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1 Introduction
Generally, statistical distributions such as exponential, Weibull, Rayleigh, Gamma
and Pareto distributions are frequently used in modeling data. However, in some
cases, these classical distributions are not flexible enough to accommodate different
phenomena of nature. For example, when the researchers record the observations
according to certain stochastic model, the recorded observations will not have the
original distribution unless each observation is given an equal chance of being recorded.
In such a case, the traditional distributions do not provide adequate results and there
is a clear need of the weighted versions of these distributions. Also, the use of weighed
distributions may be the initial choice of the researchers when the samples are selected
with probability proportional to some measure of the unit size. For better results, the
specification of the right model for the underlying data is essential.

The concept of the weighted distributions goes back to “the study of the effects
of methods of ascertainment upon the estimation of frequencies” of Fisher (1934). In
this paper, Fisher posed the problem of the specification of the right model for the
underlying data. Since then, a number of articles have been published on this subject.
For further detail, we refer the interested readers to Patil and Ord (1975), Patel and Rao
[(1977) and (1978)], Rao [(1977) and (1985)], Gupta and Kirmani (1990), Patil (2002),
Shahbaz et al. (2010), Ghitany et al. (2011), Shakhatreh (2012), Mahdy (2013), Mahdavi
(2015) and Kilany (2016).

Recently, Gupta and Kundu (2009) introduced a new class of weighted exponential
(WE) distributions. They considered a special model of the subject class called WE
distribution defined by the cumulative distribution function (cdf) given below

F
(
x;α, γ

)
=
α + 1
α

{
1 − e−γx

−
1

1 + α
e−γ(1+α)x

}
, x ≥ 0, α, γ > 0. (1.1)

The probability density function (pdf) corresponding to (1.1) is

f
(
x;α, γ

)
=
α + 1
α

γe−γx {
1 − e−αγx} , x > 0.

In this article, we propose a new weighted class of distributions. The key goal
of this research is to introduce an extra parameter to a family of lifetime distribution
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functions to bring more flexibility to the given family. We call this new method as a
new weighted family of continuous distributions, called the WEx family. Some of it’s
statistical properties will be studied. Furthermore, the key motivations for using WEx
family in the practice are the followings:

1. A very simple and convenient method of adding additional parameters to modify
the existing distributions.

2. To improve the characteristics and flexibility of the existing distributions.

3. To introduce the extended version of the baseline distribution whose cdf, sf and
hrf, have closed form.

4. To provide better fits than the competing modified models having higher number
of parameters than the proposed model.

The rest of this article is unfolded as follows: The propose family and its characteriz-
ations are presented in Section 2. Section 3 offers a special sub-model of the new family.
Some mathematical properties are derived in Section 4. The maximum likelihood
estimates of the unknown parameters and simulation study are presented in Section
5. Two real life applications are discussed in section 6. Finally, Section 7 concludes the
article.

2 The Proposed Family and its Characterizations
In this section, we introduce the WEx family. Furthermore, we provide certain characteriz-
ations of the WEx distribution.

2.1 The Weighted Exponentiated Family
Let X be a continuous random variable with cdf given by

F (x;α, ξ) = G (x; ξ)α e1−G(x;ξ), x ∈ R, (2.1)

where, α ≥ 1 is a parameter and G (x; ξ) is the baseline cdf depending on the vector
parameter ξ. Here, in (2.1), the exponentiated cdf is weighted by the quantity e1−G(x;ξ).
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The pdf, survival function (sf), hazard rate function (hrf) and cumulative hazard
function (chf) corresponding to (2.1), are given, respectively, by

f (x;α, ξ) = g (x; ξ) G (x; ξ)α−1 e1−G(x;ξ) [α − G (x; ξ)] , x ∈ R, (2.2)

S (x;α, ξ) = 1 − G (x; ξ)α e1−G(x;ξ), x ∈ R,

h (x;α, ξ) =
g (x; ξ) G (x; ξ)α−1 [α − G (x; ξ)]

G (x; ξ)α
, x ∈ R,

H (x;α, ξ) = − log
{
1 − G (x; ξ)α e1−G(x;ξ)

}
, x ∈ R.

Henceforth, a random variable X with the pdf given by (2.2) will be denoted by
X ∼ WEx (α, ξ). For the sake of simplicity, we can omit the dependence on the vector
parameter ξ, and simply write G (x; ξ) = G (x).

2.2 Characterizations
This sub-section deals with the characterizations of the WEx distribution in different
directions: (i) based on the ratio of two truncated moments; (ii) in terms of the reverse
hazard function; and (iii) based on the conditional expectation of the certain function
of the random variable. Note that for the characterization (i) the cdf does not need
a closed form closed form and depends on the solution of a first order differential
equation, which provides a bridge between probability and differential equation. We
would also like to mention that due to the nature of the cdf of (2.1), our characterizations
may be the only possible ones. We also like to mention that characterization (i) is stable
in the sense of weak convergence (Glänzel,1990). We present our characterizations
(i)-(iii) in three sub-subsections.

2.2.1 Characterizations Based on Two Truncated Moments

In this sub-subsection, we present the characterizations of WEx distribution based on
the ratio of two truncated moments. Our first characterization employs a theorem due
to Glänzel (1987); see Theorem 1 of Appendix A. The result, however, holds also when
the interval H is not closed, since the condition of the Theorem is on the interior of H.

Proposition 2.2.1. Let X: Ω → R be a continuous random variable and let q1 (x) =

G (x)1−α (α − G (x))−1 and q2 (x) = q1 (x) e1−G(x) for x ∈ R. The random variable X has pdf
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(2.2) if and only if the function η (x) defined in Theorem 1 is of the form

η (x) =
1
2

(
e1−G(x)

− 1
)
, x ∈ R.

Proof. Suppose the random variable X has pdf (2.2), then

(1 − F (x)) E
(
q1 (X) |X ≥ x

)
= e1−G(x)

− 1, x ∈ R,

and
(1 − F (x)) E

(
q2 (X) |X ≥ x

)
=

1
2

(
e2(1−G(x))

− 1
)
, x ∈ R.

Further,

η (x) q1 (x) − q2 (x) = −
q1 (x)

2

(
e1−G(x) + 1

)
< 0, x ∈ R.

Conversely, if η (x) is of the above form, then

s/‘ (x) =
η/ (x) q1 (x)

η (x) q1 (x) − q2 (x)
=

g (x) e1−G(x)

e1−G(x) + 1
, x ∈ R,

and consequently

s (x) = − log
{
e1−G(x) + 1

}
, x ∈ R.

Now, according to Theorem 1, X has density (2.2).

Corollary 2.2.1. Let X: Ω → R be a continuous random variable and let q1 (x) be as in
Proposition 2.2.1. The random variable X has pdf (2.2) if and only if there exist functions
q2 (x) and η (x) defined in Theorem 1 satisfying the following differential equation

η/ (x) q1 (x)
η (x) q1 (x) − q2 (x)

=
g (x) e1−G(x)

e1−G(x) + 1
, x ∈ R.

Corollary 2.2.2. The general solution of the differential equation in Corollary 2.2.1 is

η (x) =
{
e1−G(x) + 1

}−1
[
−

∫
g (x) e1−G(x) (q1 (x)

)−1 q2 (x) dx + D
]
,

where D is a constant. We like to point out that one set of functions satisfying the above
differential equation is given in Proposition 2.2.1 with D =1/2. Clearly, there are other
triplets

(
q1 (x) , q2 (x) , η (x)

)
which satisfy conditions of Theorem 1.
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2.2.2 Characterization in Terms of the Reverse Hazard Function

The reverse hazard function, rF (x) of a twice differentiable distribution function, F (x),
is defined as

rF (x) =
f (x)
F (x)

, x ∈ support of F (x) .

In this sub-subsection we present a characterization of WEx distribution in terms of the
reverse hazard function.

Proposition 2.2.2 Let X: Ω→ R be a continuous random variable. The random variable
X has pdf (2.2) if and only if its reverse hazard function rF (x) satisfies the following
differential equation

r/F (x) + g (x) rF (x) = G (x)−2 e1−G(x)
[
g/ (x) G (x) {α − G (x)} − αg (x)2

]
, x ∈ R.

Proof. If X has density (2.2), then clearly the above differential equation holds. Now, if
the differential equation holds, then

d
dx

{
g (x) eG(x)−1

}
=

d
dx

{
G (x)−1 (α − G (x))

}
, x ∈ R,

from which we obtain the reverse hazard function of (2.2).

2.2.3 Characterization Based on the Conditional Expectation of Certain Functi-
on of the Random Variable

In this sub-subsection we employ a single functionψof X and characterize the distribution
of X in terms of the truncated moment of ψ (X). The following proposition has already
appeared in Hamedani’s previous work (2013), so we will just state it here which can
be used to characterize the WEx distribution.

Proposition 2.2.3. Let X: Ω →
(
e, f

)
be a continuous random variable with cdf F. Let

ψ (x) be a differentiable function on
(
e, f

)
with limx→ f− ψ (x) = 1. Then for δ , 1,

E
[
ψ (X) |X ≤ x

]
= δψ (x) , x ∈

(
e, f

)
,

implies
ψ (x) = (F (x))

1
δ−1 , x ∈

(
e, f

)
.

Remark 2.3.1. For
(
e, f

)
= R, ψ (x) = G (x) e

(1−G(x))
α and δ = α

α+1 ,Proposition 2.2.3 provides

a characterization of WEx distribution.
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3 The Weighted Exponentiated Exponential Distrib-
ution

Consider the distribution and density functions of the exponential random variable
given by g (x) = γe−γx, x, γ > 0, and G (x) = 1 − e−γx. Then, the cdf of the WEx-E
distribution is given by

F (x) =
(
1 − e−γx)α ee−γx

, x ≥ 0, γ > 0, α ≥ 1. (3.1)

The pdf, sf, hf and chf corresponding to (3.1), are

f (x) = γe−γx (
1 − e−γx)α−1 ee−γx [

α − 1 + e−γx] , x > 0, (3.2)

S (x) = 1 −
(
1 − e−γx)α ee−γx

, x > 0,

h (x) =
γe−γx (1 − e−γx)α−1 ee−γx

[α − 1 + e−γx]
1 − (1 − e−γx)α ee−γx , x > 0,

H (x) = − log
[
1 −

(
1 − e−γx)α ee−γx]

, x > 0.

Plots of the WEx-E density and hazard functions for selected parameter values are
sketched in Figures 1 and 2, respectively.
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Figure 1: Plots of the density function of WEx-E distribution for selected parameter values.



216 Z. Ahmad et al.

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

h
(x

)

α=3.2, γ=1.2

α=3.5, γ=0.8

α=3.8, γ=0.6

α=4.2, γ=0.4

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

x

h
(x

)

α=1.4, γ=1.3

α=1.6, γ=1.1

α=1.8, γ=1.5

α=2.1, γ=1.2

Figure 2: Plots of the hazard function of WEx-E distribution for some parameter values.

The WE distribution proposed by Gupta and Kundu (2007) is capable of modeling
data with increasing hrf. But, it fails to model data with unimodal failure rate function
(falls under the category of non-monotonic hrf) which is an important realization of the
non-monotonic hrf. Whereas, the WEx-E is capable of modeling data with increasing
hrf (see Figure 2) as well as with unimodal hrf which is very useful to determine the
time period having maximum risk.

4 Mathematical Properties
In this section, we discuss some of the properties of the WEx family.

4.1 Quantile Function
The quantile function of the WEx random variable X can be obtained by inverting
F
(
xq; ξ

)
= q in (2.1). We obtain

log
{

F (x; ξ)α

q

}
+ 1 − F (x; ξ) = 0. (4.1)
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The expression (4.1) does not have a closed form for the solution in xq, therefore,
numerical methods are required to obtain the solution of (4.1).

4.2 Moments
Let X follow the WEx family of distributions, then the rth moment of X denoted by µ/r is

µ/r =

∫
∞

−∞

xr f (x;α, ξ) dx. (4.2)

Using (2.2) in (4.2), we have

µ/r =

∞∑
i, j=0

ηi, j

∫
∞

−∞

xr
[
αΛα+ j−1 −Λ/

α+ j

]
dx ,

where, ηi, j = 1
i!

(
i
j

)
,Λα+ j−1 = g (x; ξ) G (x; ξ)α+ j−1 and Λ/

α+ j = g (x; ξ) G (x; ξ)α+ j . Finally,

we get

µ/r =

∞∑
i, j=0

ηi, j

[
αψr,α+ j−1 − ψ

/
r,α+ j

]
, (4.3)

where, ψr,α+ j−1 =
∫
∞

−∞
xrg (x; ξ) G (x; ξ)α+ j−1 dx and ψ/r,α+ j =

∫
∞

−∞
xrg (x; ξ) G (x; ξ)α+ j dx.

Furthermore, the moment generating function of X, Mx (t) , is given by

Mx (t) =

∞∑
r,i, j=0

κr,i, j

[
αψr,α+ j−1 − ψ

/
r,α+ j

]
, (4.4)

where, κr,i, j = tr

r!i!

(
i
j

)
.

4.3 Probability Weighted Moments
The probability weighted moments (pwm) is another useful approach to describe the
most important feature of the distribution. Here, we derive the pwm, denoted by τr,m,
of X as follows

τr,m =

∫
∞

−∞

xr f (x;α, ξ) F (x;α, ξ)m dx. (4.5)
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Inserting (B-4) in (4.5), we have

τr,m =

∞∑
i, j,k=0

Υm,i, j,k

[
ανr,α(m+1) j+k−1 − ν

/
r,α(m+1) j+k

]
, (4.6)

where, νr,α(m+1) j+k−1 =
∫
∞

−∞
xrυα(m+1) j+k−1dxandν/r,α(m+1) j+k =

∫
∞

−∞
xrυ/

α(m+1) j+kdx.

4.4 Residual Life
The residual life plays a vital role in practice, particularly in reliability theory. The
remaining waiting time for an event to on the condition that we have already been
waiting is what we call residual life. Let X follow WEx family of distributions, then the
residual life of X is

ε (x) =
S (x + t)

S (x)
,

ε (x) =
F (x + t)α e1−F(x+t)

F (x)α e1−F(x)
.

4.5 Reverse Residual Life
The reverse residual life of a lifetime random variable is of interest in many areas of
applied sciences such as survival analysis, actuarial studies and risk management. The
reverse residual lifetime of X denoted by ε̄ (x) is

ε̄ (x) =
S (x − t)

S (x)
,

ε̄ (x) =
F (x − t)α e1−F(x−t)

F (x)α e1−F(x)
.

4.6 Order Statistics
The order statistics have wider applications in many applied areas of statistics. Suppose
x1, x2, . . . , xn are the observed values of a random sample X1, X 2 , . . . , X n taken
from the WEx family. The density function of the rth order statistic, say Xr:n, is

fr:n (x) =
n!

(l − 1)! (n − l)!

n−r∑
l=0

(−1)l
(

n − r
l

)
f (x;α, ξ) F (x;α, ξ)l+r−1 . (4.7)
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The pdf of the rth order statistic of WEx family is derived by using (B-4) in (4.7), and
replacing m with l+r-1

gr:n (x) =
n!

(l − 1)! (n − l)!

n−r∑
i, j,k,l=0

(−1)l
(

n − r
l

)
Υl+r,i, j,k−1

[
αυα(l+r) j+k−1 − υ

/
α(l+r) j+k

]
. (4.8)

Based on the expansion (4.8), we can derive some of the mathematical properties (such
as incomplete and ordinary moments generating function, etc.) for the WEx order
statistics.

5 Maximum Likelihood Estimation and Simulation
In this section, we discuss the estimation of the unknown parameters of the WEx family
via the method of maximum likelihood. Also, we provide a simulation to assess the
behavior of the maximum likelihood estimators.

5.1 Maximum Likelihood Estimation

Let x1, x1, ..., xn be the observed values of a random sample from pdf (2.2) with
parameters α and ξ. The log-likelihood function is

log L(x;α, ξ) =
∑n

i=1 log
[
g (xi; ξ)

]
+ (α − 1)

∑n
i=1 log [G (xi; ξ)]

+
∑n

i=1 [1 − G (xi; ξ)] +
∑n

i=1 log [α − G (xi; ξ)] . (5.1)

The partial derivatives of the function log L (x;α, ξ) are

∂
∂α

log L(x;α, ξ) =

n∑
i=1

log [G (xi; ξ)] +

n∑
i=1

1
α − G (xi; ξ)

, (5.2)

∂
∂ξ log L(x;α, ξ) =

∑n
i=1

∂g(xi;ξ)/∂ξ
g(xi;ξ) + (α − 1)

∑n
i=1

∂G(xi;ξ)/∂ξ
G(xi;ξ)

−
∑n

i=1 ∂G (xi; ξ) /∂ξ −
∑n

i=1
∂G(xi;ξ)/∂ξ
α−G(xi;ξ) .

(5.3)

The maximum likelihood estimates of α and ξ are numerical solutions of (5.2) and (5.3)
simultaneously.
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5.2 Simulation Study
In this sub-section, we take up the simulation study for WEx-E distribution with
parameters α and γ. The process is described below:

1. Random samples of sizes n=100, 150, 200 and 300 are generated from WEx-E
distribution and parameters have been estimated via the maximum likelihood
method.

2. 1000 repetitions are made to calculate the bias, mean square error (MSE) and root
mean square error (RMSE) of these estimators.

3. Formulas used for calculating Bias and RMSE are given by

Bias (α̂) = 1
1000

∑1000
i=1 (α̂iα) and RMSE (α̂) =

√
1

1000
∑1000

i=1 (α̂i − α)2, respectively.

4. Step 3 is also repeated for the other parameter γ.

The results are provided in Tables 1-3.

Table 1: The simulation results of the WEx-E model using maximum likelihood
method.

Set 1: α=1.5, γ=0.3 Set 2: α=1.2, γ=0.3
n Par MLE Bais RMSE MLE Bais RMSE

100 α 4.732 3.232 3.344 3.663 2.463 2.548
γ 1.407 1.107 1.115 1.895 1.595 1.619

150 α 3.337 1.837 1.879 2.777 1.577 1.616
γ 0.971 0.671 0.678 1.217 0.917 0.925

200 α 2.600 1.100 1.120 2.203 1.003 1.005
γ 0.693 0.393 0.398 0.937 0.637 0.645

300 α 1.338 -0.162 0.377 1.222 0.022 0.256
γ 0.251 -0.049 0.109 0.308 0.008 0.092

Table 2: The simulation results of the WEx-E model using maximum likelihood
method.

Set 3: α=1, γ=0.3 Set 4: α=1.5, γ=0.1
n Par MLE Bais RMSE MLE Bais RMSE

100 α 3.030 2.030 2.051 5.082 3.582 3.636
γ 2.606 2.306 2.310 0.468 0.368 0.372

150 α 2.474 1.474 1.486 3.155 1.655 1.669
γ 1.676 1.376 1.384 0.300 0.200 0.201

200 α 1.939 0.939 0.949 2.538 1.038 1.050
γ 1.188 0.888 0.894 0.231 0.131 0.133

300 α 1.041 0.041 0.078 1.333 -0.167 0.415
γ 0.329 0.029 0.059 0.082 -0.018 0.040



The Weighted Exponentiated Family of Distributions 221

Table 3: The simulation results of the WEx-E model using maximum likelihood
method.

Set 5: α=2.1, γ=0.7 Set 6: α=1.8, γ=0.7
n Par MLE Bais RMSE MLE Bais RMSE

100 α 6.771 4.671 4.795 5.543 3.743 4.017
γ 2.430 1.730 1.744 2.825 2.125 2.144

150 α 5.223 3.123 3.188 4.024 2.224 2.267
γ 1.846 1.146 1.151 2.026 1.326 1.339

200 α 3.517 1.417 1.443 3.037 1.237 1.308
γ 1.250 0.550 0.559 1.369 0.669 0.690

300 α 1.141 -0.959 1.156 1.090 -0.710 0.887
γ 0.291 -0.409 0.482 0.326 -0.374 0.454

6 Applications
In this section, we illustrate the proposed family by considering the WEx-E distribution
and compare the results with the exponentiated Weibull (EW), Marshall-Olkin Weibull
(MOW), alpha power transformed Weibull (APTW) and Kumaraswamy Weibull (Ku-
W) distributions by means of analyzing two real applications. The analytical measures
of the goodness of fit including the Akaike information criterion (AIC), consistent
Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hannan-
Quinn information criterion (HQIC), Kolmogorov-Smirnov (KS), Cramer–von Mises
(CM) and Anderson-Darling (AD) statistics are considered to compare the proposed
method with the fitted models. The statistics CM and AD are described in details
in Chen and Balakrishnan (1995). In general, a model with smaller values of these
analytical measure indicate better fit to the data. All the required computations have
been done in the R-language using SANN algorithm.

Data 1: The data set represents survival times of guinea pigs injected with different
amount of tubercle bacilli studied by Bjerkedal (1960). Guinea pigs are subject to
high susceptibility of human tuberculosis, which is one of the causes for choosing this
species. We take into account only the study in which animals in a single cage are
under the same regimen. The data represents the survival times of Guinea pigs in days
which are listed as: 10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107,
108, 108, 108, 109, 112, 113, 115, 116, 120, 121, 122, 122, 124, 130, 134, 136, 139, 144,
146, 153, 159, 160, 163, 163, 168, 171, 172, 176, 183, 195, 196, 197, 202, 213, 215, 216, 222,
230,231, 240, 245, 251, 253, 254, 255, 278, 293, 327, 342, 347, 361, 402, 432, 458, 555. Table
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4 lists the MLEs and the considered statistics are listed in table 5. Corresponding to
data 1, the estimated pdf and cdf are plotted in Figure 3.

Table 4: Maximum likelihood estimates of the fitted distributions using data 1.

Dist. α̂ γ̂ θ̂ λ̂ â b̂
WEx-E 4.140 0.010
MOW 0.003 1.212 4.043
APTW 15.315 0.0043 1.154
Ku-W 0.006 1.063 2.885 1.104
EW 4.1107 0.015 0.948

Table 5: The statistics of the fitted models using data 1.

Dist. KS CM AD AIC BIC CIAC HQIC
WEx-E 0.091 0.076 0.509 856.38 860.93 856.56 858.19
MOW 0.123 0.191 1.113 863.57 870.40 863.92 866.29
APTW 0.138 0.134 0.779 860.67 867.50 861.02 863.39
Ku-W 0.100 0.086 0.543 859.49 868.595 860.08 863.11
EW 0.093 0.078 0.517 857.88 864.71 858.24 860.60

Data 2: The second data set taken from Lawless (2011), represents the length of lifetime
of thirteen ball bearing recorded from a life testing experiment of deep groove ball
bearings. The data are as follow: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84,
51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92,
128.04, 173.40. Table 6 provides the MLEs and the considered statistics are given in
table 7. Corresponding to data 2, the estimated pdf and cdf are plotted in Figure 4.

Table 6: Maximum likelihood estimates of the fitted distributions using data 2.

Dist. α̂ γ̂ θ̂ λ̂ â b̂
WEx-E 5.853 0.031
MOW 0.005 1.380 4.658
APTW 8.0731 0.003 1.395
Ku-W 0.028 1.084 5.709 0.691
EW 5.431 0.0332 0.997
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Figure 3: Estimated pdf and cdf of the WEx-E distribution for data 1.

Table 7: The analytical measures of the fitted distributions using data 2.

Dist. KS CM AD AIC BIC CIAC HQIC
WEx-E 0.105 0.031 0.186 229.95 232.22 230.55 230.52
MOW 0.125 0.078 0.438 234.79 238.20 236.06 235.65
APTW 0.133 0.060 0.334 234.39 237.80 235.65 235.25
Ku-W 0.120 0.035 0.189 233.99 238.53 236.21 235.13
EW 0.109 0.032 0.188 231.95 235.36 233.22 232.81

7 Conclusions
A new family of distributions, called the weighted exponentiated family is proposed
and studied. General expressions for some of the properties of the new family including
moments, moment generating function, quantile, residual life, reverse residual life
and order statistics are derived. The advantage of using this family is that its cdf
has a closed form solution anda facilitating data modeling with monotonic and non-
monotonic failure rates. The maximum likelihood method is used to estimate the model



224 Z. Ahmad et al.

parameters. For the evaluation of the maximum likelihood estimators, a simulation
study is provided. Certain characterizations of the proposed family are also provided.
A special sub-model of this family, called the weighted exponentiated exponential
distribution is considered and its real applications are analyzed. Empirically, it is
proved that the special sub-model can provide a better fit in modeling data than the
other competing distributions.
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Figure 4: Estimated pdf and cdf of the WEx-E distribution for data 2.
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Appendix A
Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval
for some a < b (a =−∞; b =∞might as well be allowed). Let X: Ω→ H be a continuous
random variable with the distribution function F and let q1 (x) and q2 (x) be two real
functions defined on H such that

E
(
q2 (X) |X ≥ x

)
= E

(
q1 (X) |X ≥ x

)
η (x) , x ∈ H,

is defined with some real functionη (x). Assume that q1 (x) , q2 (x) ∈ C1 (H) , η (x) ∈ C2 (x)
and F is twice continuously differentiable and strictly monotone function on the set H.



The Weighted Exponentiated Family of Distributions 227

Finally, assume that the equation η (x) q1 (x) = q2 (x) has no real solution in the interior
of H. Then F is uniquely determined by the functions q1 (x) , q2 (x) and η (x) particularly

F (x) =

∫ x

a
C

∣∣∣∣∣∣ η/ (u)
η (u) q1 (u) − q2 (u)

∣∣∣∣∣∣ exp (−s (u)) du,

where the function s (u) is a solution of the differential equation s/ (u) =
η/(u)q1(u)

η(u)q1(u)−q2(u)

and C is the normalization constant, such that
∫

H dF = 1.

We like to mention that this kind of characterization based on the ratio of truncated
moments is stable in the sense of weak convergence (see, Glänzel (1990)), in particular,
let us assume that there is a sequence {Xn} of random variables with distribution
functions {Fn} such that the functions q1n, q2n and ηn(n ∈ N) satisfy the conditions of
Theorem 1 and let q1n → q1, q2n → q2 for some continuously differentiable real functions
q1 (x) and q2 (x). Let, finally, X be a random variable with distribution F (x). Under the
condition that q1n (x) and q2n (x) are uniformly integrable and the family {Fn} is relatively
compact, the sequence Xnconverges to X in distribution if and only if ηn converges to
η, where

η (x) =
E
[
q2 (X) | X ≥ x

]
E
[
q1 (X) | X ≥ x

] .
This stability theorem makes sure that the convergence of distribution functions is

reflected by corresponding convergence of the functions q1 (x) , q2 (x) andη (x) respectiv-
ely. It guarantees, for instance, the ’convergence’ of characterization of the Wald
distribution to that of the Levy-Smirnov distribution if α→∞. A further consequence
of the stability property of Theorem 1 is the application of this theorem to special tasks in
statistical practice such as the estimation of the parameters of discrete distributions. For
such purpose, the functions q1 (x) , q2 (x) and, q1 (x) specially, η (x) should be as simple
as possible. Since the function triplet is not uniquely determined it is often possible
to choose η (x) as a linear function. Therefore, it is worth analyzing some special
cases which helps to find new characterizations reflecting the relationship between
individual continuous univariate distributions which are appropriate in other areas of
statistics.

Appendix B (Linear Representation)
An expansion for the pdf (2.2) can be derived using the series
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ex =

∞∑
i=0

xi

i!
, i > 0. (B − 1)

Then, the density function of WEx family can be expressed as

f (x;α, ξ) =

∞∑
i=0

[1 − G (x; ξ)]i

i!
g (x; ξ) G (x; ξ)α−1 [α − G (x; ξ)] ,

or

f (x;α, ξ) =

∞∑
i=0

∞∑
j=0

(
i
j

)
g (x; ξ) G (x; ξ)α+ j−1

i!
[α − G (x; ξ)] .

Finally, we have

f (x;α, ξ) =

∞∑
i, j=0

ηi, j

[
αΛα+ j−1 −Λ/

α+ j

]
, (B − 2)

where, ηi, j = 1
i!

(
i
j

)
, Λα+ j−1 = g (x; ξ) G (x; ξ)α+ j−1 and Λ/

α+ j = g (x; ξ) G (x; ξ)α+ j .

Also, the expression in (2.1) can be expressed as

F (x;α, ξ) =

∞∑
i=0

∞∑
j=0

(
i
j

)
G (x; ξ)α+ j

i!
. (B − 3)

Furthermore, if m is an integer, then the expression for f (x;α, ξ) F (x;α, ξ)m is given by

f (x;α, ξ) F (x;α, ξ)m =

∞∑
i, j,k,l=0

Υm,i, j,k,l

[
αυα(m+1) j+l−1 − υ

/
α(m+1) j+l

]
, (B − 4)

where,

Υm,i, j,k,l = 1
i!k!

(
i
j

) (
k
l

)
mi, υα(m+1) j+l−1 = g (x; ξ) G (x; ξ)α(m+1) j+l−1 and

υ/
α(m+1) j+l = g (x; ξ) G (x; ξ)α(m+1) j+l .


