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Abstract. For multiple testing problems, Benjamini and Hochberg (1995) proposed
the false discovery rate (FDR) as an alternative to the family-wise error rate (FWER).
Since then, researchers have provided many proofs to control the FDR under different
assumptions. Storey et al. (2004) showed that the rejection threshold of a BH step-up
procedure is a stopping time with respect to the reverse filtration generated by the p-
values and proposed a new proof based on the martingale theory. Following this work,
martingale methods have been widely used to establish FDR control in various settings,
but have been primarily applied to reverse filtration only. However, forward filtration
can be more amenable for generalized and adaptive FDR controlling procedures. In
this paper, we present a new proof, based on forward filtration, for step-down FDR
controlling procedures that start from small p-values and update the rejection regions
as larger p-values are observed.
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1 Introduction

Multiple hypothesis testing is a key step in many large-scale inference problems in
molecular biology, neuroscience, and astronomy. False discovery rate (FDR) control,
introduced in the seminal paper by Benjamini and Hochberg (1995), is one of the
most important methodological developments in this area. To control the FDR at a
predetermined level α, Benjamini and Hochberg (BH) proposed a step-up procedure
based on ranked p-values. For n hypotheses consisting of n0 nulls and n1 non-
nulls, the step-up BH procedure controls the FDR at the level n0α/n, and continues
to work under certain positive dependencies among hypotheses. A modification of the
procedure proposed by Benjamini and Yekutieli (2001) also controls the FDR in general
dependence settings, albeit more conservatively.

To prove that their procedure controls the FDR, Benjamini and Hochberg Benjamini
and Hochberg (1995) followed the traditional hypothesis testing paradigm, where they
fixed an error rate α and found a suitable rejection region [0, p(k∗)]. In an alternative
approach, the pioneering work of Storey et al. (2004) proposed a dynamic approach
with a fixed rejection region of the form [0, α] for α ∈ [0, 1], and estimated the FDR for
this region. To this end, Storey et al. (2004) used an elegant martingale argument by
casting the FDR controlling procedure as a reverse filtration. Martingale arguments
have also been used by Pena et al. Peña et al. (2011), Heesen and Janssen Heesen
et al. (2015) and Benditkis Benditkis et al. (2018) to establish FDR control for multiple
testing procedures. However, existing martingale arguments use a reverse filtration.
In contrast, arguments based on forward filtrations, which can be more appropriate for
adaptive FDR controlling procedures have not yet been explored.

In this paper, we present a new proof for step-down FDR controlling procedures.
A step-down FDR procedure was first proposed by Benjamini and Liu (1999), and
was later shown to control the FDR under positive dependence among hypotheses,
Sarkar (2002). While for the same cut-offs step-up procedures are generally less
conservative than their step-down counterparts, establishing Type-I error control for
step-up procedures in complex hypothesis testing settings, e.g., in presence of correlation
are generally more difficult than for step-down procedures. Motivated by recent
efforts to establish FDR control for data-adaptive procedures Ramdas et al. (2017);
Li and Barber (2019), we thus present an alternative proof for the classical step-down
procedures of Benjamini and Liu (1999).

The proof of step-down procedures is in general more complicated than that of
step-up procedures, which naturally form a martingale. To overcome these challenges,



A New Proof of FDR Control 61

here we present a new proof for the step-down procedure based on a forward filtration.
In doing so, we have used more delicate proof techniques by recasting the problem
as a martingale stopping time in order to prove the control of FDR. While we present
the result and its proof under the original assumptions of Benjamini and Hochberg
(1995), the new proof technique supports the development of adaptive data-adaptive
procedures, e.g., for settings where external information/structure may be used to
improve the power Li and Barber (2019); Ramdas et al. (2017).

2 A New Proof of FDR Control Using Step-down Procedures

In this section, we give a new proof of FDR control using step-down procedures under
the classical assumptions of Benjamini and Hochberg (1995). The main result of this
section (Theorem 2.1) has, in fact, been proved under weaker assumptions (see, e.g.
Benditkis and Janssen , 2017), and with simpler proofs Benditkis et al. (2018). However,
these, and other existing proofs, cannot be applied to data-adaptive procedures for
FDR control, which is particularly beneficial in settings where incorporating additional
structure can lead to improved power Li and Barber (2019). Our alternative proof
based on a forward filtration can offer more flexibility in such settings.

Let H1, . . . ,Hn be n null hypotheses with p-values p1, . . . , pn. If Hi is true, then,
pi ∼ Unif[0, 1] . Let p(1) ≤ · · · ≤ p(n) be ordered p-values corresponding to hypotheses
H(1), . . . ,H(n), and consider the following empirical processes

at = #{null pi : pi ≤ t},
bt = #{non-null pi : pi ≤ t},
rt = at + bt.

The false discovery proportion (FDP) and false discovery rate (FDR) can then be defined
as

FDP(t) =
at

rt ∨ 1
, FDR(t) = E

[ at

rt ∨ 1

]
,

where a ∨ b = min(a, b).

It is well-known that the FDR can be controlled using the step-up BH procedure
Benjamini and Hochberg (1995). In Storey et al. (2004), Storey et al. presented an
alternative proof, based on an elegant martingale argument, to show that the step-up
BH procedure controls the FDR. Briefly, they observe that at/t is a martingale as t
decreases from 1 to 0. They then re-express the step-up BH procedure as rejecting all
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p-values less than a threshold τ, which is a stopping time with respect to the reverse
filtration as t goes from 1 to 0. Based on these observations and using the optional
sampling theorem Klenke (2013), the authors prove that FDR is controlled by using
the step-up BH procedure.

In this section, we modify the proof of Storey et al. (2004) to present a martingale-
based argument for step-down FDR procedures Benjamini and Liu (1999). A step-down
procedure for controlling the FDR at a user-specified level q rejects the hypotheses
H(1), . . . ,H(isd) for

isd = max{i : p(i) ≤ τsd}, with τsd = inf
{

t : (rt ∨ 1) ≤
nt
q

}
, (2.1)

and accepts the rest. For the stopping rule in a step-down procedure to be a stopping
time, one should choose a filtration in the forward direction. However, in that case, at/t
would no longer be a martingale, which complicates the proof.

We next present an alternative proof for the step-down procedure using techniques
motivated by stochastic calculus. Similar to Benjamini and Hochberg (1995), we
assume that the pis corresponding to null hypotheses are independent of each other
and also independent of the p-values of non-null hypotheses. However, our proof of
Theorem 2.1 uses a forward filtration, which allows us to start from small p-values and
update the rejection regions as we observe larger p-values. Since it is more likely that
smallest p-values are from non-null hypotheses, they can be used to a better estimation
of the non-null distribution.

Theorem 2.1. If the p-values corresponding to null hypotheses are independent of other p-
values, then the step-down algorithm of (2.1) controls the FDR at the level q. More specifically,

E

[
aτsd

rτsd

]
≤ n0q ≤ q. (2.2)

Proof. By the definition of τsd in (2.1), E
[ aτsd

rτsd

]
= E

[ q
n

aτsd
τsd

]
. Thus, (2.2) is equivalent to

E

[
1
n

aτsd

τsd

]
≤ 1. (2.3)

We prove a stronger result, and show that

E

[
1
n0

aτsd

τsd

∣∣∣ {bt}t∈[0,1]

]
≤ 1, (2.4)
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where n0 is the number of null hypotheses. To see why it is sufficient to prove (2.4),
note that

E

[
1
n

aτsd

τsd

]
= E

(
E

[
1
n

aτsd

τsd

∣∣∣ {bt}t∈[0,1]

])
≤ E

(
E

[
1
n0

aτsd

τsd

∣∣∣ {bt}t∈[0,1]

])
.

Hence, (2.3) follows from (2.4).

To prove (2.4), first define ãt = at − n0t, and rewrite (2.4) as

E

[
ãτsd

τsd

∣∣∣ {bt}t∈[0,1]

]
≤ 0.

Now, fix a realization of {bt}t∈[0,1] and note that since a and b are independent, conditioning
on {bt}t∈[0,1] does not change the distribution of {at}t∈[0,1], and, similarly, that of {ãt}t∈[0,1].
Moreover, since rt = at + bt, the stopping time τsd can be redefined as

τsd = inf
{

t : ãt <
nt
q
− bt − n0t

}
.

The theorem then follows by a property of the process ãt, established in the following
lemma. �

Lemma 2.1. Let ãt = at − n0t; {ãt}t∈[0,1] be the process defined in Theorem 2.1, and g be an
arbitrary deterministic function on [0, 1] such that g(1) ≥ 0. For a stopping time τ defined as

τ = inf
{
t : ãt ≤ g(t)

}
,

we have
E

[ ãτ
τ

]
≤ 0. (2.5)

Remark 1. Note that ã1 = a1 − n0 = 0 and so ã1 ≤ g(1). Therefore, {t : ã1 ≤ g(t)} is
not empty and τ is well-defined. In the proof of Theorem 2.1, g(t) = nt/q − bt − n0t so
g(1) = n/q − n0 − n1 ≥ 0.

Proof of Lemma 2.1. We first prove that for ε > 0, E
[ ãτ
τ + ε

]
≤ 0. Note that ãt and 1/(t + ε)

are processes with bounded variation. Therefore,

d
( ãt

t + ε

)
=

d ãt

t + ε
+ ãtd

( 1
t + ε

)
, (2.6)
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and
ãτ
τ + ε

=

∫ τ

0

1
s + ε

dãs −

∫ τ

0

ãs

(s + ε)2 ds. (2.7)

Now, we claim that the process ηt defined as

dηs = dãs +
ãs

1 − s
ds, (2.8)

is a martingale with respect to the filtration Fs = σ(au,u ≤ s). To prove this claim, it
suffices to show that E

[
ηt − ηs | Fs

]
= 0 for t, s ∈ [0, 1] and t ≥ s. But,

E
[
ηt − ηs | Fs

]
= E

[
ãt − ãs +

∫ t

s

ãu

1 − u
du | Fs

]
= E [ãt − ãs | Fs] +

∫ t

s

E [ãu | Fs]
1 − u

du.

(2.9)

It is then easy to see that the process ãt satisfies

E [ãt | Fs] =
1 − t
1 − s

ãs,

which is true, because conditioned on Fs, at − as counts the number of null hypothesis
with p-values in [s, t], among the n0 − as hypotheses with p-values in [s, 1]. Thus, at − as

has a binomial distribution B
(
n0 − as, t−s

1−s

)
. Hence,

E[at − as|Fs] = (n0 − as)
t − s
1 − s

. (2.10)

Therefore,

E[ãt | Fs] = E[at−n0t | Fs] = E[(at−as)+as−n0t | Fs] = (n0−as)
t − s
1 − s

+as−n0t =
1 − t
1 − s

(as−n0s).
(2.11)

The right-hand side of (2.9) can thus be simplified to

E[ãt − ãs|Fs] +

∫ t

s

E [ãu | Fs]
1 − u

du =
s − t
1 − s

ãs +

∫ t

s

1−u
1−s ãs

1 − u
du = 0.

Now, substituting (2.8) into (2.7), we get

ãτ
τ + ε

=

∫ τ

0

1
s + ε

dηs −

∫ τ

0

ãs

(s + ε)(1 − s)
ds −

∫ τ

0

ãs

(s + ε)2 ds

=

∫ τ

0

1
s + ε

dηs −

∫ τ

0

1 + ε

(s + ε)2(1 − s)
ãs ds.
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Taking expectation, we see that

E
[ ãτ
τ + ε

]
= E

[∫ τ

0

1
s + ε

dηs

]
− E

[∫ τ

0

1 + ε

(s + ε)2(1 − s)
ãs ds

]
. (2.12)

The first term in (2.12) is an integral with respect to a martingale and hence a
martingale. Also, τ is a stopping time. So, by the optional sampling theorem Klenke
(2013), the expectation vanishes. Thus,

E
[ ãτ
τ + ε

]
= −E

[∫ τ

0

1 + ε

(s + ε)2(1 − s)
ãs ds

]
.

From this, we have

E

[∫ τ

0

1 + ε

(s + ε)2(1 − s)
ãs ds

]
= E

[∫ 1

0

1 + ε

(s + ε)2(1 − s)
ãs1{s≤τ} ds

]
,

=

∫ 1

0

1 + ε

(s + ε)2(1 − s)
E

[
ãs1{s≤τ}

]
ds,

=

∫ 1

0

(1 + ε)P(τ ≤ s)
(s + ε)2(1 − s)

E [ãs|s ≤ τ] ds.

However, t ≤ τ means that ãt ≥ g(t) for 0 ≤ s ≤ t. Moreover, for any s, t ∈ [0, 1],
E[ãs|τ ≥ t] ≥ 0. To see this, let p1, . . . , pn0 be the p-values corresponding to n0 null
hypothesis. Then, ãs and {τ ≥ t} are decreasing random variables with respect to pis
(by decreasing any pi and keeping the others unchanged, the values of ãs and 1{τ≥t}
increase). Since p1, · · · , pn0 are independent, any two decreasing random variables
with respect to p1, · · · , pn0 are positively correlated. Hence,

E[ãs1{τ≥t}] ≥ E[ãs]E[1{τ≥t}].

Therefore,

E[ãs|τ ≥ t] =
E[ãs1{τ≥t}]
E[1{τ≥t}]

≥ E[ãs] ≥ 0.

To complete the proof, it suffices to use Fatou’s lemma:

E
[ ãτ
τ

]
= E

[
lim inf
ε→ 0

ãτ
τ + ε

]
≤ lim inf

ε→ 0
E

[ ãτ
τ + ε

]
≤ 0.

�
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3 Discussion

Storey’s idea of using reverse filtration is a clever approach that makes the proofs of
FDR control for the Benjamini-Hochberg (BH) step-up procedure and similar methods
much more clear and elegant. Moreover, reverse filtration makes it possible to reject
more hypotheses because after sorting p-values from smallest to largest, the stopping
time with respect to reverse filtration would be the last p-value before crossing some
threshold function. In contrast, the stopping time with respect to the forward filtration
is the first p-value crossing the threshold function.

Despite clear advantages, proofs based on reverse filtration do not easily generalize
to data-adaptive settings Li and Barber (2019); Ramdas et al. (2017), and multi-
dimensional FDR control Ploner et al. (2006). Instead, FDR can be controlled in
such settings by considering rejection regions of pre-defined shapes, or pre-determined
weights for hypotheses. This strategy would allow us to use state-of-the-art developme-
nts for FDR control, including efficient step-up procedures, that can also accommodate
dependence among hypotheses Romano et al. (2008); Blanchard and Roquain (2009).
However, pre-specified regions or shapes may not efficiently capture non-null hypothe-
ses in the presence of external structure. Therefore, this strategy can result in inferior
power. As an alternative, recent procedures that assume that p-values, or test statistics,
follow a mixture distribution Sun and Cai (2007) can be used for data-adaptive FDR
control. This strategy can lead to ‘optimal’ procedures and can also handle dependence
among hypotheses Cai and Sun (2009). However, these procedures only provide
asymptotic FDR control, which may not be sufficient in small sample settings. The
proof developed in this paper thus opens the door for new developments in FDR
control for data-adaptive hypothesis testing procedures.
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