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1 Introduction

The ordinary least-squares estimator (OLS) provides a convenient solution of the
linear regression analysis. One of the most important assumptions in the linear
regression analysis is that the value of the error terms is independent of (some)
predictor variables. When this assumption is violated the ordinary least square method
arises a biased estimator and referred as the endogeneity problem, see e.g., Ebbes
(2004) and Bowden and Turkington (1984). There are several methods to overcome
endogeneity in which instrumental variable (IV) method has long been one of the most
popular procedures among epidemiologists, econometrists, social scientists, etc. See
for example, Wooldridge (2016), Burgess et al. (2015) and Lawlor (2008). Instrumental
variables are independent of the error term and help to obtain unbiased and consistent
estimator of the regression coefficients. When the instrumental variables implemented
in the model, a statistical technique, named Two Stage Least Squares (2SLS) method
may be used to estimate parameters. The 2SLS regression analysis which introduced
by Bassmann (1957) assumes that there is a secondary predictor that is correlated to the
predictor but not with the error term. This secondary predictor is named instrumental
variable. Also, The 2SLS estimator is a generalization of the instrumental variable
estimator and it reduces to the IV estimator if the equation is exactly identified.

A valid IV must have at least two conditions: First, the relevance assumption, which
means that the IV has a causal effect on endogenous variable and second, the exclusion
restriction; which indicates that the IV affects the outcome only through the endogenous
variables. In some situations it is quite difficult to find valid instrumental and in fact,
may only exist some ill-conditioned IVs. Some researchers caution that the challenge
of identifying a credible instrument is not trivial (see for example, Martens et al. (2006)
and Lousdal (2018)).

Another most important assumptions in regression analysis is that all the observati-
ons are correctly observed. However, in many applications this assumption may not
hold and the data are contaminated by measurement errors. In these models, estimation
based on the standard assumption leads to inconsistent estimates, meaning that the
parameter estimates do not tend to the true values even in very large samples. In
fact, measurement error is known to cause biased parameter estimates (Carroll et
al. (2006)) and lack of power is a direct consequence of this misestimates. Error
ignoring measurement error often leads to incorrect inferences about parameters (see,
for example, Cock and Campbel (1979)). Measurement error estimation has extensively
been employed in theoretical and applied statistics; Rasekh and Fieller (2001) discussed
the Influence functions in functional measurement error models with replicated data,
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while Devanarayana and stefanski (2002) and Nawarathna and Choudhary (2015)
considered a heteroscedastic measurement error models with replicate measurements.
Singh et al. (2014) considered a measurement error model under exact linear restrictions.
Wimmer and Witkovsky (2007) considered a measurement error model with replicated
data in comparative calibration problem, see also, Bolfarine and Lachos (2016) which
considered Berkson measurement errors. Dalen et. al. (2009) used replication to
correct misclassification of a categorized exposure in binary regression. Chan and Mak
(1979) and Isogawa (1985) studied the structural form of the replicated measurement
error model under the condition of normally distributed measurement errors, while
Cao et al. (2015) dealt with multivariate measurement error models for replicated
data under heavy-tailed distributions. Recently, Shalabh et al. (2016) immaculated the
inconsistent estimator of parameter in ultrastructural measurement error model with
replicated data, see also Ullah et al. (2001) and Shalabh et al. (2009) for non normal
measurement errors in such a case.

Besides, another important assumption in the classical regression analysis is that
predictor variables are linearly independent. When this assumption is violated, the
predictor variables are nearly dependent which refers as multicollinearity problem and
yields poor estimators of interest parameters. In order to resolve this problem, several
approaches have been considered, among them, the ridge regression was introduced by
Horel and Kennard (1970) and considers a shrinkage method to overcome the problem
of multi- collinearity in the estimation of regression parameters. For more information
about this type of estimators and their properties and extensions, one may refer to
Saleh et al. (2019) which is a most significant book in this field, along with Arashi et al.
(2014) and Fallah et al. (2017).

Many authors described the connection between endogeneity and multicollinearity
in the literature. Recently, Philips and Evans (2016) discussed approximating and
reducing bias in 2SLS estimation while Hansen and Kuzbur (2014) proposed a jackknife
instrumental variables estimator with regularization at each jackknife iteration that
helps alleviate the bias. Carrasco (2012) proposed an original approach based on
regularized 2SLS. Carrasco and Tchuente (2015) regularized versions of the limited
information maximum likelihood (LIML). Also, Rasekh (2006), Ghapani and Babadi
(2016) and Saleh, E., Shalabh (2014) presented the connection between measurement
error models and ridge estimators. In this paper we employ the ridge regression
method to combat multicollinearity in the estimation of IV models in the presence of
some measurement errors.

The organization of this paper is as follows. In Section 2, we obtain a ridge estimator
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in a two stage least square estimation where there are some errors in measurement of
the instrumental variables. Some large sample properties and theoretical comparison
will be presented in Section 3 and finally, in Section 4, we present a simulation study
and a real numerical application of our results.

2 Model Specification and Estimation

Consider relationship between the n×1 vector of outcome variable y and the explanatory
matrix X and the relation between the exploratory variables and their corresponding
instruments Z are respectively as

y = Xβ + ε , (2.1a)

X = Zη + U , (2.1b)

where X is an n× p matrix of the endogenous regressors, potentially correlated with ε,
whose ith row is xT

i and β is the unknown regression coefficients. Also, assume that
Z is an n × p matrix of the instrumental variables or the excluded exogenous variables
which is uncorrelated with ε and η = (η1,η2, ...,ηp), where ηi, i = 1, 2, ...p, is the vector
of coefficients associated with these instruments. The n × p matrix of instrumental
model error U = (u1, u2, . . . , un)T is assumed to have normally distributed rows, with
mean zero and covariance matrix σ2

uIp and hence U ∼ N(0, σ2
uInp), where I is an identity

matrix. Moreover, assume that E(ZU) = E(Zε) = 0, and ε ∼ N(0, σ2In). In addition,
suppose that the observations of the latent (unobservable) IVs Z are contaminated with
measurement errors, as

V = Z + ∆ , (2.2)

where V is the matrix of observed variables and ∆ = (δ1, δ2, . . . , δn)T is associated
with Z and normally distributed rows, with mean zero and covariance Λ, where Λ is
a diagonal p × p matrix of known values with non-negative diagonal elements. Thus,
∆ ∼ N(0, In ⊗Λ) where ⊗ is the Kronecker product.

With these assumptions, each column of the matrix X, i.e., xi, i = 1, 2, ..., p, in (2.1b)
follow normal distribution with mean µi = Zηi and variance-covariance matrix Σ = σI,
so, the log-likelihood functions can be written as,

`(ηi, Z, xi) = −
n
2

ln(2π) −
1
2

ln(Σ) −
1
2

(xi − µi)
TΣ−1(xi − µi)

= −
n
2

ln(2π) −
n
2

ln(σ2) −
1

2σ2 (xi − Zηi)
T(xi − Zηi), i = 1, 2, ...., p.
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Nakamura (1990) has proposed an approach in measurement error models to find
a corrected score function whose expectation with respect to the measurement error
distribution coincides with the usual score function based on the unknown true indepe-
ndent variables. See, e.g, Zare and Rasekh (2011) and Fung (2003) for more details.
According to Fung et al. (2003), the appropriate corrected log-likelihood function is
defined as

`∗(ηi, V , xi) = −n
2 ln(2πσ2) − 1

2σ2 (xi − Vηi)
T(xi − Vηi) − nηi

TΛηi}, i = 1, 2, ...., p,

where, E∗(`∗(ηi, V , xi) = `(ηi, Z, xi), i = 1, 2, ...., p, and E∗ denotes the conditional mean
with respect to Z given x.

By differentiating from `∗(ηi, V , xi) with respect to ηi, we obtain the corrected
log-likelihood estimator of ηi as

η̂iME =
(
VTV − nΛ)

)−1
VTxi, i = 1, 2, ..., p, (2.3)

and so,

η̂ME =
(
VTV − nΛ)

)−1
VTX. (2.4)

Then, We use the predicted matrix X̂ as an estimation for X and apply the IV
estimation using X̂ME = Zη̂ME (see for instance, Wooldridge (2016)). Then, we regress
y on the predicted values from the first stage, so, the second stage regression coefficient
using OLS method will be obtained as

β̂2SLS−ME =
(
X̂T

MEX̂ME
)−1

X̂T
MEy, (2.5)

where the subscript 2SLS −ME stands for the two stage least squares estimator with
measurement error in instrumental variables. Now, consider in model (2.1) there are
some multicollinearity within columns of the matrix Z. In what follows, we use the
ridge penalty to combat this multicollinearity. Define

x∗i =

(
xi
0

)
,Z∗ =

(
Z
√
λIk

)
and U∗i =

(
Ui −Ληi
ϕ

)
,

in which λ is the tuning parameter, and ϕ is an appropriate random vector with
E(ϕ) = 0 and Var(ϕ) = σ2Ik. Then the appropriate corrected log-likelihood in the
presence of measurement errors and the multicollinearity, which satisfies

E∗(`∗(ηi, V , xi) = `(ηi, Z, xi), i = 1, 2, ...., p,
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is defined as

`∗(ηi, V , xi) = −
n
2

ln(2πσ2) −
1

2σ2 {(xi − Vηi)
T(xi − Vηi) − nηi

TΛηi + ληi
Tηi},

for i = 1, 2, ...., p and λ > 0. By differentiating from `∗(ηi, V , xi) with respect to ηi we
obtain the corrected log-likelihood estimator of ηi, as

η̂i =
(
VTV − nΛ + λI

)−1
VTxi, i = 1, 2, ..., p, (2.6)

and hence the ridge estimator when the instrumental variables have multicollinearity
and measurement error is as

η̂RME =
(
VTV − nΛ + λI

)−1
VTX. (2.7)

Now, similar to equation (2.3) by plug-in the predicted matrix X̂RME = Zη̂RME to
equation (2.1a), the regularized two stage estimator ofβ, in the presence of measurement
errors, can be obtained as

β̂2SLS−RME =
(
X̂T

RMEX̂RME
)−1

X̂T
RMEy, (2.8)

in which the subscript 2SLS−RME indicates the two stage least squares estimator when
the instrumental variables have multicollinearity and measurement error.

It should be noted that the estimator in (2.8) will reduce to (2.5) if there is no
multicolinearity in instrumental variables, while if all instrumental variables measured
without error, the estimator (2.5) will simplified to the traditional two stage least square
estimator as

β̂2SLS =
(
X̂TX̂

)−1
X̂T y, (2.9)

where X̂ = Z
(
ZTZ

)−1
ZTX.

3 Asymptotic Properties

In this section, we investigate some asymptotic properties of the proposed estimator
in Section 2. The following theorem states the asymptotic properties of our estimator.
First, we accept some assumptions.
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Assimption 1:
1. V and Z are stochastic and full rank matrices.
2. The p × p matrix M = plimΦTΦ

n exists and is nonsingular.
3. The limit of n−1(ZTZ + λI) exists.

Theorem 3.1. Under the assumption 1, η̂RME has asymptotically normal distribution with
mean ZTZ(ZT Z+ λI)−1η and variance-covariance matrix
(ZT Z+ λI)−1

(
Λ(nσ2 + ηTZT Zη)+ σ2ZTZ

)
(ZT Z+ λI)−1.

Proof. We have E∗(ΦTΦ) = ZTZ + nΛ, j = 1, 2, . . . ,m, and by Fung et. al. (2003) we can
write

ΦTΦ = ZTZ + nΛ + Op(n
1
2 ).

Thus, we obtain

n−1( ΦTΦ − nΛ + λ I) = n−1( ZTZ + λI) + Op(n−
1
2 ),

from (2.5), we have

√
nη̂r =

(
n−1(ΦTΦ − nΛ + λI)

)−1
n−

1
2 ΦTX

=
(
n−1(ZTZ + λ I+ Op(n−

1
2 ))

)−1
n−

1
2 ΦTX

=
(
n−1(ZTZ + λ I+ Op(n−

1
2 ))

)−1
n−

1
2 ΦTX

=
(
I+Op(n−

1
2 )
)−1 (

n−1(ZTZ + λI)
)−1

n−
1
2 ΦTX

=
(
I+Op(n−

1
2 )
) (

n−1(ZTZ + λI)
)−1

n−
1
2 ΦTX,

and, since by assumption 1.3, the limit of C = n−1(ZTZ + λI) exist, hence,

√
nη̂r = C−1ξ + Op(n−

1
2 ),

where ξ = n−
1
2 ΦTX is asymptotically normal with mean n−

1
2 ZTZη (See for example,

Fung et al. (2003) and Ghapani and Babadi (2016)). So, we readily conclude that

√
n(η̂r − ZTZ(ZT Z+ λI)−1 η) = C−1(ξ − E(ξ)) + Op(n−

1
2 ).
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Consequently,
√

n(η̂r − ZTZ(ZT Z+ λI)−1η) has asymptotically normal distribution
with mean zero.

Also, we have AVar(
√

nη̂r) = C−1Var(ξ)C−1. The variance-covariance matrix of ξ
can be obtained as

Var(ξ) = EX(Var(ξ|X)) + VarX(E(ξ|X)) = n−1EX(XTyΛ) + n−1VarX(ZTX)
= n−1EX(XTXΛ) + n−1VarX(ZTX) = n−1Λ(nσ2 + ηTZT Zη)+ n−1σ2ZTZ
= n−1[Λ(nσ2 + ηTZT Zη)+ σ2ZTZ].

Thus,

AVar(η̂r) = (ZT Z+ λI)−1
(
Λ(nσ2 + ηTZT Zη)+ σ2ZTZ

)
(ZT Z+ λI)−1,

which completes the proof. �

In addition to assumptions (1), we need the following assumptions to prove the
next theorems.

Assumption 2
1. X is an stochastic and full rank matrix.
2. The p × p matrix X̂T

RMEX̂RME of (2.5) exists and is nonsingular.
3. E(Zε ) = 0.

4.
Σn

i=1Ziεi

n
d
→ N(0,Φ), for some p × p symmetric, finite and nonsingular matrix Φ.

5. The matrices Qxv = E(XTΦ) and Qzz = ZTZ are symmetric, finite and of full rank.
6. The matrix Qg = ΦTΦ − nΛ + λI is finite and singular.

Theorem 3.2. Under assumptions 2,

β̂2SLS−RME
p
→ (QxvQ−1

g QzzQ−1
g Qvx)−1QxvQ−1

g β.

Proof. From (2.7), we readily have

β̂2SLS−RME =
(
X̂T

RMEX̂RME
)−1

X̂T
RMEy

=
(
XTΦQ−1

g ZTZQ−1
g ΦTX

)−1
XTΦQ−1

g ZT y

=

[(
XTΦ

n

)
nQ−1

g

(
ZTZ

n

)
nQ−1

g

(
ΦTX

n

)]−1 (
XTΦ

n

)
nQ−1

g

(
ZT y

n

)
.
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Using (2.1a) and defining W = M−1H, M =
(
XTΦQ−1

g ZTZQ−1
g ΦTX

)
and H = XTΦQ−1

g ZTX,
we have

β̂2SLS−RME −Wβ = Wε

=

[(
XTΦ

n

)
nQ−1

g

(
ZTZ

n

)
nQ−1

g

(
ΦTX

n

)]−1 (
XTΦ

n

)
nQ−1

g

(
ZTε

n

)
=

[
Q̂xvQ̂

−1
g Q̂zzQ̂

−1
g Q̂

T
xv

]−1
Q̂xvQ̂

−1
g

ZTε
n
,

where Q̂
T
xv = Q̂xv = XTΦ

n = n−1Σn
i=1xivi

T, Q̂zz = ZTZ
n = n−1Σn

i=1zizi
T and Q̂g = n−1Qg.

By WLLN, we have Q̂xv
p
→ Qxv , Q̂g

p
→ Qg, Q̂zz

p
→ Qzz and ZTε

n
p
→ E(Ziεi) = 0 and,

since Qxv and Qzz are full rank matrices and Qg is nonsingular, so Qxv Q−1
g QzzQ−1

g QT
xv

is a symmetric and nonsingular matrix and, by the continuity theorem, we deduce that[
Q̂xvQ̂

−1
g Q̂zzQ̂

−1
g Q̂

T
xv

]−1 p
→

[
QxvQ−1

g QzzQ−1
g QT

xv

]−1
,

consequently, we have

β̂2SLS−RME −Wβ
p
→

[
QxvQ−1

g QzzQ−1
g QT

xv

]−1
QxvQ−1

g .0 = 0.

�

Theorem 3.3. Under assumptions 2,

√
n(β̂2SLS−RME −Wβ) d

→ N(0,Ω), (3.1)

where W is as in theorem 3.1 and Ω = M−1QxvQ−1
g ΦQ−1

g QT
xvM−1.

Proof. Using the notations of theorem 3.1, we have

√
n(β̂RME −W β) = M̂−1Q̂xvQ̂

−1
g

ZTε
√

n
= Â ZTε

√
n

,

where M̂ = Q̂xvQ̂
−1
g Q̂zzQ̂

−1
g Q̂

T
xv. Now, by the CLT theorem (assumption 2.4), we have

ZTε
√

n
=

Σn
i=1Ziεi
√

n
d
→ N(0,Φ),
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where Φ is a finite and nonsingular matrix. Denoting the random vector H ∼ N(0,Φ)
and applying the Slutsky Theorem, we have

√
n(β̂RME −Wβ) d

→ M−1QxvQ−1
g .N(0,Φ)

∼ N(0,M−1QxvQ−1
g ΦQ−1

g QT
xvM−1)

∼ N(0,Ω),

where Ω is as (3.1). �

The following corollaries are the direct consequences of the above Theorems. The
first corollary yields by letting λ = 0 and the second one holds by considering the
diagonal elements of Λ equal zero.

Corollary 3.1. If there are only some measurement errors in the instrumental variables then

√
n(β̂2SLS−ME −Wβ) d

→ N(0,Ω),

where W and Ω are as in Theorem 3.3 with Qg = ΦTΦ − nΛ.

Corollary 3.2. If there are no measurement errors and multicollinearity in the instrumental
variables, then

√
n(β̂2SLS − β) d

→ N(0, σ2
uXTX),

where β̂2SLS is the 2SLS estimator (2.9).

4 Numerical Study

4.1 The Monte Carlo Simulation

In this section, we employ the Monte Carlo simulation to compare the performance of
estimators in the previous section with respect to their absolute relative bias (R.Bias)
and estimated mean square errors (EMSE) under several degrees of multicollinearities.
First, we generate data in the form of the vector W = (x,Φ, ε)T, which has a multivariate
normal distribution with mean zero and the covariance matrix in such a way that data
have multicollinearity and endogeneity problem. For multicollinearity, we assume the
correlation between the instruments is equal to 0.9 and for endogeneity, we assume
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Table 1: Estimated R.Bias and MSE values of the 2SLS, 2SLS-ME and 2SLS-RME

ρ=0.50
Coefficients β β̂2SLS β̂2SLS−ME β̂2SLS−RME

β1 0.32812 0.16076 0.34104 0.33984
β2 0.13582 0.05206 0.12873 0.12973
β3 0.08603 0.46956 0.07289 0.07370

R.Bias 2.17141 2.08083 2.06481
EMSE 0.29705 0.40886 0.40172

ρ=0.6
Coefficients β β̂2SLS β̂2SLS−ME β̂2SLS−RME

β1 0.32812 0.14819 0.34423 0.34308
β2 0.13582 0.08804 0.12143 0.12238
β3 0.08603 0.44588 0.07675 0.07747

R.Bias 2.10336 2.07305 2.0575
EMSE 0.28895 0.39604 0.38951

ρ=0.70
Coefficients β β̂2SLS β̂2SLS−ME β̂2SLS−RME

β1 0.32812 0.12852 0.32751 0.32656
β2 0.13582 0.13298 0.13501 0.13592
β3 0.08603 0.42284 0.08776 0.08841

R.Bias 2.07841 2.03842 2.02331
EMSE 0.29659 0.37786 0.37164

ρ=0.8
Coefficients β β̂2SLS β̂2SLS−ME β̂2SLS−RME

β1 0.32812 0.10366 0.33902 0.33783
β2 0.13582 0.20520 0.13127 0.13218
β3 0.08603 0.37456 0.07394 0.07473

R.Bias 2.03210 2.03191 2.02116
EMSE 0.30733 0.37711 0.37108

the different levels of the endogeneity corresponding to ρ = 0.5, 0.6, 0.7, 0.8. Also, we
assume the correlation between the instruments and covariates equals to 0.3, which
means that the instruments are relevant. Moreover, we choose p = 3, n = 100 and
Λ = diag(0.5, 0.5, 0.5). For each set of instrumental variables, we considered largest
eigen vector of ZTZ as the coefficient vector, η, and construct X = Zη + U , where U
follows a multivariate normal with an identity matrix of correlation. We then, construct
y = X̂β + ε where β is the largest eigen vector of X̂TX̂. Once a set of explanatory and
dependent variables is constructed, all variables are standardized and the estimates are
determined using the standardized variables. The experiment is replicated 5000 times
by generating new vector W. We use Wu-Hausman test of endogeneity to check if it is
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necessary to perform the instrumental variable analysis. (see Wu (1973) and Hausman
(1978)).

The absolute relative bias R.Bias and EMSE for any estimator are calculated respecti-
vely as follows:

R.Bias(β̂) = 1
5000

∑5000
l=1

∑p
j=1|

β̂ jl−β j

β j
|, EMSE(β̂) = 1

5000
∑5000

l=1
∑p

j=1(β̂ jl − β j)2,

where β̂ jl is the estimation of β j in the lth replication of the simulation and β j is the j-th
element of the vector of coefficients, β. Intact, our criterion for goodness-of-fit is the
standardized version of the difference between the estimated values and real values of
coefficients. We use the R software version 3.4.1 and all source codes are available from
the first author upon request. The results are summarized in Table 1, which displays
the estimation of parameters for the various values of ρ.

In this table, β̂2SLS is estimated using the 2SLS method in equation X = Zη + U by
ignoring the multicollinearity and measurement errors in the instrumental variables
Z, while two stage least square estimators β̂2SLS−ME and β̂2SLS−RME are estimated using
equations (2.5) and (2.8), respectively. The estimated value of the ridge parameter
is obtained as λ̂ = 0.042 via the generalized cross validation technique, which is
introduced by Golub et al. (1979), see Roozbeh et al. (2020) and Liu and Jiang (2012)
and Akdeniz and Roozbeh (2017) for more information.

From the measurement error point of view, when some predictors prone to error-in
measurement, the most ill-condition situation may arises is the endogeneity and 2SLS-
ME estimator can overcomes this problem, see, e.g., Sheikhi et al. (2020). Comparing
2SLS-ME and 2SLS-RME, we observe that for these simulated data, estimation of the
vector of coefficients using 2SLS-ME method is more accurate than 2SLS, while 2SLS-
RME is better than 2SLS-ME. This is because the estimated value of λ satisfies the
condition λ < 2σ2

u/η
Tη. Although the estimated mean square error in 2SLS is less than

the other two estimators, the absolute relative bias values of 2SLS-ME and 2SLS-RME
is smaller than 2SLS. Moreover, as can be seen in this table, comparing 2SLS-ME and
2SLS-RME in both R.Bias and EMSE, we conclude that in all cases of ρ, 2SLS-RME
behaves better than 2SLS-ME.

4.2 Health and Retirement Study data

Several authors have reported the presence or absence of an association between the
genetic variant(s) and the outcome as the primary analysis result, rather than a causal
effect estimate, (Didelez V, Sheehan (2007) and Burgess and Dylan (2016)). In this
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section, we use our method to overcome multicollinearity in the data set of Health and
Retirement Study (HRS), which is consisted of some variables that are contaminated
with errors in measurement. This data contain genotype and phenotype variant which
may effect some outcomes such as educational attainment. (see e.g., Rietveld et al.
(2013) and Okbay et al. (2016)).

We are involved in running multiple regression to predict educational attainment
(EA) using major depressive disorder (MDD), schizophrenia polygenic score (SPS) and
subjective well-being (SWB) and, since EA follows a normal distribution (with sig=0.318
of Lilliefors test for normality), we carry out a multiple regression between MDD,
SPS and SWB and observed that the residual of regression were correlated with those
exploratory variables, we found that the relevant variables as instrumental variables are
general cognition score (GCS), main arterial pressure (MAP) and pulse pressure (PP)
and Wu-Hausman test of endogeneity confirmed this instrumental variables analysis.
The instrumental variables were extremely correlated (such as ρ̂ = 0.992 between MAP
and PP). Also, there exist high values of variance inflation factors in the regression
equation between these exposure variables, for example VIFs 69.79, 66.32 and 29.72
for MAP, PP and SBP, redpectively1). So, we used a cross validation technique and
obtain the ridge parameter k = 0.008. Hence, using equation (2.7) we can estimate
model parameters. Also, It is relatively common in epidemiological studies to use
indirect measures of cognitive functions, which cover the areas of initiative, inhibition,
shifting, emotional control, etc., and is prone to measurement error (see e. g. Harris
et al. (2016)). We consider GCS, MAP and PP respectively as V1,V2 and V3 and
assume that MAP and PP are measured without errors. From (2.2), we will have
(V1,V2,V3)T = (Z1,Z2,Z3)T + (δ1, 0, 0)T. Similar to Rasekh (2006), in the first step, we
estimate the estimated value of η̂, σ̂2

u, λ̂ and Ẑ. An estimator of Z can be obtained using
Ẑ = Φ + σ̂−2

w ŵη̂TΛ, where ŵ = X −Φη̂ and σ̂w = σ̂u + η̂TΛη̂ (see e.g., Ghapani and
Babadi, 2016). Then, we derive the second stage estimated values of the coefficients of
MDD, SPS and SWB using (2.8). The Root Mean Square Error (RMSE) was our criterion
to compare these methods. It is well known that RMSE can be obtained as

RMSE =
√

1
n
∑n

i=1(ŷi − yi)2,

where in this case, yi, i = 1, 2, ...,n, are real values of educational attainment (EA)
and ŷi are their corresponding estimated values using 2SLS, 2SLS-ME and regularized
2SLS-RME methods. Table 2 shows the estimated coefficients as well as the RMSEs
of these methods, which reveals that in the presence of measurement errors and

1using faraway package in R
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multicollinearity in instruments, the regularized 2SLS-RME performs better than 2SLS-
ME.

Table 2: Comparison of 2SLS, 2SLS-ME and 2SLS-RME estimations in real data

Estimation 2SLS 2SLS-ME 2SLS-RME
β̂1 -23.1059 -24.7859 -23.8733
β̂2 13.9614 13.8706 14.0619
β̂3 8.8859 9.1312 9.0957

RMSE 0.94139 0.9707 0.9590

5 Conclusion

In this work, we use the ridge regression method to combat multicollinearity in the
estimation of model parameters in a 2SLS estimator, where there are some measure
errors in instrumental variables. Some large sample properties of our estimator are
derived and compared with some other estimators using a simulation study and a real
data analysis. We hope to do more works with correlated error assumption in the
future. Also, we are trying to use the Lasso and Elastic net methods to overcome the
sparsity in an instrumental variable analysis.
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