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1 Introduction

As of 1967, when Esary et al. (1967) introduced the concept of positively associated (PA)
random variables (r.v.s) in statistics, there has been a significant number of research
papers on this subject matter. Negatively associated (NA) r.v.s was introduced by Joag-
Dev and Proschan (1983). The negative association does occur in a number of important
cases, but is not as popular as positive association. In a snapshot, one may say that
positive association occurs often in certain reliability theory problems, as well as in some
important models employed in statistical mechanics. The negative association also
appears in some reliability theory problems, but less often than a positive association.
For a selected review of the subject matter of association, interested readers may refer
to Roussas (1999).

The definition of association is given below, and then a basic notation is introduced;
this will allow the formulation of the basic assumptions in this paper.

Definition 1.1. For a finite index set I, the r.v.s {Xi, i ∈ I} are said to be PA if for any
real-valued coordinate-wise increasing functions G and H defined on RI,

Cov[G(Xi, i ∈ I),H(X j, j ∈ I)] ≥ 0,

provided E
[
G2(Xi, i ∈ I)

]
< ∞, E

[
H2(X j, j ∈ I)

]
< ∞.

These r.v.s are said to be NA, if for any disjoint non-empty subsets A and B of
I, and any coordinate-wise increasing functions G and H with G : RA → R, H :
RB → R, E

[
G2(Xi, i ∈ A)

]
< ∞, and E

[
H2(X j, j ∈ B)

]
< ∞, the inequality Cov[G(Xi, i ∈

A),H(X j, j ∈ B)] ≤ 0 holds. If I is not finite, the r.v.s {Xi, i ∈ I} are said to be PA or NA,
if any finite sub-collection is a set of PA or NA r.v.s, respectively. When no distinction
is necessary, PA and NA r.v.s will be referred to collectively as associated r.v.s. The
underlying stochastic process consists of associated r.v.s, forming a strictly stationary
sequence, having a finite second moment, and a one-dimensional marginal probability
density function (PDF) f (.).

Now, let the function K be a (known) bounded PDF (kernel), and h = hn is a se-
quence of positive bandwidths tending to 0, as n→ ∞. The ordinary kernel estimator
of f (.) is defined as

f̂ (x) =
1
n

n∑
i=1

Kh(x − Xi), Kh(u) =
1
h

K
(u

h

)
. (1.1)
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The reader is referred to Wand and Jones (1995) for more details. The purpose of this
study is to extend the preliminary-test and Stein-type estimators of Saleh (2006) for
f (·) by making use of the kernel density estimator (1.1). We also refer to Arashi and
Mahmoodi (2014), Saleh and Ghania (2016), and Saleh et al. (2018) to mention a few
recent studies about the shrinkage estimate of the distribution function.

1.1 Regularity Conditions

For our purpose, we need the following assumptions:

(A1) :

(i) The r.v.s X1,X2, ..., form a strictly stationary sequence, and f (.) is the one-
dimensional marginal PDF (with respect to the Lebesgue measure).

(ii) The Xi’s are associated (either PA or NA).

(iii) The Xi’s have finite second moments, EX2
i < ∞, and

∑∞
j=1 |Cov(X1,X j+1)| < ∞.

(iv) If fX1,X j(·, ·) is the joint PDF of the r.v.s X1,X j, j ≥ 1, then | fX1,X j(u, v) −
fX1(u) fX j(v)| ≤ C < ∞, for some constant C and all u, v ∈ R.

(A2) :

(i) The kernel function K is such that:

K(u) ≤ C, u ∈ R; lim
|u|→∞

(|u|K(u)) = 0.

(ii) The derivative (d/du)K(u) = K′(u) exists for all u ∈ R and is bounded |K′(u)| ≤
B, for u ∈ R.

(A3) : Assuming that 0 < p = pn < n, 0 < q = qn < n are integers tending to ∞ along
with n, and let 0 ≤ k = kn −−−−→n→∞

∞ being defined by k = [n/(p + q)] (where [x]
stands for the integer part of x), so that k(p + q) ≤ 1 and k(p + q)/n −−−−→

n→∞
1. Also,

hn > 0 being bandwidths. Then there is a determination of them for which:

(i) pnkn/n→ 1 as n→∞.

(ii) pnhn → 0 as n→∞ and p2
n/nhn → 0 as n→∞.
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(iii) (1/h3)
∑∞

j=qn
|Cov(X1,X j+1| → 0.

For more details see Roussas (2000).

1.2 Plan of the Paper

In Section 2, we will be proposing the preliminary-test and shrinkage estimators of
f (·). Section 3 consists of the asymptotic properties of the proposed estimators for an
associated random sample. As mentioned the null prior knowledge f (x) = f0(x) fails
in improving the asymptotic properties of f̂ (x) and hence asymptotic results are devel-
oped for a set of local alternatives. Section 4 is devoted to some numerical comparisons
along with an analysis of a real data set. We conclude in Section 5.

2 Improved Estimators

Suppose that the pre-specified density f0(·) is under suspicion of beibg the true popu-
lation model. According to Fisher’s receipt, the early first approach for modeling is to
check whether the null hypothesis

H0 : f (x) = f0(x) (2.1)

is rejected or not. For our purpose, upon the acceptance of H0, the model f0(·) is
adopted, otherwise, we take the kernel density estimator f̂ (·) as our population model
estimate. Hence, we need to develop a test statistic for testing (2.1) using the associated
r.v.s. The following result is the key one.

Theorem 2.1 (Roussas, 2000). Let the r.v.s X1, ...,Xn is satisfy the assumptions (A1)-(A3), and
in addition: Either (a): (i) The derivative f ′ exists and is bounded: (ii)

∫
|u|K(u)du < ∞; (iii)

nh3
n → 0. Or (b) (i) The second-order derivative f ′′ exists and is bounded; (ii)

∫
uK(u)du = 0;

(iii)
∫

u2K(u)du < ∞; (iv) nh5
n → 0. Then

(nh)1/2[ f̂ (x) − f (x)] d→ N(0, σ2(x)), σ2(x) = f (x)
∫

K2(u)du, x ∈ C( f ),

where f̂ (x) is the kernel estimate of f (x) defined in (1.1) and C( f ) is the continuity set of f .
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To develop a test statistic for testing (the null hypothesis), we apply the result of
Theorem 2.1 and using the pivotal quantity (see Shao, 2003), suggest using the follow-
ing test statistic for testing H0.

Ln(x) = nhσ−2(x)
(

f̂ (x) − f0(x)
)2
. (2.2)

It can be readily deduced from Theorem 2.1 thatLn(x) asymptotically follows a central
chi-square distribution with one degree of freedom (d.f.) under H0 as n → ∞, h → 0
and nh→∞.

If the null hypothesis H0 is accepted, we choose f0(·) as the estimate of f (·). Now we
suggest choosing the ordinary kernel estimator if H0 is rejected. Hence, one can join
these two extremes and form a combined estimator using the indicator function. This
is known in the literature as the preliminary testing or testimation. We refer to Saleh
(2006) for an extensive overview on this topic. Hence, combining the estimators f0(·)
and f̂ (·), under the preliminary testing approach, gives the preliminary test estimator
(PTE) of f (.) as

f̂ PT(x) = f̂ (x) −
(

f̂ (x) − f0(x)
)

I(Ln(x) < χ2
1(α)), (2.3)

where I(A) is the indicator function of the set A and χ2(α) is the α-level critical value.
In this case, one estimates f (x) by f0(x) if the test Ln(x) accepts H0 at the level of
significance α; otherwise, f̂ (x) is used.

Note that the PTE is discontinuous, leading to extreme choices for the estimators.
Moreover, it is highly dependent on the level of significance α. To make a smooth
transition of the Equation (2.3), making use of the test statistic (2.2), we suggest using
the Stein-type shrinkage kernel density estimator (SSKDE) of f (x) as

f̂ S(x) = f̂ (x) − d
(

f̂ (x) − f0(x)
)
L−

1
2

n (x), (2.4)

where d > 0 is the shrinkage factor. It is easy to show that

f̂ S(x) = f0(x) +
[
1 − dL−

1
2

n (x)
] (

f̂ (x) − f0(x)
)
.

Hence, for the values L
1
2
n (x) < d, the shrinkage factor

[
1 − dL−

1
2

n (x)
]

becomes negative
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and eliminates the shrinkage effect. As a remedy, one can consider the positive part in
proposing a smooth shrinkage estimator. For this purpose, we propose the positive-
rule Stein-type estimator (PRSE), given by

f̂ S+(x) = f0(x) −
[
1 − dL−

1
2

n (x)
]

I(Ln(x) > d)
(

f̂ (x) − f0(x)
)

= f̂ S(x) − ( f̂ S(x) − f0(x))I(Ln(x) < d). (2.5)

All the aforementioned estimators belong to the class of shrinkage estimators defined by

f̂ Shrinkage(x) = f̂ (x) −
(

f̂ (x) − f0(x)
)

g(L(x)),

where g(·) is a measurable function. In this shrinkage structure, the ordinary ker-
nel estimator will be shrunken to the prior information f0(·). Apparently, taking

g(x) = I(Ln(x) < χ2
1(α)) and g(x) = dL−

1
2

n (x), gives the PTE and SSKDE, respectively.
After some algebra, it can be shown that the g(·) function for the PRSE has the form

g(x) = dL−
1
2

n (x)I(Ln(x) ≥ d) + I(Ln(x) < d).

3 Asymptotic Properties

In this section, we derive the asymptotic distributional mean square error (ADMSE)
expressions for the PTE, SSKDE, and PRSE.

In a similar fashion as in Lemma 2 of Arashi and Mahmoodi (2014), it can be shown
that under the fixed alternative hypothesis, Aδ : f (x) = f0(x) + δ, the estimators f̂ PT(x),
f̂ S(x) and f̂ S+(x) are asymptotically distributed as f̂ (x). For more clarity, we represent
their result here only for the SSKDE, to save space.

Lemma 3.1. Under the fixed alternatives Aδ : f (x) = f0(x) + δ, as n → ∞, h → 0 such that
nh→∞,

(nh)
1
2
(

f̂ S
n (x) − f (x)

)
= (nh)

1
2
(

f̂n(x) − f (x)
)
+ op(1).
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Proof. Under Aδ and using (2.2), we have

lim
n→∞,h→0

E
[
n
(

f̂ S
n (x) − f̂n(x)

)2]
= d2 lim

n→∞
E
[
n
(

f̂n(x) − f̂0(x)
)2

Ł−1
n (x)

]
= d2ρ2(x) lim

n→∞,h→0
E
[
h−1
]

→ 0 (3.1)

Thus we have (nh)
1
2

(
f̂ S
n (x) − f (x)

)
= (nh)

1
2

(
f̂n(x) − f (x)

)
+ op(1). □

Lemma 3.1 clearly shows that the asymptotic characteristics of f̂ S
n (x) and f̂n(x) are the

same. This fact is true for the PTE and PRSE as well. Hence, studying the asymptotic
behavior of f̂ PT(x), f̂ S(x), and f̂ S+(x) is worthless under the set of fixed alternatives
because of asymptotic distributional similarity to f̂ (x).

To combat this problem, consider a sequence of local alternatives K(n) defined by
(see Saleh, 2006)

{K(n)} : f(n)(x) ≡ f (x) = f0(x) + (nh)−1/2δ, (3.2)

where δ is a fixed positive number. In this case, the test statisticsLn(x) is approximately
distributed as a non-central chi-square distribution with one degree of freedom (df) and
non-centrality parameter

∆2

2
=
δ2

2σ2 . (3.3)

Now, under the alternative hypothesis K(n) given by (3.2) and the assumed regularity
conditions in Section 1.1, we may observe that

(nh)1/2
[

f̂ PT(x) − f(n)(x)
]
= (nh)1/2

[
( f̂ (x) − f(n)(x)) − ( f̂ (x) − f0(x))I(Ln(x) < χ2

1(α))
]

= σ(x)
[
Z − (Z + ∆)I((Z + ∆)2 < χ2

1(α))
]
+ op(1),

and also

(nh)1/2
[

f̂ S(x) − f(n)(x)
]
= (nh)1/2

[
( f̂ (x) − f(n)(x)) − dL−1/2

n (x)
(

f̂ (x) − f0(x)
)]

= (nh)1/2
[

f̂ (x) − f(n)(x)
]
− dσ

f̂ (x) − f0(x)

| f̂ (x) − f0(x)|
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= σ(x)
[
Z − d

Z + ∆
|Z + ∆|

]
+ op(1).

Similarly, under K(n) and the assumed regularity conditions, it yields

(nh)1/2
[

f̂ S+(x) − f(n)(x)
]
= (nh)1/2

[
( f̂ S(x) − f(n)(x)) − ( f̂ S(x) − f0(x))I(Ln(x) < d)

]
= σ(x)

[
Z − d

Z + ∆
|Z + ∆|

−((Z + ∆) − d
Z + ∆
|Z + ∆| )I((Z + ∆)2 < d)

]
= σ(x)

[
Z − d

Z + ∆
|Z + ∆|

−(Z + ∆)(1 − d|Z + ∆|−1)I((Z + ∆)2 < d))
]
+ op(1),

where

Z = (nh)1/2σ−1(x)[ f̂ (x) − f(n)(x)] D−→ N(0, 1), as n→∞.

In the following, we derive closed-form expressions for the asymptotic distributional
bias (ADB) and ADMSE. For any estimator f̂ (x) of f(n)(x), ADB and ADMSE are respec-
tively defined as

ADB( f̂ (x)) = lim
nh→∞

E
[
(nh)

1
2
(

f̂ (x) − f(n)(x)
)]
,

ADMSE( f̂ (x)) = lim
nh→∞

E
[
nh
(

f̂ (x) − f(n)(x)
)2]
.

Lemma 3.2 (Saleh, 2006). If Z ∼ N(∆, 1) and φ(.) be a Borel measurable function, then

(i) E
(
Zφ
(
Z2
))
= ∆E

(
φ
(
χ2

3

(
∆2
)))

,

(ii) E
(
Z2φ
(
Z2
))
= E
(
φ
(
χ2

3

(
∆2
)))
+ ∆2E

(
φ
(
χ2

5

(
∆2
)))

,

(iii) E |Z| =
√

2
πe−

∆2
2 + ∆ {2Φ (∆) − 1},

(iv) E
[

Z
|Z|
]
= 1 − 2Φ(−∆),
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where χ2
γ(∆2) stands for the non-central chi-square r.v. with γ degrees of freedom and non-

central parameter ∆2 and Φ(.) is the cumulative distribution function (CDF) of the standard
normal distribution.

Theorem 3.1. Under the local alternatives K(n) in (3.2) and the assumptions (A1)-(A3), ADB
and ADMSE of f̂ PT(x) are respectively given by

ADB( f̂ PT(x)) = −δH3(χ2
1(α);∆2),

ADMSE( f̂ PT(x)) = σ2(x)
[
1 −H3(χ2

1(α);∆2) + ∆2[(2H3(χ2
1(α);∆2) −H5(χ2

1(α);∆2)]
]
,

where Hγ(·;∆2) is the CDF of a non-central chi-squared distribution with γ degrees of freedom
and the non-central parameter ∆2 given by (3.3).

Proof. First, note that under the local alternatives K(n) we conclude

Z = (nh)1/2σ−1(x)
[

f̂ (x) − f(n)(x)
] D−→ N(0, 1), as n→∞.

Thus, using Lemma 3.2, we obtain

ADB( f̂ PT(x)) = lim
nh→∞

E
[
(nh)

1
2 ( f̂ PT(x) − f(n)(x))

]
= Eσ(x)

[
Z − (Z + ∆)I((Z + ∆)2 < χ2

1(α))
]

= −δH3(χ2
1(α);∆2).

For the ADMSE, we have

ADMSE( f̂ PT(x)) = lim
nh→∞

E
[
nh( f̂ PT(x) − f(n)(x))2

]
= E

[
σ(x)[Z − (Z + ∆)I((Z + ∆)2 < χ2

1(α))]
]2

= σ2(x)
[
1 − (Z + ∆)2I((Z + ∆)2 < χ2

1(α)) + 2∆(Z + ∆)I((Z + ∆)2 < χ2
1(α))

]
.

The result follows from Lemma 3.2. □
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Theorem 3.2. Under the local alternatives K(n) and the assumptions (A1)-(A3), ADB and
ADMSE of f̂ S(x) are respectively given by

ADB( f̂ S(x)) = dσ(x) [2Φ(∆) − 1] .

ADMSE( f̂ S(x)) = σ2(x)

1 + d2 − 2d
( 2
π

) 1
2

e−
∆2
2

 .
Proof. The following fact can be readily obtained under the local alternatives K(n)

(nh)
1
2 ( f̂ (x) − f0(x)) D→ N(δ, σ2(x)).

Thus, we have ADB( f̂ (x)) = 0. Then,

ADB( f̂ S(x)) = lim
nh→∞

E
[
(nh)

1
2
(

f̂ S(x) − f(n)(x)
)]

= ADB( f̂ (x)) − dσ(x) lim
nh→∞

E

 f̂ (x) − f0(x)

| f̂ (x) − f0(x)|


= −dσ(x)E

[ Z + ∆
|Z + ∆|

]
.

The result follows using Lemma 3.2.

For the ADMSE, we have

ADMSE( f̂ S(x)) = lim
nh→∞

E
[
nh
(

f̂ S(x) − f(n)(x)
)2]

= ADMSE( f̂ (x)) + d2 lim
nh→∞

E
[
nh
(

f̂ (x) − f0(x)
)2L−1

n (x)
]

−2dσ(x) lim
nh→∞

E

(nh)
1
2
(

f̂ (x) − fn(x)
)  f̂n(x) − f0(x)

| f̂ (x) − f0(x)|


= ADMSE( f̂ (x)) + d2σ2(x)

−2dσ2(x)
(
E(|Z + ∆|) − ∆E

[ Z + ∆
|Z + ∆|

])
= σ2(x)

1 + d2 − 2d
( 2
π

) 1
2

e−
∆2
2

 .
The result follows from Lemma 3.2 and the fact that ADMSE( f̂ (x)) = σ2(x). □
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Theorem 3.3. Under the local alternatives K(n) in (3.2) and the assumptions (A1) and (A2),
ADB and ADMSE of f̂ S+(x) are respectively given by

ADB( f̂ S+(x)) = σ[d(Φ(
√

d − ∆) −Φ(
√

d + ∆)) − ∆H3(d;∆2)],
ADMSE( f̂ S+(x)) = σ2(x)

[
1 + d2(1 −H1(d;∆2)) +H3(d;∆2) + ∆2H5(d;∆2)

−
√

2
π

(Φ(
√

d − ∆) −Φ(−
√

d − ∆)

+e−
(
√

d+∆)2
2 (d −

√
d + 2∆) + e−

(
√

d−∆)2
2 (d −

√
d))
]
.

Proof.

ADB( f̂ S+(x)) = lim
nh→∞

E[(nh)
1
2 ( f̂ S+(x) − f(n)(x))]

= Eσ(x)
[
Z − d

Z + ∆
|Z + ∆| − (Z + ∆)(1 − d|Z + ∆|−1)I((Z + ∆)2 < d))

]
= σ(x)

[
−d(2Φ(∆) − 1) − ∆H3(d;∆2) + d(2Φ(∆) + Φ(

√
d − ∆) −Φ(

√
d + ∆) − 1)

]
= σ(x)[d(Φ(

√
d − ∆) −Φ(

√
d + ∆)) − ∆H3(d;∆2)].

For the ADMSE, we have

ADMSE( f̂ S+
n (x)) = lim

nh→∞
E[nh( f̂ S+

n (x) − f(n)(x))2]

= E
[
σ(x)
(
Z − d

Z + ∆
|Z + ∆| − (Z + ∆)(1 − d|Z + ∆|−1)I((Z + ∆)2 < d))

)]2
= σ2(x)E

[
Z − d

Z + ∆
|Z + ∆| (1 − I((Z + ∆)2 < d)) − (Z + ∆)I((Z + ∆)2 < d))

]2
= σ2(x)E

[
Z2 + d2(1 − I((Z + ∆)2 < d))2 + (Z + ∆)2I((Z + ∆)2 < d)

−2dZ
Z + ∆
|Z + ∆| (1 − I((Z + ∆)2 < d)) − 2Z(Z + ∆)I((Z + ∆)2 < d)

+2d(Z + ∆)
Z + ∆
|Z + ∆| (1 − I((Z + ∆)2 < d))I((Z + ∆)2 < d)

]
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= σ2(x)E
[
1 + d2(1 −H1(d;∆2)) +H3(d;∆2) + ∆2H5(d;∆2)

−d

√
2
π

(e−
(
√

d+∆)2
2 + e−

(
√

d−∆)2
2 ) −

√
2
π

(∆(e−
(
√

d+∆)2
2 − e−

(
√

d−∆)2
2 )

−
√

2
π

(Φ(
√

d − ∆) −Φ(−
√

d − ∆) − (
√

d − ∆)e−
(
√

d−∆)2
2 − (

√
d + ∆)e−

(
√

d+∆)2
2 ))

 .
After some algebraic manipulation, we have

ADMSE( f̂ S+
n (x)) = σ2(x)

[
1 + d2(1 −H1(d;∆2)) +H3(d;∆2) + ∆2H5(d;∆2)

−
√

2
π

(Φ(
√

d − ∆) −Φ(−
√

d − ∆)

+e−
(
√

d+∆)2
2 (d −

√
d + 2∆) + e−

(
√

d−∆)2
2 (d −

√
d))
]
.

□

Based on the results of Theorems 3.1 - 3.3 and also the fact that ADMSE( f̂ (x)) = σ2(x),
using Theorem 2.1, the asymptotic efficiency of the estimators f̂ PT(x) , f̂ S(x) and f̂ S+(x)
relative to f̂ (x) can be computed as

ARE[ f̂ PT(x); f̂ (x)] =
ADMSE( f̂ (x))

ADMSE( f̂ PT(x))

= [1 −H3(χ2
1(α);∆2) + ∆2[(2H3(χ2

1(α);∆2) −H5(χ2
1(α);∆2)]]−1,

(3.4)

and

ARE[ f̂ S(x); f̂ (x)] =
ADMSE( f̂ (x))

ADMSE( f̂ S(x))
=
[
1 + g(∆)

]−1 , (3.5)

respectively, where

g(∆) = d2 − 2d
( 2
π

) 1
2

e−
∆2
2 .
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And also,

ARE[ f̂ S+(x); f̂ (x)] =
[
1 + d2(1 −H1(d;∆2)) +H3(d;∆2) + ∆2H5(d;∆2)

−
√

2
π

(Φ(
√

d − ∆) −Φ(−
√

d − ∆)

+e−
(
√

d+∆)2
2 (d −

√
d + 2∆) + e−

(
√

d−∆)2
2 (d −

√
d))
]−1
. (3.6)

Using Theorem 3.2, the value of d that minimizes ADMSE( f̂ S(x)) is equal to

d∗ =

√
2
π

exp
{
−∆

2

2

}
.

Thus, substituting d by d∗, the proposed criterion depends only on ∆2.

3.1 Comparisons

Now, we summarize some of the main important results proposed in the previous
section in order to obtain the optimal estimator. Figure 1 represents the ARE of the
PTE for some α values. It is clear that none of f̂ (x), f̂ PT(x), f̂ S(x) nor f̂ S+(x) is the best in
general.

Under the null hypothesis H0 : f (x) = f0(x), we have ∆2 = 0, hence

ARE[ f̂ S(x); f̂ (x)] =
(
1 − 2
π

)−1
= 2.75 > 1. (3.7)

Therefore, the SSKDE performs better than the ordinary kernel estimator.

On the other hand

ARE[ f̂ PT(x); f̂ (x)] = [1 −H3(χ2
1(α); 0)]−1 ≥ 1, (3.8)

which depends on the level of significance α. Further, as ∆2 → ∞, ARE[ f̂ S(x); f̂ (x)] =
[1 + 2

π ]−1 = 0.61, while ARE[ f̂ PT(x); f̂ (x)]→ 1. These facts imply that f̂ S(x) is superior
to f̂ PT(x) when f (x) is close to f0(x). On the other hand, the minimum guaranteed
efficiency of f̂ S(x) relative to f̂ (x) is 0.61, and that of f̂ PT(x) depending upon α. In
general, ARE[ f̂ S(x); f̂ (x)] decreases from π

π−2 at ∆2 = 0 and crosses 1-line at ∆2 =
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ln(4) = 1.38 then, drops to the minimum value π
π+2 = 0.61 at ∆2 → ∞. The loss of

asymptotic efficiency is 1 −
{
1 + 2

π

}−1
= 0.39, while the gain in efficiency is 2.75. Thus,

for 0 ≤ ∆2 ≤ 1.38, f̂ S(x) is preferred to f̂ (x); otherwise, f̂ (x) performs better outside the
interval.

By contrast, ARE[ f̂ PT(x); f̂ (x)] has a maximum value [1 − H3(χ2
1(α); 0)]−1 at ∆2 = 0,

dropping to a value of one when ∆2 = 1. It continues to drop, reaching the minimum
value of ADMSE, and then increases towards a value of one as ∆2 →∞. From this, one
may conclude that the range of ∆2 for which f̂ S(x) is better than f̂ (x) is wider than the
range produced by f̂ PT(x). Further, f̂ S(x) is independent of α, while the minimum of
the ARE[ f̂ PT(x); f̂ (x)] depends on the value of α. In general, f̂ S(x) does not dominate
f̂ PT(x) uniformly except in the range (0, ln(4)). Thus, considering the high asymptotic
efficiency of f̂ S(x), and also the fact that it is independent of the size α, of the test, the
estimate f̂ S(x) is preferable over f̂ PT(x) if f0(x) is close to f (x).

∆2

AR
E
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1

2

4

6

8

10

12 α = 0.01
α = 0.05
α = 0.1
α = 0.25
α = 0.5

Figure 1: The ARE of the PTE given by (3.4) for some choices of α.

4 Numerical Comparisons

4.1 Simulation Results

Assuming the association property for the r.v.s, we compared the asymptotic behavior of
the PRSE, PTE and SSKDE based on the closed-form expressions derived in Section 3.
We complete the comparison between the proposed estimators for the non-asymptotic
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states (small/moderate sample sizes). So, a Monte Carlo simulation study is provided
in the current section. The algorithm proposed by Cai and Roussas (1998) has been
employed for generating the r.v.s having the PA/NA property. More specifically, if
Xρ := (X1, · · ·Xn) follows an n-variate normal distribution with mean-vector 0 and the
correlation-matrix R := [ρi j]. Therefore, it has the PA property when R’s off-diagonal

elements are as ρi j =
ρ|i− j|

1−ρ2 , i , j, i, j = 1, · · · , n, ρ > 0, and the NA property when

ρi j = − |ρ|
|i− j|

1−ρ2 , i , j, i, j = 1, · · · , n, ρ < 0.

Similar to Srihera and Stute (2011), the optimum bandwidth is set to h = n−
1
5 .

Five different choices are adopted for the hypothesized pre-specified density f0(·),
as the point mass at zero f0 = 0, standard normal distribution f0 = N(0, 1) (which
is the right guess), student’s t-distribution with ν = 4 degrees of freedom f0 = t4,
the uniform distribution on (−

√
3,
√

3), and the standard Cauchy distribution C(0, 1).
These distributions are termed as null distributions in the sequel.

We compared all estimators with the ordinary kernel estimator (KDE) f̂ (x). More
specifically, let f̂1(x) be an estimator for the density function f (x). Then, the RE is
defined as

RE := RE[ f̂1(x), f̂ (x)] =
EMISE( f̂ (x), f (x))

EMISE( f̂1(x), f (x))
,

where EMISE stands for the estimated mean integrated squared error given by

EMISE( f̂1(x), f (x)) =
1
M

M∑
i=1

∫ ∞
−∞

(
f̂ (i)
1 (x) − f (x)

)2
dx.

Here, M is the number of replications and f̂ (i)
1 (x) denotes the ith observation of the

estimator f̂1(x).

We conducted a Monte Carlo simulation with M = 5000 and n = 10(10)100, 150, 200.
The RE results obtained from the simulation are depicted in Figures 2-7. From these
figures, we observe the following points:

• The REs are almost decreasing functions of the sample size n, even if the null
distribution deviates from the true normal distribution. However, for the SSKDE,
the corresponding RE of the best guesses is about constant.
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• For appropriate f0, the proposed improved estimators behave better than the
KDE, in the RE sense. Otherwise, they have better performance just for small
sample sizes.

• Considering that the data are drawn from a multivariate normal distribution,
it is observed that the estimators borrowing f0 = N(0, 1) as the initial guess,
outperform the other competitors. Indeed, adopting the uniform, Cauchy, and
a point mass at zero as the initial guesses, yield bad estimators for f . In other
words, a reasonable guess for f0 results in a better estimator for f .

• Figure 6 shows the EMISE of the PRSE divided by SSKDE for the case ρ = 0.3.
Based on this figure and some other visual evidence for other ρ values, that are
not peresented here, it is seen that the PRSE outperforms the SSKDE.

Finally, for a brief study of convergence rates of estimators, we sketch the EMISE values
for the PRSE, SSKDE as well as the KDE for ρ = 0.3 under the null, normal (good guess)
and Cauchy (bad guess) distributions for sample sizes n = 20(20)100, 150, 200, 500. Fig-
ure 7 depicts the results. As it is clearly seen, the rate of convergence of the PRSE is
better than the SSKDE, especially when the null distribution is close to the right one.
Surprisingly, both estimators converge faster than KDE. This result is reversed for the
case of bad guess and moderately/large sample sizes.

PRSE SSKDE

50 100 150 200 50 100 150 200

0

2

4

n

RE

f0: 0         N(0,1)  t4         U(− 3, 3) C(0,1)

Figure 2: The REs of the improved estimators for ρ = 0.3.
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50 100 150 200 50 100 150 200

0

2

4

n

RE

f0: 0         N(0,1)  t4         U(− 3, 3) C(0,1)

Figure 3: The REs of the improved estimators for ρ = 0.1.
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Figure 4: The REs of the improved estimators for ρ = 0.
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PRSE SSKDE
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Figure 5: The REs of the improved estimators for ρ = −0.3.
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Figure 6: The EMISE of the PRSE divided by the EMISE of the SSKDE for the case ρ = 0.3.
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Figure 7: Comparisons of the EMISEs of the KDE with the PRSE and EMISE, under two initial
guesses (null distributions) for ρ = 0.3.

4.2 Real Data Analysis

In this subsection, we analyze the performance of the proposed kernel density estima-
tors using a real data set for illustrative purposes. The data set represents 300 monthly
unemployed females between ages 16 and 19 in the United States from January 1961 to
December 1985 in thousands (say Y). The trace plot, auto-correlation function (ACF)
as well as the partial ACF (PACF) of the first-order difference of Y’s (denoted by X) are
displayed in Figure 8.

In order to come up with the correct model, we fitted several moving average (MA)
and auto-regressive (AR) models according to the lags in Figure 8. The MA model with
order 1, 15, 16 and 23 and an AR model with order 1, 2, 3 and 5 are the candidates for
model fitting. For comparing the adequacy of the candidates, we used the corrected
Akaike information criterion (AICC) for small sample sizes. If n and p denote the
sample size and number of parameters, receptively, then the AICC is given by

AICC = AIC +
2p(p + 1)
n − p − 1

.

We also used the Hannan-Rissanen and Burg methods to fit the models. For more
information about the AICC, Hannan-Rissanen, and Burg methods used for model
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Figure 8: The time series plots.

Table 1: The Results of fitting the MA and AR models to X values using Hannan-Rissanen
(HR) and Burg (B) methods along with the AICC values, for the real data.

Model Method AICC
MA(1) HR 3015.92
MA(15) HR 3039.26
MA(16) HR 3036.31
MA(23) HR 3062.71
AR(1) B 3028.11
AR(2) B 3024.26
AR(3) B 3020.32
AR(5) B 3020.23

fitting, see Brockwell and Davis (2002). The results of this fitting of models are reported
in Table 1. According to the results of Table 1, the MA(1) has minimum AICC value
and is selected as the underlying model. Further, the parameter estimate of the MA(1)
is negative. Thus, as Wang et al. (2018) showed that the MA(1) model with a negative
coefficient has NA property, we have a data set that satisfies the assumption of NA.
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We estimate the density using the PRSE, SSKDE, and KDE. Indeed, here, the null
distribution is not known. However, a simple visual check will indicate some appealing
properties of our approach. Hence, as the next step, we test some candidate distribu-
tions as f0(·) for this data set. Table 2 and Figure 9 summarize the results. Based on
the results of Table 2 and Figure 9, it is observed that the Skew-t (ST) outperforms the
other candidates. Thus, we use the ST, Logistic and Cauchy distributions as the good,
moderate, and bad guesses, respectively, for the parent distribution. Next, for ana-
lyzing the behavior of the proposed estimators, we have employed a block bootstrap
procedure to generate B = 1000 observations. The corresponding standard deviations
of the PRSE, SSKDE, and KDE, as well as the boxplots, are given in Table 3 and Figure
10, respectively. From these results, we observe that a reasonable guess for the parent
distribution of the data produces a more appropriate estimator. However, along with
this point, it seems that the PRSE is more sensible in selecting the initial guess than the
SSKDE. Another point that can be seen in Table 3 is that although the PRSE outperforms
all of the other competitors even with a bad initial guess, the SSKDE works better than
f̂ (x). Hence, the results obtained here, confirm those of the simulation study.

Table 2: The values of Kolmogorov-Smirnov (KS) statistic, AIC and Bayesian information
criterion (BIC) for some candidate distributions fitted on the real data.

KS statistic KS p-value AIC BIC
Normal 0.038 0.78 3084.50 3091.90
SN 0.032 0.92 3085.30 3096.40
ST 0.027 0.9 3084.81 3099.61
Logistic 0.031 0.94 3080.80 3088.17
Cauchy 0.067 0.13 3163.80 3171.20
Uniform 0.257 < 2.2e-16 ... ...

Table 3: The bootstrap estimation of the standard deviations for the proposed estimators.

PRSE SSKDE KDE
ST 0.00031 0.00049 0.00078
Logistic 0.00039 0.00052 0.00078
Cauchy 0.00080 0.00080 0.00078
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Figure 9: Histogram, empirical cumulative distribution and Q-Q plot of the real data versus
the fitted distributions.
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5 Conclusion

In this article, we proposed the preliminary test and Stein-type shrinkage estimators of
f (x) for the associated r.v.s, and derived their exact asymptotic distributional character-
istics. The result of this article improved the KDE of the marginal probability density
function of a strictly stationary sequence of associated random variables via the pre-
liminary test and Stein-type estimators. The results of simulation studies suggested
that the improved estimators always perform better than the KDE when we choose an
appropriate null distribution ( f0(·)). They even have reasonable performances under
the bad guesses for the smaller sample sizes. Moreover, results showed that the rate of
convergence of the PRSE is better than that of the SSKDE.
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