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1 Introduction

There are a number of research studies involving the behavior of a dependent variable
Y as a function of one independent variable X. Sometimes the experiment accepts
a simple linear model (or a linearizable regression model) and usually, this model is
proposed for different experimental or observational situations. Then the following
situations can emerge: the simple linear models have the same intercept, or these lines
are parallel; or given a particular value of the independent variable X, say x0, the lines
are intersected in such value.

We illustrate these situations through the following examples:

Examples 1.1. Several diets are used to feed goats in order to determine the effect
for losing or gaining weight. Three goat breeds are used, and for each breed the
relationship between the gain or loss of weight in pounds per goat Y and the amount
of diet in pounds ingested for each goat X is given by

y1 j = α1 + β1x1 j + ϵ1 j y2k = α2 + β2x2k + ϵ2k y3r = α3 + β3x3r + ϵ3r,

j = 1, 2, . . . ,n1, k = 1, 2, . . . , n2, r = 1, 2, . . . , n3, ns ≥ 2, s = 1, 2, 3. The investigator claims
for a parallelism of the lines, that is, if β1 = β2 = β3 (if the increase in the average weight
of each goat per unit of diet is the same for all breeds). Or the researcher can ask for
equality in the intercepts, that is, if α1 = α2 = α3 (if the average weight of each goat
breed is the same when all breeds are fed with the same diet).

Examples 1.2. An assay is carried out to study the relationship between the elapsed
time, t in minutes, and the number of bacteria Y in a Petri dish, for two hybrids of
certain bacteria. In this situation, an exponential regression model is assumed for each
hybrid bacteria. The models are

y1 j = α1 exp(β1t1 j)ϵ1 j, hybrid bacteria A,

and
y2k = α2 exp(β2t2k)ϵ2k, hybrid bacteria B;

j = 1, 2, . . . ,n1, k = 1, 2, . . . , n2, ns ≥ 2, s = 1, 2. The researcher wants to know if
α1 exp(β1t0) = α2 exp(β2t0) (if at time t0, the two Petri dishes contain the same number
of hybrid bacteria).
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Testing the equality of linearizable models, with the same functional structure, is
not a common topic of research. Few cases are known, for example, Draper and Smith
(1981) provide some insight about the interest of such problem; meanwhile, Graybill
(1976) studied the problem in the univariate case by proposing the hypothesis test,
the associated statistic and the decision rule. Now, some experiments require a test of
parallel models. For instance, the design of new drugs usually demands the proof of
parallelism between the dose-response curves of the standard and the new medicines.
Then, the power in the preparation of the new brand in contrast with the standard
drug can be determined. Jonkman and Sidik (2009) consider the union-intersection
tests for proving the parallelism in a logistic response curve of four parameters. On
the another hand, Novick et al. (2012) used a Bayesian approach in order to assert
dissimilarity of biological responses under the effect of two different substances; they
fitted two simple linear regression models and concluded the required difference by
a parallelism test. Moreover, using non-linear regression models of the logistic type,
they proposed a particular parallelism test for determining if two different biological
environments reach similar dose-response curves under the same substance. Finally,
Fleetwood et al. (2015) studied the same preceding problem but in the context of the
classical statistic. We must highlight that those parallelism tests have been studied only
for the univariate case and r = 2.

However, more realistic situations ask for the behavior of more than one dependent
variable y′ = (y1, . . . , yq) as a function of an independent variable X. In the statistical
modeling of such situations, the multivariate simple linear model (or associated linearizable
regression models) appears as an interesting alternative. In a wider context, the research
can ask the same preceding hypothesis about the parallelism of a set of lines, or the
same intercept, or a common given intersection point, but now from a multivariate
point of view.

Thus, following the idea proposed by Graybill (1976) for the univariate case, the
statistics for described multivariate hypothesis testing (parallelism of a set of lines, or
the intercept, or same to common intersection point given), are obtained by rethinking
the s simple linearizables models, as a general multivariate linear model, and then the
three hypothesis tests can be obtained as particular cases of the multivariate extension
of the general linear hypothesis.

Some preliminary results about matrix algebra, matrix multivariate distributions
and general multivariate linear model are shown, see Section 2. By using likelihood rate
and union-intersection principles, Section 3 derive the multivariate statistics versions
for the above-mentioned hypotheses: same intercept, parallelism and intersection in
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a known point. Also, these results are extended to the elliptical case when the x’s are
fixed or random. Section 4 applies the developed theory in the context of agricultural
acarology.

2 Preliminary Results

A detailed discussion of the univariate linear model and related topics may be found in
Graybill (1976) and Draper and Smith (1981) and for the multivariate linear model see
Rencher (2002) and Seber (1984), among many others. For completeness, we shall in-
troduce some notations, although in general, we adhere to the standard notation forms.

2.1 Notation, Matrix Algebra and Matrix Multivariate Distribution

For our purposes: if A ∈ ℜn×m denotes a matrix, that is, A has n rows and m columns,
then A′ ∈ ℜm×n denotes its transpose matrix, and if A ∈ ℜn×n has an inverse, it
shall be denoted by A−1 ∈ ℜn×n. An identity matrix shall be denoted by I ∈ ℜn×n,
to specify the size of the identity, we will use In. A null matrix shall be denoted as
0 ∈ ℜn×m. A vector of ones shall be denoted by 1 ∈ ℜn. For any matrix A ∈ ℜn×m

there exists A− ∈ ℜm×n which is termed Moore-Penrose inverse. Similarly given
A ∈ ℜn×m there exists Ac ∈ ℜm×n such that AAcA = A, Ac is termed conditional
inverse. It is said that A ∈ ℜn×n is a symmetric matrix if A = A′ and if all the
eigenvalues are positive, the matrix A is said to be positive definite, which shall be
denoted as A > 0. If A ∈ ℜn×m write it in terms of its m columns, A = (A1,A2, . . . ,Am),
A j ∈ ℜn, j = 1, 2 . . . ,m, vec(A) ∈ ℜnm denotes the vectorization of A, moreover,
vec′(A) = (vec(A))′ = (A′1,A

′
2, . . . ,A

′
m). Let A ∈ ℜr×s and B ∈ ℜn×m, then A⊗B ∈ ℜsn×rm

denotes its Kronecker product. Given a null matrix A ∈ ℜn×n with diagonal elements
aii , 0 for at least one i, this shall be denoted by A = diag(a11, a22, . . . , ann). Given a ∈ ℜn,

a vector, its Euclidean norm shall be defined as ||a|| =
√

a′a =
√

a2
1 + a2

2 + · · · + a2
n.

If a random matrix Y ∈ ℜn×m has a matrix multivariate normal distribution with ma-
trix mean E(X) = µ ∈ ℜn×m and covariance matrix Cov(vec Y′) = Θ⊗Σ,Θ = Θ′ ∈ ℜn×n

and Σ = Σ′ ∈ ℜm×m this fact shall be denoted as Y ∼ Nn×m(µ,Θ ⊗ Σ). Observe that, if
A ∈ ℜn×r, B ∈ ℜm×s and C ∈ ℜr×s matrices of constants,

A′YB + C ∼ Nr×s(A′µB + C,A′ΘA ⊗ B′ΣB). (2.1)
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Finally, consider that Y ∼ Nn×m(µ,Θ ⊗ Σ) then the random matrix V = Y′Θ−1Y
has a noncentral Wishart distribution with n degrees of freedom and non-centrality
parameter matrix Ω = Σ−1µ′Θ−1µ/2. This fact shall be denoted as V ∼ Wm(n,Σ,Ω).
Observe that if µ = 0, then Ω = 0, and V is said to have a central Wishart distribution
andWm(n,Σ, 0) ≡Wm(n,Σ), see Srivastava and Khatri (1979) and Muirhead (2005).

2.2 General Multivariate Linear Model

Consider the general multivariate linear model

Y = Xβ + ϵ, (2.2)

where, Y ∈ ℜn×q is the matrix of the observed values, β ∈ ℜp×q is the parameter matrix,
X ∈ ℜn×p is the design matrix or the regression matrix of rank r ≤ p and n > p + q,
ϵ ∈ ℜn×q is the error matrix which has a matrix multivariate normal distribution,
specifically ϵ ∼ Nn×q(0, In ⊗ Σ), (Muirhead , 2005, see p. 430 ) and Σ ∈ ℜq×q, Σ > 0. For
this model, we want to test the hypothesis

H0 : CβM = 0 versus Ha : CβM , 0, (2.3)

where C ∈ ℜνH×p is of rank νH ≤ r and M ∈ ℜq×g is of rank g ≤ q. As in the univariate
case, the matrix C concerns with the hypothesis among the elements of the parameter
matrix columns, while the matrix M allows hypothesis among the different response
parameters. The matrix M plays a role in profile analysis, for example; in ordinary
hypothesis testing it assumes the identity matrix, namely, M = Ip.

Let SH be the matrix of sums of squares and sums of products due to the hypothesis
and let SE be the matrix of sums of squares and sums of products due to the error.
These are defined as

SH = (Cβ̃M)′(C(X′X)cC′)−1(Cβ̃M),
SE = M′Y′(In − XXc)YM,

(2.4)

respectively, where β̃ = XcY. Note that, under the null hypothesis, SH has a g-
dimensional noncentral Wishart distribution with νH degrees of freedom and param-
eter matrix M′ΣM, i.e. SH ∼ Wg(νH,M′ΣM). Similarly, SE has a g-dimensional
Wishart distribution with νE degrees of freedom and parameter matrix M′ΣM, i.e.
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SE ∼ Wg(νE,M′ΣM). Specifically, νH and νE denote the degrees of freedom of the
hypothesis and the error, respectively. All the results given below are true for M , Iq,
just compute SH and SE from (2.4) and replace q by g. Now, let λ1, · · · , λs be the
s = min(νH, g) non-null eigenvalues of the matrix SHS−1

E such that 0 < λs < · · · < λ1 < ∞
and let θ1, · · · , θs be the s non-null eigenvalues of the matrix SH(SH + SE)−1 with
0 < θs < · · · < θ1 < 1; here we note λi = θi/(1 − θi) and θi = λi/(1 + λi), i = 1, · · · , s.
Various authors have proposed a number of different criteria for testing the hypothesis
(2.3). But it is known, that all the tests can be expressed in terms of the eigenvalues λ′s
or θ′s, see for example Kres (1983). The likelihood ratio test statistics termed Wilks’s
Λ, given next, is one of such statistics.

The likelihood ratio test of size α of H0 : CβM = 0 against Ha : CβM , 0 reject if
Λ ≤ Λα,q,νH,νE , where

Λ =
|SE|

|SE + SH|
=

s∏
i=1

1
(1 + λi)

=

s∏
i=1

1
(1 − θi)

. (2.5)

Exact critical values of Λα,q,νH,νE can be found in Table A.9 of Rencher (2002) or Table 1
of Kres (1983).

3 Test About a Set of Multivariate Simple Linear Models

Consider the following R multivariate simple linear models

Yr = XrBr + ϵr, (3.1)

Yr ∈ ℜnr×q, Xr ∈ ℜnr×2 such that its rank is 2; Br ∈ ℜ2×q, nr > 2 and nr > q + 2 for all
r = 1, 2, . . . ,R;

∑R
r=1 nr = N and ϵr ∼ Nnr×q(0, Inr ⊗ Σ), with Σ > 0; where

Br =

(
αr1 αr2 · · · αrq
βr1 βr2 · · · βrq1

)
=

(
α′r
β′r

)
, Xr =


1 xr1
1 xr2
...
...

1 xrnr

 =
(
1nrxr

)
.

We are interested in the following hypothesis
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i) H0 : β1 = β2 = · · · = βR, that is, the set of lines are parallel.

ii) H0 : α1 = α2 = · · · = αR, that is, the set of lines have a common vector intercept.

iii) H0 : α1 + β1x0 = α2 + β2x0 = · · · = αR + βRx0, (x0 known), that is, the set of lines
intersect at the x value x0 which is specified in advance.

First, observe that the R multivariate simple linear models can be written as a gen-
eral multivariate linear model, Y = XB + E, such that

Y
N×q
=


Y1
Y2
...

YR

 , XN×2R
=


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XR

 , B2R×q
=


B1
B2
...

BR

 , EN×q
=


E1
E2
...

ER

 .
Namely, E ∼ NN×q(0, INR ⊗ Σ). Thus

X′X =


X′1X1 0 · · · 0

0 X′2X2 · · · 0
...

...
. . .

...
0 0 · · · X′RXR

 , X′Y =


X′1Y1
X′2Y2
...

X′RYR

 ,
and by (Graybill , 1976, Theorem 1.3.1, p. 19)

(X′X)−1 =


(X′1X1)−1 0 · · · 0

0 (X′2X2)−1 · · · 0
...

...
. . .

...
0 0 · · · (X′RXR)−1

 .
Therefore by Muirhead (2005) (Theorem 10.1.1, p. 430) and see also Rencher (2002)(Equa-
tion 10.46, p. 339),

B̂ = (X′X)−1X′Y =


(X′1X1)−1 0 · · · 0

0 (X′2X2)−1 · · · 0
...

...
. . .

...
0 0 · · · (X′RXR)−1




X′1Y1
X′2Y2
...

X′RYR
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=


(X′1X1)−1X′1Y1
(X′2X2)−1X′2Y2

...
(X′RXR)−1X′RYR

 =


X−1 Y1
X−2 Y2
...

X−RYR

 ,
that is, Br = (X′rXr)−1X′rYr = X−r Yr and

SE = (Y − B̂′X′Y)′(Y − B̂′X′Y) =
R∑

r=1

YrYr −
R∑

r=1

B′rX
′
rYr

=

R∑
r=1

Y′r
(
Inr − XrX−r

)
Yr ∈ ℜq×q. (3.2)

Hence by (Muirhead , 2005, Theorem 10.1.2, p. 431) and (Srivastava and Khatri, 1979,
equation 6.3.8, p. 171) we have that B̂ ∼ N2R×q (B, (X′X)−1 ⊗ Σ).

Note that

B̂r =
(
0
1
· · ·
···

I2
r
· · ·
··· 0R

)
B̂ =

(
0
1
· · ·
···

I2
r
· · ·
··· 0R

) 
B̂1

B̂2
...

B̂R

 ,
thus, B̂r ∼ N2×q

(
Br,

(
X′rXr

)−1 ⊗ Σ
)

and SE ∼Wq(N−2R,Σ). Observe that B̂r is computed
from the data for the rth model and SE is computed by pooling the estimators of SE
from each model SEr .

Generalizing the results in (Graybill , 1976, Example 6.2.1, pp. 177-178) and using
matrix notation in the multivariate case, we have

B̂r =

(
α̂′r
β̂
′
r

)
=


(
Ȳr − β̂rx̄r

)′ Y′r
(
Inr − 1nr1

′
nr
/nr

)
xr

∥
(
Inr − 1nr1′nr

/nr
)

xr∥2


′

 ,
where Ȳr = Y′r1nr/nr and x̄r = x′r1nr/nr, r = 1, 2, . . . ,R. And

SE =

R∑
r=1

SEr ,
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where

SEr = Y′r
(
Inr − 1nr1

′
nr
/nr

)
Yr −

Y′r
(
Inr − 1nr1

′
nr
/nr

)
xrx′r

(
Inr − 1nr1

′
nr
/nr

)
Yr

∥
(
Inr − 1nr1′nr

/nr
)

xr∥2
.

Theorem 3.1. Given the R multivariate simple linear models (3.1) and known constants a and
b, the likelihood ratio test of size α of

H0 : aα1 + bβ1 = aα2 + bβ2 = · · · = aαR + bβR

versus
H1 : at least an equality is an inequality,

is given by

Λ =
|SE|

|SE + SH|
, (3.3)

where

SE =

R∑
r=1

Y′r(Inr − XrX−r )Yr, (3.4)

SH =
(
D1/2Z

)′ (
IR −D1/21R1′RD1/2/1′RD1R

) (
D1/2Z

)
, (3.5)

with D = diag(d11, d22, . . . , dRR),

drr =
nr∥

(
Inr − 1nr1

′
nr
/nr

)
xr∥2

∥(axr − b1nr)∥2

and

Z =

a


α̂′1
α̂′2
...
α̂′R

 + b


β̂
′
1

β̂
′
2
...

β̂
′
R



 ∈ ℜ
R×q.

We reject H0 if
Λ ≤ Λα,1,νH,νE ,

where νH = (R − 1), νE = N − 2R.
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Proof. This theorem is a special case of the results obtained for testing the hypotheses
(2.3) and it can be proved by selecting the proper C and M matrices into Equation (2.4)
1. Alternatively, we extend the proof in (Graybill , 1976, Theorem 8.6.1, p. 288) for a
univariate case into the multivariate case. The result follows from (2.5), we just need
to define explicit matrices of sums of squares and products SE and SH. First define the
random vectors zr = aα̂r + b̂βr, r = 1, 2, . . . ,R, where a and b are known constants to be
defined later. Hence, given that B̂r ∼ N2×q

(
Br,

(
X′rXr

)−1 ⊗ Σ
)
, we have

E(zr) = E
(
aα̂r + b̂βr

)
= aαr + bβr.

Also note that,

zr = B̂′r

(
a
b

)
= aα̂r + b̂βr,

thus

Cov(zr) = Cov(zr) = Cov
(
vec B̂′r

(
a
b

))
= Cov

(((
a
b

)′
⊗ Iq

)
vec B̂′r

)
=

(
(a, b) ⊗ Iq

) ((
X′rXr

)−1 ⊗ Σ
) (( a

b

)
⊗ Iq

)
= (a, b)

(
X′rXr

)−1
(

a
b

)
⊗ Σ

= d−1
rr ⊗ Σ = d−1

rr Σ,

1In our case taking, M = Iq and

C =


a b −a −b 0 0 · · · 0 0 0 0
0 0 a b −a −b · · · 0 0 0 0
...
...
...

...
...

...
. . .

...
...
...

...
0 0 0 0 0 0 · · · a b −a −b

 ∈ ℜR−1×2R,

into to Equation 2.4, the desired result is obtained.
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with

d−1
rr = (a, b)

(
X′rXr

)−1
(

a
b

)
= (a, b)

(
∥1nr∥2 1′nrxr
x′r1nr ∥xr∥2

)−1 (
a
b

)
=

1

nr∥
(
Inr − 1nr1′nr

/nr
)

xr∥2
(a, b)

(
∥xr∥2 −1′nrxr
−x′r1nr nr

)−1 (
a
b

)

=
∥′(axr − b1nr)∥2

nr∥
(
Inr − 1nr1′nr

/nr
)

xr∥2
.

Therefore,

zr = aα̂r + b̂βr ∼ Nq
(
aαr + bβr, d

−1
rr Σ

)
.

Now, consider the random matrix Z defined by

Z =


z′1
z′2
...

z′R

 =
a


α̂′1
α̂′2
...
α̂′R

 + b


β̂
′
1

β̂
′
2
...

β̂
′
R



 ∈ ℜ
R×q.

Thus

E(Z) =

a


α′1
α′2
...
α′R

 + b


β′1
β′2
...
β′R


 .

and

Cov(vec Z′) = Cov((z′1, z
′
2, . . . z

′
R)′) = D−1 ⊗ Σ,
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where D = diag(d11, d22, . . . , dRR). Thus

Z ∼ NR×q

a


α̂′1
α̂′2
...
α̂′R

 + b


β̂
′
1

β̂
′
2
...

β̂
′
R

 ,D
−1 ⊗ Σ

 .
furthermore

D1/2Z ∼ NR×q

D1/2

a


α̂′1
α̂′2
...
α̂′R

 + b


β̂
′
1

β̂
′
2
...

β̂
′
R



 , IR ⊗ Σ

 .

Consider the constant matrix
(
IR −D1/21R1′RD1/2/1′RD1R

)
, which is symmetric and

idempotent. Then

SH =
(
D1/2Z

)′ (
IR −D1/21R1′RD1/2/1′RD1R

) (
D1/2Z

)
,

moreover, SH has a Wishart distribution and is independently distributed of SE (see
Equation (3.2)), where SH ∼Wq(R − 1,Σ,Ω) and SE ∼Wq(N − 2R,Σ); in addition,

Ω =
1
2
Σ−1

(
D1/2 E(Z)

)′ (
IR −D1/21R1′RD1/2/1′RD1R

) (
D1/2 E(Z)

)
,

and observe that Ω = 0 if an only if aα1 + bβ1 = aα2 + bβ2 = · · · = aαR + bβR. Which is
the desired result. □

As we mentioned before, different test statistics have been proposed for verifying
the hypothesis (2.3). Next, we propose three of them in our particular case.

Theorem 3.2. Given the R multivariate simple linear models (3.1) and known constants a and
b, the union-intersection test, Pillai test and Lawley-Hotelling test of size α of

H0 : aα1 + bβ1 = aα2 + bβ2 = · · · = aαR + bβR
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versus
H1 : at least ane equality is an inequality,

are given respectively by

1.
θ1 =

λ1

1 + λ1
, (3.6)

which is termed Roy’s largest root test. Where λ1 is the maximum eigenvalue of
(
SHS−1

E

)
,

where SH and SE are given by (3.5) and (3.4), respectively. We reject H0 if θ ≥ θα,s,m,h.
Exact critical values of θα,s,m,h are found in Table A.10 of Rencher (2002) or Tables 2, 4
and 5 of Kres (1983).

2.

V(s) = tr[SH(SE + SH)−1] =
s∑

i=1

λi

1 + λi
=

s∑
i=1

θi. (3.7)

This way we reject H0 if
V(s) ≥ V(s)

α,s,m,h,

where the exact critical values of V(s)
α,s,m,h are found in Table A.11 of Rencher (2002) or

Table 7 of Kres (1983).

3.

U(s) = tr[SHS−1
E ] =

s∑
i=1

λi =

s∑
i=1

θi

1 − θi
. (3.8)

We reject H0 if
U(s) ≥ U(s)

α,s,m,h.

The upper percentage points, U(s)
α,s,m,h, are given in Table 6 of Kres (1983).

The parameters s, m and h are defined as

s = min(1, νH), m = (|1 − νH| − 1)/2, h = (νE − 2)/2.

where νH = (R − 1), νE = N − 2R and N =
∑R

r=1 nr.

As a special case of Theorem 3.1 (and Theorem 3.2), we obtain the test of the
hypotheses i), ii) and iii) established above.
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Theorem 3.3. Consider the R multivariate simple linear models (3.1). The likelihood ratio test
of size α of tests of hypotheses i), ii) and iii) are given as follows:

The test of H0 vs. H1 is this: Reject H0 if and only if

Λ =
|SE|

|SE + SH|
≤ Λα,1,νH,νE ,

where

SE =

R∑
r=1

Y′r(Inr − XrX−r )Yr, (3.9)

SH =
(
D1/2Z

)′ (
IR −D1/21R1′RD1/2/1′RD1R

) (
D1/2Z

)
. (3.10)

i) With H0 : α1 = α2 = · · · = αR (R set of lines with the same vector intercept) vs. H1 : αi = α j
for at least one i , j, i, j = 1, 2, . . . ,R. Where D = diag(d11, d22, . . . , dRR),

drr =
nr∥

(
Inr − 1nr1

′
nr
/nr

)
xr∥2

∥xr∥2
,

and

Z =


α̂′1
α̂′2
...
α̂′R

 ∈ ℜR×q.

ii) H0 : β1 = β2 = · · · = βR (R set of lines are parallel) vs. H1 : βi = β j for at least one i , j,
i, j = 1, 2, . . . ,R. With D = diag(d11, d22, . . . , dRR),

drr = ∥
(
Inr − 1nr1

′
nr
/nr

)
xr∥2,

and

Z =


β̂
′
1

β̂
′
2
...

β̂
′
R

 ∈ ℜ
R×q.
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iii) H0 : α1 + β1x0 = α2 + β2x0 = · · · = αR + βRx0 (all R set of lines intersect at x = x0,
known) vs. H1 at least one equality is an inequality (all R set of lines do not intersect at
x = x0). Where D = diag(d11, d22, . . . , dRR),

drr =
nr∥

(
Inr − 1nr1

′
nr
/nr

)
xr∥2

∥(xr − x01nr)∥2
,

and

Z =


α̂′1 + β̂

′
1x0

α̂′2 + β̂
′
2x0
...

α̂′R + β̂
′
Rx0

 ∈ ℜ
R×q.

Where νH = (R − 1), νE = N − 2R.

Proof. This is a simple consequence of Theorem 3.1. To test that a set of R lines have the
same vector intercept, take a = 1 and b = 0; to test whether a set of R lines are parallel,
we set a = 0 and b = 1, and to test that a set of R lines intersect at x = x0, we set a = 1
and b = x0.

□

3.1 Test about a Set of Multivariate Simple Linear Models under Matrix
Multivariate Elliptical Model

In order to consider phenomena and experiments under more flexible and robust condi-
tions than the usual normality, various works have appeared in the statistical literature
since the 80’s. Those efforts have been collected in various books and papers which are
consolidated in the so-termed generalised multivariate analysis or multivariate statis-
tics analysis under elliptically contoured distributions, see Gupta and Varga (1993)
and Fang and Zhang (1990), among other authors. These new techniques general-
ize the classical matrix multivariate normal distribution by a robust family of matrix
multivariate distributions with elliptical contours.

Recall that Y ∈ ℜn×m has a matrix multivariate elliptically contoured distribution if
its density with respect to the Lebesgue measure is given by

dFY(Y) =
1

|Σ|n/2|Θ|m/2 h
{
tr

[
(Y − µ)′Θ−1(Y − µ)Σ−1

]}
(dY),
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where µ ∈ ℜn×m, Σ ∈ ℜm×m, Θ ∈ ℜn×n, Σ > 0 and Θ > 0 and (dY) is the Lebesgue
measure. The function h : ℜ → [0,∞) is termed the generator function and satisfies∫ ∞

0 umn−1h(u2)du < ∞. Such a distribution is denoted by Y ∼ En×m(µ,Θ ⊗ Σ, h), see
Gupta and Varga (1993). Observe that this class of matrix multivariate distributions
includes normal, contaminated normal, Pearson type II and VI, Kotz, logistic, power
exponential, and so on; these distributions have tails that are weighted more or less,
and/or they have a greater or smaller degree of kurtosis than the normal distribution.

Among other properties of this family of distributions, the invariance of some
test statistics under this family of distributions stands out, that is, some test statistics
have the same distribution under normality as under the whole family of elliptically
contoured distributions, see theorems 5.3.3 and 5.3.4 of pp. 185-186 in Gupta and Varga
(1993). Therefore, the distributions of Wilks, Roy, Lawley-Hotelling and Pillai test
statistics are invariant under the whole family of elliptically contoured distributions,
see (Gupta and Varga , 1993, pp. 297-299). As an immediate consequence, all hypothesis
tests proposed in Theorems 3.1 - 3.3 are invariant under the family of matrix variate
elliptical distributions. Therefore, no particular form of the function h() must be defined
when an application fits the conclusions based on the hypothesis tests proposed in this
article.

Note that finally, in a multivariate linear model, it was assumed that the x’s were
fixed. However, in many applications, the x’s are random variables. Then, as in the nor-
mal case, see Section 10.8, p. 358 in Rencher (2002), if we assume that

(
y1, y2, . . . , yq, x

)
has a multivariate elliptically contoured distribution, then all estimations and tests
have the same formulation as in the fixed-x case. Thus there is no essential difference
in our procedures between the fixed-x case and the random-x case.

4 Application

The rosebush (Rosa sp. L.) is the ornamental species of major importance in the State
of Mexico, Mexico, being the red spider (Tetranychus urticae Koch) (Acari: Tetranychidae)
its main acarological problem, the control has been based almost exclusively using
acaricide, which has caused this plague to acquire resistance in a short time. In order
to counteract this problem in part, an experiment was carried out using the variety of
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red petals Vega in two greenhouses located in the Ejido2 "Los Morales", in Tenancingo,
State of Mexico, Mexico, from October 2008 to August 2009. In a greenhouse, chemical
control was applied exclusively, while in the other, combined control (chemical and
biological) was used, where applications of acaricide were reduced and releases of
two predatory mites were made: Phytoseiulus persimilis Athias-Henriot and Neoseiulus
californicus McGregor (Acari: Phytoseiidae). The red spider infestations decrease the
length of the stem (Y1) and the size of the floral button (Y2), preponderant characteristics
so that the final product reaches the best commercial value, so that a total of 15 stems
were measured randomly and weekly from each greenhouse, their respective floral
button, to quantify their length and diameter in centimeters, respectively, for a total
of 15 weeks (X), see Preciado–Ramírez (2014). The measurements of the variables
were carried out from January to April 2009 and the application of the treatments was
initiated in week 44 of 2008.

The investigator considers3 that a multivariate simple linear model for the results
of each greenhouse is the appropriate model to relate the two dependent variables Y1
and Y2 in terms of the independent variable X. The corresponding multivariate simple
linear models are

Yr = Xrβr + ϵr, r = 1, 2,

and in terms of the Section 3.1 we can assume that: ϵr ∼ Enr×2(0, Inr ⊗ Σ, h), Σ ∈ ℜ2×2,
Σ > 0, with n1 = 15, and n2 = 15 and

βr =

(
αr1 αr2
βr1 βr2

)
=

(
α′r
β′r

)
.

The researcher asks for the following hypotheses testing.

i) H01 : β1 = β2, that is, the set of lines are parallel (if the average stem length and
the average floral button diameter of each sample of roses per week are the same
under the two methods of pest control).

ii) H02 : α1 = α2, that is, the set of lines have a common vector intercept (if the average

2A piece of land farmed communally, pasture land, other uncultivated lands, and the fundo legal, or
townsite, under a system supported by the state.

3In the original work, the analysis was made based on univariate statistical techniques only.
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stem length and the average floral button diameter of each sample roses in week
zero are the same under the two methods of pest control).

The results of the experiment are presented in the next Table 1.

Table 1: Experimental results of length of the stem (cms) and the diameter of the floral button
(cms) of Vega rose variety.

Biological control Chemical control
X Y1 Y2 X Y1 Y2

1 67.32 4.87 1 55.74 4.82
2 68.92 4.89 2 58.63 4.97
3 69.33 5.07 3 61.14 5.01
4 71.66 5.19 4 62.46 5.06
5 72.26 5.26 5 62.96 5.13
6 76.55 5.73 6 64.55 5.22
7 81.41 5.82 7 66.87 5.28
8 82.71 6.09 8 67.93 5.34
9 83.09 6.15 9 68.38 5.37

10 83.59 6.17 10 68.88 5.39
11 83.91 6.24 11 69.76 5.40
12 84.67 6.30 12 71.31 5.42
13 85.34 6.33 13 72.98 5.54
14 87.41 6.61 14 74.33 5.65
15 88.21 6.62 15 76.44 5.74

Thus the matrices β1, β2 and SE are given by

β1 =

(
66.521429 4.75238095
1.571321 0.13378571

)
, β2 =

(
56.416286 4.83647619
1.300964 0.05660714

)
,

and

SE =

(
65.625451 3.9069754

3.906975 0.3025506

)
.

Moreover,
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i) from the Part (ii) of Theorem 3.3, we have

SH =

(
10.233018 2.9212089

2.921209 0.8339145

)
, and

Table 2: Four criteria to prove H01 : β1 = β2.

Criteria Statistic α Critical value
Wilksa 0.1159631 0.860199
Roy 0.8840369 0.775
Pillai 0.8840369 0.775
Lawley-Hotelling 7.62343 4.225201b

aRemember that for this tests, the decision rule is: statistic ≤ critical value
bUsing an F approximation, see equation (6.26) in (Rencher, 2002, p.166).

Thus, from Table 2, there is no doubt that the four criterions reject the null hy-
pothesis H01 : β1 = β2 for α = 0.05.

ii) Similarly, from the Part (i) of Theorem 3.3, the matrix SH is given by

SH =

(
172.934851 −1.43916793
−1.439168 0.01197679

)
,

and

Table 3: Four criteria to prove H02 : α1 = α2.

Criteria Statistic α Critical value
Wilksa 0.06658425 0.860199
Roy 0.9334158 0.808619
Pillai 0.9334158 0.808619
Lawley-Hotelling 14.01857 4.225201b

aRemember that for these tests, the decision rule is: statistic ≤ critical value
bUsing an F approximation, see equation (6.26), p. 166 in Rencher (2002).
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From Table 3 we can conclude that under the four criterions of test the hypothesis
H02 : α1 = α2 is rejected for a level of significance of α = 0.05.

Given that R = 2, we can easily check graphically the conclusions reached in the
hypothesis testing. Figure 1 (b) shows the intersection of lines for the floral button
diameters, which explains the rejection of parallelism hypothesis. However, Figure
1(a) shows parallel lines, which certainly implies that the average length of the stem for
each sample per week is the same for both pest controls. Similarly, Figure 1(a) depicts
very different intercepts associated to the length with the stem, explaining the rejecting
of the hypothesis for equal intercepts. Also, Figure 1(b) shows equal intercepts, which
implies that the average floral button diameter for each sample in week zero is the
same for both pest controls.
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Figure 1: Observations and adjusted values.

The thesis Preciado–Ramírez (2014) concludes that the biological control method
reduces the infestation of the pest and as a consequence both the stem length and the
button size are increased. This aspect promotes a higher sale price, but this result was
not incorporated in the addressed work. Our analysis confirms these conclusions, but
in a robust way that include all the decision variables simultaneously.
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5 Conclusions

As a consequence of Subsection 3.1 the three hypotheses testing of this paper are valid
under the complete family of elliptically contoured distribution, i.e. in any practical
circumstance we can assume that our information has a matrix multivariate elliptically
contoured distribution instead of considering the usual nonrealistic normality.
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