.038 (0.83,1.15) 0.32 2.939 0.52 (1.79,4.11) 2.31
150 1.003 0.0065 (0.90,1.08) 0.18 2.959 0.15 (2.31,3.66) 1.35
500 0.999 0.0033 (0.95,1.05) 0.10 2.991 0.045 (2.62,3.36) 0.74

-0.5 0.3 50 0.997 0.033 (0.84,1.16) 0.32 2.932 0.56 (1.81,4.16) 2.34
150 1.003 0.0059 (0.91,1.09) 0.18 2.994 0.11 (2.30,3.65) 1.35
500 0.997 0.0032 (0.95,1.05) 0.10 2.985 0.043 (2.62,3.36) 0.74

-0.5 0.5 50 1.001 0.036 (0.84,1.17) 0.33 2.877 0.55 (1.78,4.08) 2.30
150 1.005 0.0060 (0.90,1.09) 0.19 2.973 0.15 (2.31,3.67) 1.36
500 1.001 0.0032 (0.94,1.05) 0.11 2.985 0.041 (2.61,3.35) 0.74

-0.1 -0.6 50 1.013 0.0352 (0.85,1.18) 0.33 2.965 0.52 (1.81,4.15) 2.34
150 1.003 0.0059 (0.90,1.09) 0.19 3.003 0.14 (2.32,3.69) 1.37
500 1.001 0.0029 (0.95,1.05) 0.10 3.010 0.052 (2.61,3.35) 0.74

-0.1 -0.4 50 1.000 0.034 (0.84,1.16) 0.32 2.995 0.54 (1.80,4.13) 2.33
150 1.007 0.0061 (0.91,1.10) 0.19 2.997 0.14 (2.32,3.69) 1.37
500 1.003 0.0033 (0.95,1.05) 0.10 2.998 0.042 (2.63,3.37) 0.74

-0.1 0.3 50 1.015 0.035 (0.83,1.15) 0.32 2.990 0.56 (1.82,4.17) 2.35
150 1.004 0.0064 (0.90,1.09) 0.19 2.981 0.13 (2.30,3.65) 1.35
500 1.003 0.0033 (0.95,1.05) 0.10 2.992 0.042 (2.62,3.37) 0.75

-0.1 0.5 50 1.020 0.033 (0.84,1.16) 0.32 3.011 0.60 (1.80,4.14) 2.34
150 1.005 0.0060 (0.91,1.10) 0.19 3.013 0.13 (2.31,3.66) 1.35
500 0.999 0.0033 (0.96,1.05) 0.09 3.004 0.047 (2.62,3.36) 0.74

0.2 -0.6 50 1.021 0.033 (0.84,1.16) 0.32 3.040 0.52 (1.80,4.13) 2.33
150 1.002 0.0060 (0.91,1.09) 0.18 3.016 0.14 (2.32,3.68) 1.36
500 1.004 0.0034 (0.95,1.05) 0.10 3.002 0.042 (2.63,3.37) 0.74

0.2 -0.4 50 1.017 0.037 (0.85,1.17) 0.32 2.954 0.57 (1.81,4.15) 2.34
150 1.003 0.0056 (0.91,1.09) 0.18 2.992 0.14 (2.31,3.66) 1.35
500 1.003 0.0033 (0.95,1.04) 0.09 2.996 0.040 (2.62,3.35) 0.73

0.2 0.3 50 1.022 0.0367 (0.85,1.17) 0.32 2.968 0.54 (1.80,4.13) 2.33
150 1.000 0.0061 (0.91,1.10) 0.19 2.988 0.13 (2.32,3.68) 1.36
500 1.002 0.0033 (0.95,1.05) 0.10 2.987 0.040 (2.62,3.37) 0.75

0.2 0.5 50 1.023 0.035 (0.84,1.17) 0.33 2.978 0.51 (1.80,4.12) 2.32
150 1.002 0.0060 (0.90,1.09) 0.19 2.997 0.13 (2.30,3.65) 1.35
500 0.999 0.0033 (0.95,1.05) 0.10 3.002 0.041 (2.62,3.36) 0.74

0.8 -0.6 50 1.043 0.036 (0.85,1.18) 0.33 3.178 0.58 (1.81,4.16) 2.35
150 1.006 0.0064 (0.91,1.09) 0.18 2.977 0.12 (2.32,3.68) 1.36
500 1.002 0.0033 (0.95,1.05) 0.10 2.999 0.044 (2.62,3.37) 0.75

0.8 -0.4 50 1.038 0.035 (0.84,1.16) 0.32 3.119 0.53 (1.80,4.14) 2.34
150 1.003 0.0064 (0.91,1.09) 0.18 2.973 0.13 (2.33,3.70) 1.37
500 1.003 0.0032 (0.95,1.05) 0.10 2.990 0.040 (2.62,3.36) 0.74

0.8 0.3 50 1.031 0.034 (0.85,1.17) 0.32 3.016 0.49 (1.78,4.08) 2.30
150 1.002 0.0056 (0.91,1.09) 0.18 2.986 0.14 (2.31,3.67) 1.36
500 1.005 0.0032 (0.95,1.05) 0.10 2.983 0.042 (2.61,3.35) 0.74

0.8 0.5 50 1.033 0.032 (0.84,1.17) 0.33 3.040 0.55 (1.80,4.12) 2.32
150 1.007 0.0062 (0.90,1.09) 0.19 2.950 0.14 (2.31,3.67) 1.36
500 1.002 0.0030 (0.95,1.05) 0.10 2.966 0.046 (2.62,3.37) 0.75
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Table 3.b: Modified MLEs for the first-order INVGARMA models

zt = ϕzt−1 + εt − θεt−1, εt = INVG(1, 3)
ϕ θ n ϕ̂n,3 MSE MLCI LCI θ̂n,3 MSE MLCI LCI

-0.5 -0.6 50 -0.499 0.000023 (-0.511,-0.48) 0.022 -0.593 0.026 (-0.67,-0.50) 0.17
150 -0.499 0.000029 (-0.509,-0.490) 0.018 -0.600 0.0041 (-0.64,-0.56) 0.08
500 -0.499 0.000023 (-0.509,-0.490) 0.018 -0.598 0.0017 (-0.62,-0.57) 0.05

-0.5 -0.4 50 -0.500 0.000026 (-0.511,-0.488) 0.022 -0.402 0.030 |(-0.47,-0.30) 0.17
150 -0.499 0.000024 (-0.509,-0.490) 0.019 -0.396 0.0038 (-0.44,-0.36) 0.08
500 -0.500 0.000027 (-0.509,-0.490) 0.019 -0.401 0.0019 (-0.42,-0.38) 0.04

-0.5 0.3 50 -0.500 0.000024 (-0.511,-0.489) 0.022 0.300 0.026 (0.22,0.39) 0.17
150 -0.499 0.000023 (-0.509,-0.490) 0.019 0.302 0.0039 (0.26,0.34) 0.08
500 -0.499 0.000024 (-0.508,-0.491) 0.017 0.299 0.0018 (0.28,0.32) 0.04

-0.5 0.5 50 -0.500 0.000028 (-0.510,-0.489) 0.020 0.500 0.028 (0.42,0.58) 0.16
150 -0.499 0.000022 (-0.509,-0.490) 0.019 0.505 0.0039 (0.46,0.54) 0.08
500 -0.500 0.000019 (-0.508,-0.491) 0.017 0.501 0.0019 (0.47,0.52) 0.05

-0.1 -0.6 50 -0.100 0.000036 (-0.119,-0.080) 0.039 -0.585 0.028 (-0.67,-0.50) 0.17
150 -0.100 0.000034 (-0.121,-0.078) 0.043 -0.596 0.0037 (-0.63,-0.55) 0.08
500 -0.100 0.000029 (-0.115,-0.084) 0.030 -0.600 0.0018 (-0.62,-0.58) 0.04

-0.1 -0.4 50 -0.100 0.000039 (-0.120,-0.079) 0.041 -0.396 0.027 (-0.47,-0.30) 0.17
150 -0.100 0.000030 (-0.119,-0.080) 0.038 -0.392 0.0041 (-0.43,-0.35) 0.08
500 -0.100 0.000022 (-0.116,-0.083) 0.033 -0.396 0.0019 (-0.42,-0.37) 0.05

-0.1 0.3 50 -0.100 0.000043 (-0.117,-0.082) 0.034 0.314 0.028 (0.22,0.38) 0.16
150 -0.100 0.000032 (-0.118,-0.081) 0.037 0.302 0.0041 (0.26,0.35) 0.09
500 -0.099 0.000031 (-0.115,-0.084) 0.030 0.304 0.0019 (0.28,0.32) 0.04

-0.1 0.5 50 -0.100 0.000033 (-0.119,-0.080) 0.039 0.517 0.025 (0.43,0.60) 0.17
150 -0.100 0.000031 (-0.117,-0.083) 0.033 0.505 0.0038 (0.46,0.54) 0.09
500 -0.100 0.000029 (-0.114,-0.085) 0.028 0.502 0.0020 (0.48,0.52) 0.04

0.2 -0.6 50 0.199 0.000036 (0.179,0.220) 0.041 -0.577 0.024 (-0.66,-0.48) 0.18
150 0.200 0.000035 (0.184,0.215) 0.031 -0.596 0.0039 (-0.63,-0.55) 0.08
500 0.200 0.000031 (0.186,0.213) 0.026 -0.596 0.0020 (-0.62,-0.57) 0.05

0.2 -0.4 50 0.199 0.000034 (0.180,0.219) 0.039 -0.382 0.029 (-0.46,-0.27) 0.19
150 0.199 0.000031 (0.182,0.217) 0.034 -0.396 0.0038 (-0.43,-0.34) 0.09
500 0.199 0.000029 (0.186,0.213) 0.026 -0.396 0.0019 (-0.41,-0.37) 0.04

0.2 0.3 50 0.199 0.000036 (0.181,0.218) 0.037 0.322 0.029 (0.23,0.41) 0.18
150 0.200 0.000032 (0.183,0.216) 0.032 0.302 0.0040 (0.26,0.35) 0.09
500 0.199 0.000030 (0.185,0.214) 0.028 0.302 0.0020 (0.28,0.32) 0.04

0.2 0.5 50 0.199 0.000033 (0.184,0.215) 0.030 0.520 0.026 (0.42,0.59) 0.17
150 0.200 0.000032 (0.183,0.216) 0.032 0.504 0.0040 (0.46,0.55) 0.09
500 0.200 0.000033 (0.186,0.213) 0.027 0.501 0.0020 (0.48,0.52) 0.04

0.8 -0.6 50 0.798 0.000019 (0.792,0.807) 0.014 -0.562 0.027 (-0.67,-0.47) 0.20
150 0.799 0.000014 (0.793,0.806) 0.012 -0.595 0.0044 (-0.63,-0.54) 0.09
500 0.799 0.000013 (0.794,0.805) 0.011 -0.596 0.0019 (-0.61,-0.57) 0.04

0.8 -0.4 50 0.798 0.000018 (0.791,0.808) 0.016 -0.363 0.027 (-0.47,-0.26) 0.21
150 0.799 0.000014 (0.793,0.806) 0.012 -0.395 0.0039 (-0.43,-0.33) 0.10
500 0.799 0.000014 (0.794,0.805) 0.010 -0.396 0.0020 (-0.42,-0.37) 0.05

0.8 0.3 50 0.799 0.000016 (0.792,0.807) 0.014 0.331 0.026 (0.22,0.44) 0.22
150 0.799 0.000012 (0.794,0.805) 0.011 0.304 0.0038 (0.26,0.36) 0.10
500 0.800 0.000013 (0.795,0.804) 0.009 0.305 0.0020 (0.28,0.32) 0.04

0.8 0.5 50 0.798 0.000018 (0.793,0.806) 0.013 0.533 0.025 (0.43,0.63) 0.20
150 0.799 0.000013 (0.794,0.805) 0.011 0.506 0.0039 (0.46,0.55) 0.09
500 0.799 0.000012 (0.795,0.804) 0.009 0.503 0.0018 (0.48,0.52) 0.04
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Table 4.a: Modified MLEs for the first-order WARMA models

zt = ϕzt−1 + εt − θεt−1, εt = W(1.5, 2)
ϕ θ n κ̂n MSE MLCI LCI ξ̂n MSE MLCI LCI

-0.5 -0.6 50 1.605 0.132 (1.28,1.95) 0.67 2.038 0.154 (1.70,2.42) 0.72
150 1.520 0.039 (1.34,1.71) 0.37 2.008 0.048 (1.80,2.22) 0.42
500 1.508 0.0014 (1.41,1.60) 0.19 2.004 0.0019 (1.88,2.12) 0.24

-0.5 -0.4 50 1.621 0.135 (1.27,1.94) 0.67 2.062 0.147 (1.69,2.41) 0.72
150 1.515 0.044 (1.36,1.72) 0.36 2.008 0.057 (1.81,2.23) 0.42
500 1.498 0.0014 (1.41,1.60) 0.19 1.991 0.0020 (1.88,2.11) 0.23

-0.5 0.3 50 1.603 0.134 (1.28,1.95) 0.66 2.057 0.155 (1.69,2.41) 0.72
150 1.515 0.037 (1.35,1.71) 0.36 2.005 0.047 (1.80,2.22) 0.42
500 1.511 0.0013 (1.41,1.60) 0.19 2.009 0.0018 (1.88,2.12) 0.24

-0.5 0.5 50 1.601 0.127 (1.27,1.93) 0.66 2.048 0.154 (1.68,2.40) 0.72
150 1.524 0.042 (1.35,1.71) 0.36 2.012 0.055 (1.80,2.22) 0.42
500 1.508 0.0013 (1.41,1.60) 0.19 2.002 0.0017 (1.89,2.12) 0.23

-0.1 -0.6 50 1.614 0.135 (1.28,1.94) 0.66 2.058 0.159 (1.69,2.43) 0.74
150 1.506 0.039 (1.34,1.70) 0.36 1.995 0.053 (1.79,2.22) 0.43
500 1.508 0.0015 (1.40,1.60) 0.20 2.004 0.0021 (1.88,2.12) 0.24

-0.1 -0.4 50 1.624 0.126 (1.26,1.91) 0.65 2.056 0.160 (1.67,2.41) 0.74
150 1.524 0.040 (1.35,1.71) 0.36 2.013 0.055 (1.80,2.23) 0.43
500 1.508 0.0016 (1.41,1.61) 0.20 2.004 0.0022 (1.89,2.12) 0.23

-0.1 0.3 50 1.605 0.126 (1.28,1.94) 0.66 2.040 0.176 (1.70,2.43) 0.73
150 1.523 0.039 (1.34,1.71) 0.37 2.011 0.055 (1.80,2.23) 0.43
500 1.513 0.0017 (1.41,1.61) 0.20 2.005 0.0021 (1.89,2.12) 0.23

-0.1 0.5 50 1.609 0.131 (1.27,1.93) 0.66 2.019 0.163 (1.68,2.41) 0.73
150 1.524 0.039 (1.34,1.71) 0.37 2.009 0.050 (1.80,2.23) 0.43
500 1.508 0.0013 (1.41,1.60) 0.19 2.001 0.0018 (1.88,2.12) 0.24

0.2 -0.6 50 1.615 0.122 (1.26,1.91) 0.65 2.054 0.160 (1.67,2.40) 0.73
150 1.524 0.040 (1.34,1.70) 0.36 2.013 0.053 (1.80,2.23) 0.43
500 1.508 0.0015 (1.40,1.60) 0.20 2.002 0.0020 (1.88,2.12) 0.24

0.2 -0.4 50 1.593 0.132 (1.28,1.94) 0.66 2.032 0.149 (1.67,2.40) 0.73
150 1.515 0.041 (1.35,1.71) 0.36 2.003 0.050 (1.79,2.22) 0.43
500 1.505 0.0013 (1.41,1.61) 0.20 2.001 0.0013 (1.90,2.13) 0.23

0.2 0.3 50 1.590 0.125 (1.26,1.92) 0.66 2.037 0.154 (1.67,2.39) 0.72
150 1.522 0.040 (1.35,1.71) 0.36 2.015 0.056 (1.79,2.22) 0.43
500 1.504 0.0018 (1.40,1.60) 0.20 2.001 0.0018 (1.88,2.11) 0.23

0.2 0.5 50 1.611 0.116 (1.26,1.91) 0.65 2.063 0.155 (1.67,2.40) 0.73
150 1.515 0.042 (1.35,1.71) 0.36 2.012 0.057 (1.80,2.23) 0.43
500 1.508 0.0015 (1.41,1.61) 0.20 2.003 0.0019 (1.89,2.13) 0.24

0.8 -0.6 50 1.585 0.129 (1.26,1.92) 0.66 2.031 0.149 (1.66,2.39) 0.73
150 1.515 0.039 (1.35,1.72) 0.37 2.006 0.051 (1.80,2.23) 0.43
500 1.509 0.0013 (1.40,1.59) 0.19 2.005 0.0019 (1.87,2.11) 0.24

0.8 -0.4 50 1.610 0.140 (1.29,1.95) 0.66 2.044 0.167 (1.69,2.41) 0.72
150 1.519 0.040 (1.35,1.71) 0.36 2.008 0.056 (1.80,2.22) 0.42
500 1.512 0.0016 (1.41,1.60) 0.19 2.009 0.0018 (1.88,2.12) 0.24

0.8 0.3 50 1.602 0.143 (1.28,1.95) 0.67 2.045 0.153 (1.69,2.41) 0.72
150 1.520 0.044 (1.34,1.70) 0.36 2.005 0.060 (1.79,2.21) 0.42
500 1.506 0.0014 (1.40,1.59) 0.19 2.002 0.0018 (1.88,2.11) 0.23

0.8 0.5 50 1.588 0.119 (1.26,1.92) 0.66 2.023 0.153 (1.68,2.41) 0.73
150 1.517 0.047 |(1.34,1.70) 0.36 2.006 0.060 (1.80,2.22) 0.42
500 1.504 0.0014 (1.41,1.60) 0.19 1.999 0.0019 (1.89,2.12) 0.23
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Table 4.b: Modified MLEs for the first-order WARMA models

zt = ϕzt−1 + εt − θεt−1, εt = W(1.5, 2)
ϕ θ n ϕ̂n,4 MSE MLCI LCI θ̂n,4 MSE MLCI LCI

-0.5 -0.6 50 -0.500 0.000039 (-0.511,-0.488) 0.022 -0.581 0.023 (-0.68,-0.48) 0.20
150 -0.5001 0.000036 (-0.511,-0.488) 0.022 -0.594 0.0065 (-0.64,-0.55) 0.09
500 -0.5000 0.000037 (-0.509,-0.490) 0.019 -0.597 0.0019 (-0.62,-0.58) 0.04

-0.5 -0.4 50 -0.5001 0.000036 (-0.511,-0.488) 0.023 -0.366 0.026 (-0.48,-0.28) 0.20
150 -0.499 0.000033 (-0.511,-0.489) 0.022 -0.396 0.0065 (-0.43,-0.34) 0.09
500 -0.5002 0.000035 (-0.509,-0.490) 0.019 -0.399 0.0020 (-0.42,-0.38) 0.04

-0.5 0.3 50 -0.499 0.000037 (-0.511,-0.489) 0.022 0.320 0.025 (0.22,0.42) 0.20
150 -0.499 0.000035 (-0.510,-0.489) 0.021 0.304 0.0062 (0.25,0.35) 0.10
500 -0.5001 0.000031 (-0.509,-0.490) 0.019 0.303 0.0020 (0.28,0.32) 0.04

-0.5 0.5 50 -0.499 0.000035 (-0.511,-0.488) 0.023 0.517 0.023 (0.41,0.62) 0.21
150 -0.499 0.000034 (-0.510,-0.489) 0.021 0.505 0.0069 (0.46,0.55) 0.09
500 -0.5001 0.000031 (-0.509,-0.490) 0.019 0.501 0.0018 (0.48,0.52) 0.04

-0.1 -0.6 50 -0.1003 0.000048 (-0.114,-0.085) 0.029 -0.575 0.023 (-0.68,-0.48) 0.20
150 -0.1004 0.000035 (-0.113,-0.086) 0.027 -0.600 0.0065 (-0.64,-0.54) 0.10
500 -0.1006 0.000032 (-0.112,-0.087) 0.025 -0.597 0.0020 (-0.62,-0.57) 0.05

-0.1 -0.4 50 -0.103 0.000046 (-0.114,-0.085) 0.029 -0.379 0.026 (-0.48,-0.28) 0.20
150 -0.103 0.000047 (-0.114,-0.086) 0.028 -0.399 0.0066 (-0.44,-0.35) 0.09
500 -0.102 0.000043 (-0.112,-0.087) 0.025 -0.403 0.0017 (-0.42,-0.37) 0.05

-0.1 0.3 50 -0.098 0.000047 (-0.114,-0.086) 0.028 0.314 0.024 (0.21,0.41) 0.20
150 -0.0986 0.000045 (-0.114,-0.087) 0.027 0.308 0.0067 (0.25,0.35) 0.10
500 -0.0989 0.000046 (-0.112,-0.087) 0.025 0.303 0.0019 (0.28,0.32) 0.04

-0.1 0.5 50 -0.098 0.000044 (-0.114,-0.085) 0.029 0.514 0.022 (0.41,0.62) 0.21
150 -0.099 0.000041 (-0.114,-0.086) 0.028 0.506 0.0058 (0.46,0.55) 0.09
500 -0.1003 0.000038 (-0.112,-0.087) 0.025 0.501 0.0020 (0.48,0.52) 0.04

0.2 -0.6 50 0.199 0.000048 (0.187,0.212) 0.025 -0.575 0.024 (-0.68,-0.48) 0.20
150 0.2002 0.000047 (0.187,0.212) 0.025 -0.592 0.0068 (-0.64,-0.55) 0.09
500 0.199 0.000043 (0.188,0.211) 0.023 -0.597 0.0019 (-0.61,-0.57) 0.04

0.2 -0.4 50 0.199 0.000050 (0.187,0.212) 0.025 -0.388 0.024 (-0.48,-0.28) 0.20
150 0.199 0.000046 (0.186,0.213) 0.027 -0.397 0.0066 (-0.44,-0.34) 0.10
500 0.199 0.000043 (0.188,0.211) 0.023 -0.397 0.0020 (-0.42,-0.37) 0.05

0.2 0.3 50 0.199 0.000047 (0.186,0.213) 0.026 0.316 0.022 (0.22,0.42) 0.20
150 0.2002 0.000043 (0.187,0.213) 0.025 0.305 0.0061 (0.26,0.36) 0.10
500 0.199 0.000041 (0.188,0.212) 0.024 0.301 0.0019 (0.28,0.32) 0.04

0.2 0.5 50 0.199 0.000050 (0.186,0.213) 0.027 0.522 0.022 (0.42,0.62) 0.20
150 0.199 0.000049 (0.187,0.212) 0.025 0.504 0.0059 (0.45,0.55) 0.10
500 0.2001 0.000045 (0.188,0.212) 0.024 0.502 0.0019 (0.48,0.52) 0.04

0.8 -0.6 50 0.798 0.000026 (0.793,0.806) 0.013 -0.588 0.021 (-0.68,-0.47) 0.20
150 0.799 0.000021 (0.794,0.805) 0.011 -0.597 0.0067 (-0.63,-0.54) 0.09
500 0.799 0.000019 (0.794,0.805) 0.011 -0.599 0.0018 (-0.62,-0.58) 0.04

0.8 -0.4 50 0.799 0.000025 (0.793,0.806) 0.013 -0.381 0.021 (-0.48,-0.28) 0.20
150 0.799 0.000020 (0.793,0.806) 0.013 -0.398 0.0066 (-0.44,-0.34) 0.10
500 0.800 0.000018 (0.794,0.805) 0.011 -0.396 0.0019 (-0.42,-0.38) 0.04

0.8 0.3 50 0.798 0.000023 (0.793,0.806) 0.013 0.316 0.023 (0.22,0.42) 0.20
150 0.799 0.000019 (0.794,0.805) 0.011 0.303 0.0058 (0.26,0.35) 0.09
500 0.800 0.000016 (0.794,0.805) 0.011 0.302 0.0018 (0.28,0.32) 0.04

0.8 0.5 50 0.798 0.000023 (0.793,0.806) 0.013 0.511 0.026 (0.41,0.62) 0.21
150 0.799 0.000017 (0.794,0.805) 0.011 0.503 0.0067 (0.46,0.55) 0.09
500 0.799 0.000017 (0.795,0.806) 0.011 0.501 0.0020 (0.48,0.52) 0.04
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Table 5: Modified MLEs by non-recursive method for the first-order LNARMA models

zt = ϕzt−1 + εt − θεt−1, εt = LN(0, 0.75)
ϕ θ n M̂n MSE MLCI Ŝn MSE MLCI ϕ̂n,2 MSE MLCI θ̂n,2 MSE MLCI

-0.6 -0.7 50 -0.019 0.061 (-0.21,0.18) 0.78 0.039 (0.61,0.96) -0.599 0.000050 (-0.609,-0.590) -0.69 0.017 (-0.77,-0.62)
350 -0.006 0.012 (-0.08,0.07) 0.76 0.010 (0.69,0.83) -0.600 0.000043 (-0.608,-0.591) -0.69 0.0025 (-0.71,-0.68)
1000 -0.005 0.0045 (-0.05,0.04) 0.75 0.0039 (0.72,0.80) -0.600 0.000042 (-0.607,-0.592) -0.70 0.0010 (-0.71,-0.69)

-0.6 0.2 50 -0.015 0.059 (-0.21,0.18) 0.78 0.038 (0.60,0.95) -0.600 0.000047 (-0.610,-0.589) 0.20 0.017 (0.13,0.28)
350 -0.008 0.012 (-0.08,0.07) 0.77 0.0011 (0.70,0.84) -0.600 0.000046 (-0.607,-0.592) 0.19 0.0026 (0.18,0.21)
1000 -0.003 0.0040 (-0.05,0.04) 0.75 0.0033 (0.71,0.80) -0.599 0.000053 (-0.606,-0.593) 0.20 0.0010 (0.19,0.21)

0.3 -0.7 50 0.001 0.061 (-0.19,0.19) 0.77 0.038 (0.59,0.95) 0.299 0.000074 (0.287,0.313) -0.68 0.017 (-0.75,-0.61)
350 -0.007 0.015 (-0.08,0.07) 0.77 0.012 (0.70,0.84) 0.299 0.000077 (0.289,0.311) -0.69 0.0030 (-0.71,-0.67)
1000 -0.005 0.0046 (-0.05,0.04) 0.76 0.0041 (0.72,0.80) 0.299 0.000059 (0.291,0.308) -0.69 0.0010 (-0.71,-0.69)

0.3 0.2 50 0.002 0.059 (-0.19,0.19) 0.77 0.038 (0.59,0.94) 0.299 0.000069 (0.286,0.313) 0.22 0.017 (0.15,0.30)
350 -0.004 0.014 (-0.08,0.07) 0.76 0.010 (0.69,0.83) 0.299 0.000065 (0.287,0.313) 0.20 0.0028 (0.18,0.22)
1000 -0.004 0.0040 (-0.05,0.04) 0.75 0.0031 (0.71,0.79) 0.299 0.000058 (0.289,0.310) 0.20 0.0010 (0.19,0.21)

Table 6: Modified MLEs by recursive method for the first-order LNARMA models

zt = ϕzt−1 + εt − θεt−1, εt = LN(0, 0.75)
ϕ θ n M̂n MSE MLCI Ŝn MSE MLCI ϕ̂n,2 MSE MLCI θ̂n,2 MSE MLCI

-0.6 -0.7 50 -0.024 0.074 (-0.23,0.20) 0.78 0.050 (0.59,0.98) -0.600 0.000055 (-0.610,-0.589) -0.69 0.021 (-0.78,-0.61)
350 -0.015 0.013 (-0.09,0.06) 0.78 0.011 (0.70,0.84) -0.599 0.000058 (-0.608,-0.591) -0.69 0.0027 (-0.72,-0.68)
1000 -0.011 0.0050 (-0.05,0.03) 0.76 0.0045 (0.72,0.80) -0.599 0.000045 (-0.607,-0.593) -0.70 0.0010 (-0.71,-0.69)

-0.6 0.2 50 -0.021 0.083 (-0.23,0.19) 0.79 0.049 (0.59,0.98) -0.598 0.000067 (-0.608,-0.590) 0.20 0.025 (0.11,0.29)
350 -0.011 0.014 (-0.09,0.07) 0.77 0.012 (0.69,0.84) -0.598 0.000046 (-0.607,-0.592) 0.19 0.0029 (0.18,0.22)
1000 -0.001 0.0046 (-0.05,0.04) 0.75 0.0040 (0.71,0.80) -0.599 0.000045 (-0.606,-0.593) 0.20 0.0010 (0.19,0.21)

0.3 -0.7 50 0.025 0.073 (-0.19,0.22) 0.79 0.045 (0.57,0.96) 0.293 0.000083 (0.287,0.313) -0.67 0.022 (-0.76,-0.59)
350 -0.008 0.012 (-0.09,0.07) 0.77 0.012 (0.70,0.84) 0.299 0.000059 (0.289,0.311) -0.69 0.0026 (-0.71,-0.68)
1000 -0.004 0.0054 (-0.05,0.04) 0.75 0.0047 (0.72,0.80) 0.299 0.000066 (0.291,0.308) -0.69 0.0010 (-0.70,-0.69)

0.3 0.2 50 0.021 0.076 (-0.22,0.21) 0.78 0.047 (0.58,0.97) 0.293 0.000058 (0.287,0.312) 0.22 0.024 (0.12,0.30)
350 -0.012 0.015 (-0.08,0.07) 0.76 0.012 (0.69,0.83) 0.299 0.000070 (0.285,0.314) 0.20 0.0029 (0.18,0.22)
1000 -0.009 0.0045 (-0.05,0.04) 0.76 0.0036 (0.71,0.80) 0.299 0.000055 (0.289,0.310) 0.21 0.0010 (0.19,0.21)

Table 7: Modified MLEs by reduced method for the first-order LNARMA models

zt = ϕzt−1 + εt − θεt−1, εt = LN(0, 0.75)
ϕ θ n M̂n MSE MLCI Ŝn MSE MLCI ϕ̂n,2 MSE MLCI θ̂n,2 MSE MLCI

-0.6 -0.7 50 -0.046 0.15 (-0.32,0.27) 0.79 0.083 (0.51,1.07) -0.600 0.000066 (-0.608,-0.591) -0.71 0.11 (-0.86,-0.57)
350 -0.016 0.016 (-0.09,0.07) 0.77 0.013 (0.69,0.85) -0.600 0.000067 (-0.608,-0.591) -0.68 0.0034 (-0.72,-0.68)
1000 -0.008 0.0057 (-0.05,0.04) 0.78 0.0048 (0.71,0.80) -0.599 0.000066 (-0.607,-0.592) -0.70 0.0012 (-0.71,-0.69)

-0.6 0.2 50 -0.043 0.15 (-0.31,0.27) 0.78 0.083 (0.50,1.06) -0.600 0.000070 (-0.609,-0.590) 0.20 0.11 (0.04,0.33)
350 -0.014 0.014 (-0.08,0.08) 0.78 0.012 (0.69,0.84) -0.600 0.000059 (-0.608,-0.591) 0.20 0.0030 (0.18,0.22)
1000 -0.007 0.0060 (-0.05,0.04) 0.76 0.0047 (0.71,0.80) -0.599 0.000065 (-0.606,-0.593) 0.20 0.0010 (0.19,0.21)

0.3 -0.7 50 0.048 0.16 (-0.24,0.32) 0.79 0.084 (0.46,1.02) 0.297 0.000076 (0.287,0.312) -0.66 0.10 (-0.81,-0.52)
350 -0.011 0.014 (-0.08,0.09) 0.78 0.012 (0.68,0.83) 0.299 0.000079 (0.288,0.312) -0.69 0.0032 (-0.71,-0.67)
1000 -0.005 0.0058 (-0.05,0.04) 0.76 0.0048 (0.71,0.80) 0.299 0.000063 (0.291,0.308) -0.70 0.0011 (-0.71,-0.69)

0.3 0.2 50 0.052 0.16 (-0.26,0.31) 0.78 0.074 (0.49,1.04) 0.291 0.000083 (0.288,0.311) 0.21 0.12 (0.07,0.35)
350 -0.010 0.016 (-0.09,0.07) 0.77 0.012 (0.69,0.85) 0.300 0.000076 (0.284,0.315) 0.20 0.0035 (0.18,0.22)
1000 -0.006 0.0056 (-0.05,0.04) 0.76 0.0047 (0.71,0.80) 0.300 0.000070 (0.289,0.311) 0.20 0.0010 (0.19,0.21)
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5 Discussion and Future Works

We calculated the Modified MLEs to estimate the parameters of the first-order ARMA
models when the residuals come from the two parametric distribution families: expone-
ntial and Weibull. Modified estimators have been presented in three forms: non-
recursive, recursive and reduced. The recursive form obtained by recursive definition
of the residuals based on time series observations is a more functional approach than the
non-recursive form. However, it has more complex equations than the non-recursive
form. While, the reduced form follows simpler equations compared to the recursive
form and are computable in functional situations.

Estimating the first-order ARMA model parameters with non-normal residuals
using modified MLEs is important in different fields. Model selection is one of the
fields in which model parameters need to be estimated. After diagnosing the non-
normality of the data distribution, the main point that should be discussed is the
proper distribution of the residuals. Selecting the most appropriate distribution for the
residuals under consideration is in the scope of model selection. The introduced model
selection methods are split into two categories, criteria and statistical hypothesis tests,
both of which are mainly based on Kullback-Leibler divergence criterion (KL) (Kullback
and Leibler (1951)). According to the KL criterion, the appropriate fitted distribution
to the data is the one with the minimum discrepancy from the true distribution of
the data. Minimizing the KL criterion is equivalent to maximizing the portion of this
criterion which leads to the calculation of the likelihood function and the estimation
of the model parameters using the ML procedure. It is therefore very important to
provide solutions to estimate the parameters of different models using the ML method,
particularly in non-normal mode, where the selection of the model is desired. Modified
MLEs, by estimating the parameters of the first-order ARMA models, enable us to select
the optimal model of the residuals and there by improve the modeling and forecasting
of time series.

Although obtaining estimators is important for modeling time series by the first-
order ARMA model, further aspects of estimators need to be discussed to complete
the analysis. Among them, the analysis of features such as the consistency and
efficiency of the modified MLEs can be suggested. Furthermore, since in model
diagnostic discussions the distribution of the data generator is assumed unknown,
it seems necessary to re-analyze the important features of the estimators such as their
consistency, efficiency and asymptotic distribution. Another subject that should be
discussed is the robustness of the estimators. By considering the dependency of the
structure of the modified MLEs on the sample mean of Zt, these estimators are definitely
not robust against outliers. Therefore, a broad discussion upon robustness should be
considered in future studies.
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6 Conclusion

The aim of this study was to estimate the parameters of the first-order ARMA model
while the residuals that generate the process were non-normally distributed. MLEs
were ourestimators of interest, but due to the complexity of the likelihood functions,
there was no explicit solution for them. For solving this problem, we used a modified
method that was based on linearization of the log-likelihood function in complex
phrases using first-order Taylor’s series expansion. The residuals were selected from
exponential and Weibull families. Then the coefficients and residual distribution
parameters of the first-order ARMA model were estimated in several subsets of these
families. Ultimately, the simulation study confirmed the theoretical conclusions. The
novelty of this study is the approximation of MLEs in a modified way to estimate the
first-order ARMA model parameters in non-normal mode. It facilitates time series
modeling based on the first-order ARMA models in non-normal mode. However, the
parameter estimation methods produced in this study may need more development.
To complete this procedure, further supplementary concepts such as robustness of the
proposed estimators should be addressed in future works.
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