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1 Introduction

Periodically correlated (PC) processes are random processes that exhibit a periodic
rhythm in their structure which is more complicated than periodicity in the mean
function. It seems that the notion of PC processes is first introduced by Bennett
(1958) who observed their presence in a communication theoretic context and called
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them cyclostationary. Gudzenko (1959) took the first steps in studying the subject
of nonparametric spectral analysis for PC processes. Although these processes are
generally nonstationary, Gladyshev (1961, 1963) demonstrated that, when the period is
known, PC processes are equivalent to vector-valued stationary processes. Besides, he
established the spectral density properties. Tian (1988) studied the limiting property
of sample autocovariance of PC processes. Afterwards, PC processes have found their
applications in various areas, such as climatology, hydrology, medicine and biology,
economics, mechanics and many fields in communication and signal processing. The
bibliography by Serpedin et al. (2005) presents an exhaustive list of references on PC
processes and their applications in various fields.

In recent years, extensive advances have occurred in data collection methods and
storage techniques and make it possible to observe and record real life processes in
great details. These progresses have a considerable impact on the analysis of financial
transaction data, fMRI images, satellite photos, earth pollution distribution, etc. Due to
the high dimensionality of such data, classical statistical tools become inadequate and
inefficient. Functional Data Analysis (FDA) is referred to the statistical methodology
for studying data that are in the form of functions, from the theoretical and practical
points of view. Since, theoretically, functional data are of infinite dimensional nature,
studying infinite dimensional processes attracts the attention of researchers, as well.

The concept of PC processes is extended to processes with values in Hilbert spaces
by Makagon (1999), who presented the spectral analysis and the prediction method
for forecasting the Hilbertian periodically correlated sequences, HPC processes in
abbreviation. In particular, he obtained a moving average representation of a predictor
and described its coefficients in the language of outer factors of spectral line densities
of the sequence. The harmonizability, the structure of the autocovariance operator and
the existence of a time dependent spectral density for HPC processes are considered by
Soltani and Shishebor (2007). Besides, in 2011, Makagon introduced two transformati-
ons that map these sequences into T-dimensional stationary sequences and studied
their properties. The spectral properties of such processes are studied by Makagon and
Miamee (2013) and Soltani et al. (2010) and Shishebor et al. (2011) presented and
examined the properties of their periodograms. Moreover, the class of PC autoregressive
Hilbertian processes (PCARH) is considered by Soltani and Hashemi (2011) and the
behavior of autocovariance and autocorrelation operators and their estimations are
discussed in Haghbin et al. (2017) and Hashemi et al. (2019).

The goal of this paper is to obtain the convergence rate of empirical autocovariance
operator of H-valued PC processes. Our approach is based on decomposing the
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empirical autocovariance operator into the sum of the autocovariance operator of the
periodic mean function and the average of the periodic autocovariance operators. The
autocovariance operator is commonly used for detecting possible periodicities and,
consequently, it is possible to study the empirical autocovariance operator to check the
periodic properties of a process.

The paper is organized as follows. After introducing the required concepts and
notations in Section 2, we present the decomposition of the autocovariance operator in
Section 3 and Section 4 is devoted to the convergence rate of the empirical estimator of
the autocovariance operator. In the last section, some concluding notes and possible
future works are mentioned in brief.

2 Preliminaries

Let (Ω,F ,P) be a probability space and H be a separable Hilbert space equipped
with the inner product 〈·, ·〉 and the norm ‖·‖ . An H-valued discrete time stochastic
process is defined as a random sequence {ξt, t ∈ Z} in H, where ξt : Ω → H is F /B
measurable, B is the Borel field of H and Z is the set of integers. Let L2 (Ω,F ,P)
stands for the Hilbert space of all complex random variables X defined on (Ω,F ,P)
with finite second moment, which is equipped with the inner product E

(
XȲ

)
, where E

denotes the expectation. The process {ξt, t ∈ Z} is called strongly second order (SSO in
abbreviation) if ‖ξt‖ ∈ L

2 (Ω,F ,P) .

Additionally, let L(H) denote the space of all continuous linear operators from H
to H, with operatorial norm ‖ · ‖L. An important subspace of L(H) is the space of
Hilbert-Schmidt operators, S(H), which forms a Hilbert space equipped with the inner

product 〈A,B〉S =
∑
∞

k=1

〈
Aφk,Bφk

〉
and the norm ‖A‖S =

{∑
∞

k=1

∥∥∥Aφk

∥∥∥2
}1/2

, where
{
φk

}
is any orthonormal basis on H. The space of nuclear or trace class operators, N (H), is
a notable subclass of S (H) and the associated norm is defined as

‖A‖N =

∞∑
k=1

〈
|A|φk, φk

〉
=

∞∑
k=1

〈
(A∗A)1/2 φk, φk

〉
, (2.1)

where A∗ is the adjoint of A, Conway (2000). If A is a self-adjoint nuclear operator with
associated eigenvalues λk, then ‖A‖N =

∑
∞

k=1 |λk|. If, in addition, A is non-negative,
then ‖A‖N =

∑
∞

k=1

〈
Aφk, φk

〉
=

∑
∞

k=1 λk. Note that ‖ · ‖L ≤ ‖ · ‖S ≤ ‖ · ‖N , Hsing and
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Eubank (2015). For x and y in H, the tensorial product of x and y, x ⊗ y, is a nuclear
operator and is defined as (x ⊗ y)z := 〈y, z〉x, z ∈ H, Schatten (2013).

An H-valued SSO stochastic process is called periodically correlated (HPC in
abbreviation) if there exists an integer T > 0, such that for every t ∈ Z :

µt := E (ξt) = E (ξt+T) = µt+T, (2.2)

and

Ct,τ := E
{(
ξt − µt

)
⊗

(
ξt+τ − µt+τ

)}
= Ct+T,τ. (2.3)

In (2.2) and (2.3), E (·) stands for the Bochner integral, and the smallest T, for which
these equalities hold, is called the period of the process. If T = 1, then the process is
called stationary. For more on Bochner integral and its properties we refer readers to
Hsing and Eubank (2015).

3 Empirical Autocovariance Operator of H PC Processes

Consider the H-valued periodically correlated time series ξ = {ξ1, ξ2, · · · ξn} . A natural
estimator for Cτ is the empirical autocovariance operator, Ĉτ, which is defined by

Ĉτ :=
1

n − τ

n−τ∑
t=1

(
ξt − ξ̄n

)
⊗

(
ξt+τ − ξ̄n

)
, (3.1)

where ξ̄n = 1
n
∑n

t=1 ξt. The following lemma is devoted to the asymptotic behavior of
E

(
ξ̄n

)
and E

(
Ĉτ

)
, as the number of observations tends to infinity.

Lemma 3.1. Let ξ be a sequence of H-valued periodically correlated process with period T, for
which E‖ξt‖

4 < ∞ and limn→∞
1
n2

∑n
t=1

∑n
t′=1

∥∥∥Ct,t−t′
∥∥∥
S

= 0. Then,

lim
n→∞

∥∥∥E (
ξ̄n

)
− µ̄

∥∥∥ = 0, (3.2)

lim
n→∞

∥∥∥∥E (
Ĉτ

)
− Cµ,τ − C̄τ

∥∥∥∥
S

= 0, (3.3)

where µ̄ = 1
T
∑T

t=1 µt, Cµ,τ = 1
T
∑T

t=1
(
µt − µ̄

)
⊗

(
µt+τ − µ̄

)
and C̄τ = 1

T
∑T

t=1 Ct,τ.
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Proof. Let n = knT + ln, then:

lim
n→∞

∥∥∥∥∥∥∥E (
ξ̄n

)
−

1
T

T∑
t=1

E (ξt)

∥∥∥∥∥∥∥ = lim
n→∞

∥∥∥∥∥∥∥1
n

n∑
t=1

E (ξt) −
1
T

T∑
t=1

E (ξt)

∥∥∥∥∥∥∥
= lim

n→∞

∥∥∥∥∥∥∥ T − ln
T (knT + ln)

l∑
t=1

E (ξt) −
ln

T (knT + ln)

T∑
t=l+1

E (ξt)

∥∥∥∥∥∥∥ .
Since 1 ≤ ln < T and 0 < T − ln ≤ T − 1, it can easily be seen that T−ln

T(knT+ln) and ln
T(knT+ln)

tend to zero as n goes to infinity. Consequently,

lim
n→∞

∥∥∥∥∥∥∥E (
ξ̄n

)
−

1
T

T∑
t=1

E (ξt)

∥∥∥∥∥∥∥ = 0.

For the proof of equation (3.3), we have:

lim
n→∞

∥∥∥∥E (
Ĉτ

)
− Cµ,τ − C̄τ

∥∥∥∥
S

= lim
n→∞

∥∥∥∥∥∥∥E
 1

n − τ

n−τ∑
t=1

(
ξt − ξ̄n

)
⊗

(
ξt+τ − ξ̄n

) − Cµ,τ − C̄τ (τ)

∥∥∥∥∥∥∥
S

= lim
n→∞

∥∥∥∥∥∥∥ 1
n − τ

n−τ∑
t=1

E
{(
ξt − µt + µt − ξ̄n

)
⊗

(
ξt+τ − µt+τ + µt+τ − ξ̄n

)}
− Cµ,τ − C̄τ

∥∥∥∥∥∥∥
S

= lim
n→∞

∥∥∥∥∥∥∥ 1
n − τ

n−τ∑
t=1

{
Ct,τ + E

{(
µt − ξ̄n

)
⊗

(
ξt+τ − µt+τ

)
+

(
ξt − µt

)
⊗

(
µt+τ − ξ̄n

)
+

(
µt − ξ̄n

)
⊗

(
µt+τ − ξ̄n

)}}
− Cµ,τ − C̄τ

∥∥∥∥∥∥
S

= lim
n→∞

∥∥∥∥∥∥∥ 1
n − τ

n−τ∑
t=1

{
Ct,τ + E

{(
µt − µ̄n + µ̄n − ξ̄n

)
⊗

(
ξt+τ − µt+τ

)
+

(
ξt − µt

)
⊗

(
µt+τ − µ̄n + µ̄n − ξ̄n

)
+

(
µt − µ̄n + µ̄n − ξ̄n

)
⊗

(
µt+τ − µ̄n + µ̄n − ξ̄n

)}}
− Cµ,τ − C̄τ

∥∥∥∥∥∥
S

.

Using the properties of tensorial product and the definition of autocovariance operator,
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given in equation (2.3), it can be shown that

lim
n→∞

∥∥∥∥E (
Ĉτ

)
− Cµ,τ − C̄τ

∥∥∥∥
S

= lim
n→∞

∥∥∥∥∥∥∥ 1
n − τ

n−τ∑
t=1

Ct,τ −
1

n (n − τ)

n−τ∑
t=1

n∑
t′=1

E
(
ξt′ − µt′

)
⊗

(
ξt+τ − µt+τ

)
−

1
n (n − τ)

n−τ∑
t=1

n∑
t′=1

E
(
ξt − µt

)
⊗

(
ξt′ − µt′

)
+

1
n − τ

n−τ∑
t=1

(
µt − µ̄n

)
⊗

(
µt+τ − µ̄n

)
+

1
n2

n∑
t=1

n∑
t′=1

E
(
ξt − µt

)
⊗

(
ξt′ − µt′

)
− Cµ,τ − C̄τ

∥∥∥∥∥∥∥
S

= lim
n→∞

∥∥∥∥∥∥∥ 1
n − τ

n−τ∑
t=1

Ct,τ −
1

n (n − τ)

n−τ∑
t=1

n∑
t′=1

Ct′,t+τ−t′ −
1

n (n − τ)

n−τ∑
t=1

n∑
t′=1

Ct,t′−t

+
1

n − τ

n−τ∑
t=1

(
µt − µ̄n

)
⊗

(
µt+τ − µ̄n

)
+

1
n2

n∑
t=1

n∑
t′=1

Ct,t′−t − Cµ,τ − C̄τ

∥∥∥∥∥∥∥
S

≤ lim
n→∞

∥∥∥∥∥∥∥ 1
n − τ

n−τ∑
t=1

Ct,τ − C̄τ

∥∥∥∥∥∥∥
S

+ lim
n→∞

∥∥∥∥∥∥∥ 1
n2 (n − τ)

(n − τ)
n∑

t=1

n∑
t′=1

Ct,t′−t − n
n−τ∑
t=1

n∑
t′=1

Ct′,t+τ−t′ − n
n−τ∑
t=1

n∑
t′=1

Ct,t′−t


∥∥∥∥∥∥∥
S

+ lim
n→∞

∥∥∥∥∥∥∥ 1
n − τ

n−τ∑
t=1

(
µt − µ̄n

)
⊗

(
µt+τ − µ̄n

)
− Cµ,τ

∥∥∥∥∥∥∥
S

= 0,

which completes the proof. �

Examples 3.1. Letξξξ = {ξn, n ∈ Z} be a periodically correlated autoregressive Hilbertian
process of order 1 with period T,PCARH(1) in abbreviation, associated with

(
ε, φ

)
.This

process is periodic and it satisfies the following formulation:

ξt − µt = φn
(
ξt−1 − µt−1

)
+ εt, (3.4)

where εεε = {εt, t ∈ Z} is a sequence of PC Hilbertian white noise
[
0, σ2,T

]
, called

PCHWN
[
0, σ2,T

]
in short,

{
µt, t ∈ Z

}
is a T-periodic sequence in H and

{
φt, t ∈ Z

}
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is a T-periodic sequence in L (H) . For more on PCARH(1) processes, we refer readers
to Soltani and Hashemi (2011). Let n = knT + ln. The limiting equation (3.2) obviously
holds true. In order to demonstrate (3.3), note that

ξt+τ − µt+τ = φt+τ
(
ξt+τ−1 − µt+τ−1

)
+ εt+τ

= φt+τφt+τ−1
(
ξt+τ−2 − µt+τ−2

)
+ φt+τεt+τ−1 + εt+τ

...

= φt+τφt+τ−1 . . . φt+1
(
ξt − µt

)
+ φt+τφt+τ−1 . . . φt+2εt+1 + . . . + φt+τεt+τ−1 + εt+τ,

and, consequently,

Ct,τ = φt+τφt+τ−1 . . . φt+1Ct,0.

Therefore, E
(
Ĉτ

)
can be approximated by 1

T
∑T

t=1 φt+τφt+τ−1 . . . φt+1Ct,0 + Cµ,τ in the
Hilbert-Schmidt norm.

As can be seen, the expected value of the empirical autocovariance operator can
be approximated by the sum of two terms, autocovariance operator of the periodic
mean function µt (at lag τ), called Cµ,τ, and the average of the periodic autocovariance
operators Ct,τ, t = 1, 2, · · · ,T, called C̄τ. By definition, it can easily be seen that Cµ,τ
is periodic in τ with the same period as µt and, if the process is periodic, C̄τ decays
as τ increases. Therefore, equation (3.3) demonstrates the possibility of studying the
periodic properties of an HPC process using its empirical autocovariance operator.

4 Convergence Rate of the Sample Autocovariances

Consider the sequence of HPC processes ξ. It can be demonstrated that this process has
a unique Wold decomposition, Zamani et al. (2020), and it can be presented as

ξt = µt +

∞∑
j=0

ρ j,t

(
εt− j

)
, (4.1)

where I = {εm,m ∈ Z} is a set of orthonormal innovation processes, ρ j,t are linear

operators on H for which
∑T

t=1
∑

j≥0

∥∥∥ρ j,t
∥∥∥2
L
< ∞, and ρ j,t+kT = ρ j,t for every j, k and t,

with t − j ≥ 0.
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Let ε = {εt, t ∈ Z} be a sequence of martingale differences with respect to an
increasing sequence of σ-fields Ft; i.e.,

EFt−1 (εt) = 0, a.s. ∀t ∈ Z, (4.2)

where 0 is the zero of H. If, for some a > 0, E ‖εt‖
a < ∞, we call ε an La-martingale.

Assume that

E (εt ⊗ εt|Ft−1) = Cε, a.s. ∀t ∈ Z, (4.3)

sup
t

E ‖εt‖
λ < ∞, for some λ > 4. (4.4)

Theorem 4.1. Let ξ be a sequence of H-valued periodically correlated process with period T, for
which moving average representation (4.1) holds. Then, for some δ > 0 and 1 ≤ G (n) = o (n) ,

max
1≤τ≤G(n)

∥∥∥∥Ĉτ −
(
Cµ,τ + C̄τ

)∥∥∥∥
S

= o
(
n−1/2 (

G (n) log n
)2/λ (

log log n
)2(1+δ)/λ

)
. (4.5)

As the first step to prove this theorem, the following lemma is required, which is
presented in Moricz (1976) and Chow and Teicher (2012).

Lemma 4.1. Let
{
ηi, i = 1, 2, · · ·

}
be a stochastic sequence such that there exist positive

constants C, ν and a positive sequence of f (n) for which lim sup f (2n) / f (n) < ∞ and
for all n, x > 0, P

(
max1≤i≤n ηi > x

)
< C f (n) x−ν. Then, for any δ > 0,

ηn = o
((

f (n)
(
log n

) (
log log n

)1+δ
)1/ν

)
. (4.6)

Proof of Theorem 4.1. Let us first define Ĉi,τ as:

Ĉi,τ = (hn + 1)−1
hn∑

m=0

(
ξi+mT − ξ̄n−τ (i,T)

)
⊗

(
ξi+τ+mT − ξ̄n (i + τ,T)

)
, (4.7)

where

ξ̄n (i, d) = (h (n − i, d) + 1)−1
h(n−i,d)∑

j=0

ξi+ jd, 1 ≤ i, d < n,

and

hn = h (n − τ − i,T) =
[n − τ − i

T

]
.
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The relation presented in (4.7) can be rewritten as:

Ĉi,τ = (hn + 1)−1
hn∑

m=0

(
ξi+mT − ξ̄n−τ (i,T)

)
⊗

(
ξi+τ+mT − ξ̄n (i + τ,T)

)
= (hn + 1)−1

hn∑
m=0

(ξi+mT ⊗ ξi+τ+mT) −

ξ̄n−τ (i,T) ⊗

(hn + 1)−1
hn∑

m=0

ξi+τ+mT




−


(hn + 1)−1

hn∑
m=0

ξi+mT

 ⊗ ξ̄n (i + τ,T)

 + ξ̄n−τ (i,T) ⊗ ξ̄n (i + τ,T)

= (hn + 1)−1
hn∑

m=0

(ξi+mT ⊗ ξi+τ+mT) − ξ̄n−τ (i,T) ⊗ ξ̄n (i + τ,T) .

Besides,

Ĉτ =
1

n − τ

n−τ∑
t=1

(
ξt − ξ̄n

)
⊗

(
ξt+τ − ξ̄n

)
=

1
n − τ

T∑
i=1

hn∑
m=0

(
ξi+mT − ξ̄n

)
⊗

(
ξi+τ+mT − ξ̄n

)
=

1
n − τ

 T∑
i=1

hn∑
m=0

ξi+mT ⊗ ξi+τ+mT −

T∑
i=1

hn∑
m=0

ξ̄n ⊗ ξi+τ+mT

−

T∑
i=1

hn∑
m=0

ξi+mT ⊗ ξ̄n +

T∑
i=1

hn∑
m=0

ξ̄n ⊗ ξ̄n


=

1
n − τ

 T∑
i=1

(hn + 1)

 1
hn + 1

hn∑
m=0

ξi+mT ⊗ ξi+τ+mT

 − T∑
i=1

hn∑
m=0

ξ̄n ⊗ ξi+τ+mT

−

T∑
i=1

hn∑
m=0

ξi+mT ⊗ ξ̄n +

T∑
i=1

hn∑
m=0

ξ̄n ⊗ ξ̄n


=

1
n − τ

 T∑
i=1

(hn + 1)
(
Ĉi,τ + ξ̄n−τ (i,T) ⊗ ξ̄n (i + τ,T)

)
−

T∑
i=1

hn∑
m=0

ξ̄n ⊗ ξi+τ+mT −

T∑
i=1

hn∑
m=0

ξi+mT ⊗ ξ̄n +

T∑
i=1

hn∑
m=0

ξ̄n ⊗ ξ̄n

 ,
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which can be written as

Ĉτ =

T∑
i=1

(hn + 1)
n − τ

Ĉi,τ +

T∑
i=1

(hn + 1)
n − τ

(
ξ̄n−τ (i,T) ⊗ ξ̄n (i + τ,T)

)
− ξ̄n ⊗ ξ̄n (τ + 1, 1) + ξ̄n−τ ⊗ ξ̄n + ξ̄n ⊗ ξ̄n.

Note that
hn + 1
n − τ

→
1
T
, as n→∞,

and consequently, it suffices to prove that

max
i≤i≤G(n)

∥∥∥ξ̄n (i,T) − µr(i)
∥∥∥ = o (α (n)) a.s., (4.8)

max
i≤i≤G(n)

∥∥∥Ĉi,τ − Ci,τ
∥∥∥
S

= o (α (n)) a.s., (4.9)

where α (n) = n−1/2 (
G (n) log n

)2/λ (
log log n

)2(1+δ)/λ and

r(i) =

{
T if i mod T = 0
i mod T otherwise .

In order to prove (4.8), set ζt = ξt − µt. Define S (n, i) = (h (n − i,T) + 1) ζ̄n (i,T) , or
equivalently,

S (n, i) =

∞∑
k=0

h(n−i,T)∑
j=0

ρk,i

(
εi+ jT−k

)
.

Let ηm(i, j) =
∑m

l=0 εi+lT− j. It can easily be demonstrated that ηm(i, j) is an Lλ-martingale
relative to the family ofσ-fieldsFt and the process ‖ηm(i, j)‖λ is a real-valued submarting-
ale, Gawarecki and Mandrekar (2010). Consequently, by Doob’s and Burkholder’s
inequalities, we have:

E( max
1≤m≤M

‖ηm(i, j)‖λ)
1
λ ≤

λ
λ − 1

(E‖ηM(i, j)‖λ)
1
λ ≤ CM0.5, (4.10)

where C is a positive constant independent of i and j. From equations (4.4) and (4.10),
it follows that

E max
1≤n≤N

‖S(n, i)‖ ≤ CN
λ
2 ,
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and, by the Markov inequality, we get:

P( max
1≤n≤N

‖S(n, i)‖ ≥ x) ≤ CN
λ
2 x−λ, (4.11)

which results in that:

P( max
1≤n≤N

max
1≤i≤G(N)

‖S(n, i)‖ ≥ x) ≤ C G(N)N
λ
2 x−λ. (4.12)

By substituting f (n) = n
λ
2 G(n) and ν = λ in Lemma 4.1, equation (4.8) have been proved.

Similarly, we can prove equation (4.9) and the proof is completed. �

For a periodic Gaussian process, equation (4.4) holds for any integerλ, and conseque-
ntly the following corollary holds..

Corollary 4.1. Let ξ be a sequence of Gaussian H-valued periodically correlated processes with
period T. For an integer sequence G (n) = o (n) and any δ > 0,

max
1≤τ≤G(n)

∥∥∥∥Ĉτ −
(
Cµ,τ + C̄τ

)∥∥∥∥
S

= o
(
n−1/2+δ

)
. (4.13)

5 Discussion and Conclusion

In this paper, we consider the empirical autocovariance operator of H-valued periodical-
ly correlated processes. It is proved that the empirical estimator of the autocovariance
operator converges to a limit with the same periodicity as the main process. Besides, the
rate of convergence of the empirical autocovariance operator in H-valued and Gaussian
H-valued periodically correlated processes are obtained.

In practice, an important issue in the study of PC processes is determining the value
of the period, T. In this study and other similar researches, the value of T is considered
to be known. However, in practical problems, the value of T should be estimated.
Lemma 3.1, Theorem 4.1 and Corollary 4.1 indicate the possibility of studying the
periodic properties of HPC processes, using the empirical autocovariance operator
behavior. However, if the mean of the HPC process is zero, Ĉτ will not provide any
useful information concerning the value of T. These points will be focus of future
researches.
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