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1 Introduction

Consider a sequence of independent and identically distributed (i.i.d.) random vari-
ables as {Xi, i ≥ 1} having a cumulative distribution function (CDF) F and a probability
density function (PDF) f . An observation X j is an upper record value if X j > Xi for
every i < j. An analogous definition deals with lower record values. Examples of
application areas from data of this type include industrial stress testing, meteorological
analysis, sporting and athletic events, and oil and mining surveys; see Arnold et al.
(1998). We denote the mth upper record value by Rm. The joint density of the first
m-records R = (R1, ...,Rm) is given by

fR1,··· ,Rm(r1, ..., rm) = f (rm)
m−1∏
i=1

f (ri)
1 − F(ri)

, r1 < r2 < · · · < rm. (1.1)

Also, the marginal p.d.f. of the mth record, Rm, is given by

fRm(x) =
[− log(1 − F(x))]m−1

(m − 1)!
f (x).

Rayleigh distribution has wide applicability in the field of acoustics, communi-
cation engineering, in the life-testing of electro-vacuum devices, in reliability theory
and survival analysis and so on. Since the introduction of Rayleigh distribution in
1880, researchers have shown immense interest in this distribution because of its many
uses in different areas of science and technology. The most important feature of the
Rayleigh distribution is that its failure rate is an increasing function of time, i.e., if
the failure times are distributed according to the Rayleigh law, intense aging of the
equipment/item takes place. Detailed work on Rayleigh distribution can be found in
the works of authors such as Dey and Das (2007), Dey (2009), Dey and Day (2014),
Dey et al. (2017) and the references cited therein have carried out extensive studies
as related to the estimation, prediction and several other inferences with respect to
Rayleigh distribution.

Let X have a one parameter Rayleigh distribution with PDF

f (x|θ) =
x
θ

e−
x2
2θ , x > 0, θ > 0, (1.2)
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and the corresponding CDF as

F(x|θ) = 1 − e−
x2
2θ , x > 0.

If R = (R1, ...,Rm) be the first m-records samples from the Rayleigh distribution,
then from (1.1) and (1.2), the likelihood function of θ based on R = (R1, ...,Rm) at
r = (r1, ..., rm) is given by

L(θ|r) = (
m∏

i=1

ri

θ
) e−

r2
m

2θ , θ > 0. (1.3)

Then, the MLE of θ can be derived from the equation ∂L(θ|r)
∂θ = 0, which is given by

θ̂ = R2
m/(2m).

In many situations, the researcher has some prior information about the parameter
of interest θ in the form of a point guess value θ0 and sample information that provides
the estimator, MLE, θ̂. However, the researcher can combine non-sample information
(θ0) and sample information (θ̂) and construct a new estimator with a hope that it will
perform better than the MLE. Thompson (1968) considered the linear point shrinkage
estimator as

θ̂s = k(θ̂ − θ0) + θ0 = kθ̂ + (1 − k)θ0, k ∈ [0, 1], (1.4)

where k is known as a shrinkage factor. The value of k near to zero (one) implies a
strong belief in the guess value θ0 (sample values). Significant attention has been paid
to the problem of shrinkage estimation, see Prakash and Singh (2008), Naghizadeh
Qomi and Barmoodeh (2015), Belaghi et al. (2014), Belaghi et al. (2015 a, b), Kiapour
and Naghizadeh (2016), Baklizi et al. (2016), Naghizadeh Qomi (2017a), Safarian et
al. (2018) and Volterma et al. (2018).

In the Bayesian approach of estimation, a Bayesian estimator is derived by employ-
ing a flexible prior distribution for the parameter of interest. Prakash and Singh (2009)
considered the problem of Bayesian shrinkage estimation in Weibull type-II censored
data under the squared error loss (SEL) and linear-exponential (LINEX) loss functions
in the presence of a point guess value of true parameter. Dey et al. (2015) dealt with the
Bayesian shrinkage estimation for the progressively censored samples from Rayleigh
distribution under a general entropy loss function. Naghizadeh Qomi (2017b) used
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Figure 1: The plot of the RGL function for l = 1 and selected values of γ = 1, 3, 5, 10.

a squared log error loss (SLEL) function for obtaining the Bayesian shrinkage esti-
mators for the scale-parameter of a Rayleigh distribution based on type-II censored
data. Kiapour (2017) considered the Bayesian shrinkage estimation for exponential
distribution under a precautionary loss function. The loss functions proposed in the
aforementioned articles are not bounded. In some estimation problems, the use of an
unbounded loss function may be inappropriate. For example, in estimating the mean
life θ of the components of an aircraft, the amount of loss for estimating the parameter θ
by an estimator is essentially bounded. In this paper, we consider the reflected gamma
loss (RGL) function for estimating the scale parameter θ as

L(θ, δ) = l
[
1 − (

δ
θ

)γe−γ(
δ
θ−1)
]
,

where l > 0 is the maximum loss, γ > 0 is a shape parameter and δ is an estimator
of θ. Towhidi and Behboodian (1999, 2002), Meghnatisi and Nematollahi (2009) and
Naghizadeh Qomi et al. (2015) considered this loss function in some estimation
problems. It is noticed that the RGL function is constructed by flipping a gamma
density upside down, see Figure 1. We observe that the RGL function:
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1. Is bounded by 0 and l.

2. Is an asymmetric function of δ/θbut not convex in δ/θ and has a unique minimum
0 for δ/θ = 1, is strictly decreasing on (0,1) and increasing on (1,∞). L(0) = l and
lim δ

θ→∞
L( δθ ) = l.

3. Is downside damaging, because L(δ − ε) ≥ L(δ + ε), ∀ε > 0, and then underesti-
mation is penalized more heavily than over-estimation.

The uniqueness of this study comes from the fact that thus far, no attempt has
been made to compare the Bayesian estimator and the generalized Bayesian shrinkage
estimator using a RGL function with MLE based on record values. Further, empirical
Bayesian shrinkage estimator has been obtained.

The rest of the paper is organized as follows. In Section 2, we obtain the Bayesian
estimator of θ under RGL function. In Section 3, a generalized Bayesian shrinkage
estimator is constructed under the RGL function. A comparative study is performed
between the proposed Bayesian shrinkage estimator and the MLE in Section 4. In
Section 5, a data set has been analyzed to illustrate the performance of the Bayesian
shrinkage estimator. Finally, in Section 6, we end the paper with some remarks.

2 The Bayesian Estimator of θ under RGL

Let R = (R1, · · · ,Rm) be the first m-record data arising from a sequence of i.i.d. Rayleigh
variable with PDF given in (1.2). Consider the natural conjugate IGamma(a, b)-prior for
θwith PDF

πa,b(θ) =
abe−

a
2θ

2bΓ(b)θb+1
, θ > 0, a > 0, b > 0, (2.1)

where Γ(b) =
∫ ∞

0 tb−1e−tdt is the gamma function. When no prior information about
the parameter θ is available, we may use the noninformative Jeffreys prior π0,0(θ) =
1/θ, θ > 0. Combining the likelihood function (1.3) with the prior (2.1), the posterior
PDF of θ given R is IGamma(R2

m + a,m + b) of the form

π(θ|R) =
(R2

m + a)m+b e−(R2
m+a)/2θ

Γ(m + b) 2m+b θm+b+1
.
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The posterior risk of δ = δ(R) under the RGL is given by

ρ(δ) = E[L(θ, δ)|R] = 1 − E
[(
δ
θ

)γ
e−γ( δθ−1)|R

]
= 1 −

∫ ∞
0

(
δ
θ

)γ
e−γ( δθ−1) (R2

m + a)m+b e−(R2
m+a)/2θ

Γ(m + b) 2m+b θm+b+1
dθ

= 1 − Aδγ

(R2
m + a + 2γδ)m+b+γ

,

where A = (2e)γ(R2
m + a)m+bΓ(m + b + γ)/Γ(m + b). Note that we take l = 1, without

loss of generality. The Bayesian estimator θ̂B(R) is obtained by minimizing the poste-
rior risk with respect to δ. Doing some calculations, we obtain the Bayesian estimator as

θ̂B(R) =
R2

m + a
2(m + b)

=
2mθ̂ + a
2(m + b)

, (2.2)

which does not depends on γ. By choosing a = b = 0, the conjugate inverse Gamma
prior for θ converts to a Jeffreys prior as a limiting prior and then the generalized
Bayesian estimator of θ becomes θ̂, the MLE of θ.

3 A Class of Bayesian Shrinkage Estimators

Suppose that we have some a priori information about the parameter θ as a point guess
θ0. Following Prakash and Singh (2009) we select the parameters a and b of the prior
distribution (2.1) such that E[θ̂B(R)] = θ0 or equivalently

2mE[θ̂] + a
2(m + b)

=
2mθ0 + a
2(m + b)

= θ0,

which implies that a = 2bθ0. By substituting this value of a in θ̂B(R), we obtain an
estimator of the form

θ̂BS(R) = λθ̂ + (1 − λ)θ0,
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where λ = m/(m+ b). The estimator θ̂BS(R) is similar to the shrinkage estimator in (1.4)
and we consider it as a Bayesian shrinkage estimator of θ. Note that if b → 0, then
θ̂BS(R)→ θ̂, whilst for b→∞, we have θ̂BS(R)→ θ0.

Now, consider a class of Bayesian shrinkage estimators of the form

θ̂(k)
GBS(R) =

m + bk
m + b

θ̂ +
b(1 − k)
m + b

θ0 = λ
⋆θ̂ + (1 − λ⋆)θ0,

where λ⋆ = (m + bk)/(m + b) and k lies in [0, 1]. We called the estimator θ̂(k)
GBS(R) as

generalized Bayesian shrinkage estimator. Note that for k = 0, we have θ̂(0)
GBS(R) =

θ̂BS(R).

The risk function of θ̂(k)
GBS(R) under the RGL function is

R(θ, θ̂(k)
GBS) = 1 − E

[( θ̂(k)
GBS

θ

)γ
e−γ(

θ̂
(k)
GBS
θ −1)

]
= 1 − eγE

[(λ⋆θ̂ + (1 − λ⋆)θ0

θ

)γ
e−γ(

λθ̂+(1−λ)θ0
θ )

]
= 1 − eγE

[(
λ⋆U
2m
+ (1 − λ⋆)∆

)γ
e−γ( λ

⋆U
2m +(1−λ⋆)∆)

]
= 1 − eγ[1−(1−λ⋆)∆]

∫ ∞
0

(
λ⋆u
2m
+ (1 − λ⋆)∆

)γ
e
−γλ⋆u

2m g(u)du,

where ∆ = θ0/θ and g(u) is the density of U = 2mθ̂/θ ∼ χ2
2m.

The risk function of θ̂ under the RGL function is

R(θ, θ̂) = 1 − E
[(
θ̂
θ

)γ
e−γ( θ̂θ−1)

]
= 1 −

( e
2m

)γ
E
[
Uγe−

γU
2m
]
= 1 −

( e
2m

)γ ∫ ∞
0

uγe−
γu
2m g(u)du

= 1 − eγmmΓ(m + γ)
(m + γ)m+γΓ(m)

.
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4 A Comparative Study

In this section, we evaluate the performance of the proposed Bayesian shrinkage es-
timator and ML estimator. For comparison purposes, the relative efficiency (R.E.) of
θ̂(k)

GBS with respect to θ̂ has been calculated as

RE(θ̂(k)
GBS, θ̂) =

R(θ, θ̂)

R(θ, θ̂(k)
GBS)
.

Figure 2 shows the shape of RE for selected values of k = 0, 0.3, 0.6, 0.9, m = 2(1)5,
γ = 1 and b = 3 with respect to ∆. Note that we used the notation low(step)up for the
presentation of values. It is observed that the generalized Bayesian shrinkage estimator
performs well with compared to the MLE for ∆ closer 1. Moreover, the generalized
Bayesian shrinkage estimator with k = 0, i.e., θ̂BS is better than other estimators in the
neighborhood of θ0.

The range of ∆ that of θ̂BS dominates θ̂ (the so-called effective interval) and the
values of ∆max for which RE is maximum are summarized in Table 1. It is observed
that the length of effective intervals for fixed m and γ decreases when b increases. Also,
when the values of m and b are held fixed, the length decreases when γ increases.

We also plotted the R.E. of θ̂BS and θ̂ in Figures 3-4 for various values of m, γ, b
and ∆. From these figures, the following conclusions can be drawn:

1. The Bayesian shrinkage estimator performs well with respect to the MLE for ∆
closer to 1.

2. For fixed m and γ, the Bayesian shrinkage estimators with a larger value of b
outperforms other estimators in the neighborhood of θ0.

3. The R.E. is decrease with respect to m when b and γ are held fixed and ∆ is close
to one.

We also plot the R.E. in Figure 5 for selected values of m and b with respect to γ
when ∆ = 1. It is observed from Figure 5 that the R.E. is decreasing with respect to γ
for fixed values of m and b.
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Figure 2: Plots of R.E. between θ̂(k)
GBS and θ̂ for selected values of k = 0, 0.3, 0.6, 0.9, m = 2(1)5,

b = 3 and γ = 1 with respect to ∆.
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Figure 3: Plots of R.E. between θ̂BS and θ̂ for selected values of m = 2(1)5, b = 1, 3, 5, 7 and
γ = 1 with respect to ∆.
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Table 1: The value of ∆max and the range of ∆ that θ̂BS dominates θ̂.

γ = 1 γ = 3 γ = 5 γ = 7
m b ∆max [∆1 ,∆2] ∆max [∆1 ,∆2] ∆max [∆1 ,∆2] ∆max [∆1 ,∆2]

2 1 1.500 [0.1753,3.3869] 1.5674 [0.2135,3.1809] 1.6159 [0.2332,3.0765] 1.6533 [0.2450,3.0125]
3 1.1111 [0.2914,2.3404] 1.1268 [0.3464,2.1635] 1.1395 [0.3792,2.0663] 1.1500 [0.4012,2.0029]
5 1.0500 [0.3414,2.1290] 1.0566 [0.4000,1.9643] 1.0623 [0.4363,1.8714] 1.0673 [0.4618,1.8095]
7 1.0280 [0.3700,2.0381] 1.0319 [0.4297,1.8806] 1.0350 [0.4674,1.7905] 1.0378 [0.4941,1.7299]

3 1 1.600 [0.1961,3.4366] 1.6606 [0.2214,3.3150] 1.7049 [0.2355,3.2489] 1.7389 [0.2445,3.2076]
3 1.1428 [0.3251,2.2713] 1.1590 [0.3637,2.1573] 1.1722 [0.3881,2.0887] 1.1833 [0.4051,2.0421]
5 1.0668 [0.3816,2.0297] 1.0739 [0.4235,1.9222] 1.0803 [0.4511,1.8555] 1.0859 [0.4711,1.8089]
7 1.0385 [0.4145,1.9244] 1.0429 [0.4575,1.8216] 1.0465 [0.4864,1.7567] 1.0498 [0.5067,1.7108]

4 1 1.6668 [0.2092,3.4776] 1.7180 [0.2272,3.3993] 1.7558 [0.2380,3.3545,] 1.7849 [0.2452,3.3259]
3 1.1666 [0.3464,2.2402] 1.1810 [0.3753,2.1599] 1.1945 [0.3944,2.1086] 1.2051 [0.4080,2.0726]
5 1.0800 [0.4071,1.9785] 1.0874 [0.4389,1.9015] 1.0938 [0.4609,1.8505] 1.099 [0.4771,1.8137]
7 1.0476 [0.4429,1.8634] 1.051 [0.4757,1.7892] 1.0556 [0.4989,1.7393] 1.059 [0.5164,1.7027]

5 1 1.7142 [0.2182,3.5097] 1.7570 [0.2317,3.4560] 1.7892 [0.2403,3.4239] 1.8139 [0.2462,3.4029]
3 1.1851 [0.3614,2.2239] 1.199 [0.3838,2.1643] 1.2107 [0.3992,2.1244] 1.2204 [0.4105,2.0957]
5 1.0908 [0.4250,1.9482] 1.098 [0.4501,1.8897] 1.1042 [0.4681,1.8493] 1.1097 [0.4817,1.8194]
7 1.0549 [0.4628,1.8257] 1.059 [0.4889,1.7690] 1.0630 [0.5080,1.7291] 1.0664 [0.5228,1.6990]

5 An illustrative Example

The data set consists of 16 observations. The data describes the survival times (in days)
of a group of lung cancer patients (see Lawless (2003)). The data are as follows

6.96, 9.30, 6.96, 7.24, 9.30, 4.90, 8.42, 6.05, 10.18,
6.82, 8.58, 7.77, 11.94, 11.25, 12.94, 12.94.

We estimate the unknown parameter of the model by maximum likelihood and the
value is θ̂ = 41.9355. For checking the validity of the Rayleigh distribution, we have
used the Kolmogorov-Smirnov (K-S) statistic. It is observed that the K-S distance is
K-S=0.3007 with a corresponding p-value=0.1108. From this original data set, we have
extracted five upper records for our data analysis. The record data are

6.96, 9.30, 10.18, 11.94, 12.94.

Therefore, we have r5 = 12.94, which indicates that the MLE ofθ is θ̂ =
r2

5
10 = 16.7443.

We consider MLE as the true value of θ and summarize the Bayesian shrinkage
estimates and their risks for selected underestimated and overestimated values of
θ0 = 10(10)50, b = 0, 1, 5(5), 20 and γ = 1, 5 in Table 2. We observe from Table 2 that
the Bayesian shrinkage estimates increase when the value of b increases. Also, the risk
of the Bayesian shrinkage estimators decreases when θ0 = 20. Moreover, the Bayesian
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Table 2: The Bayesian shrinkage estimates and their risks (in parenthesis) for selected values
of θ0 and b.

b
θ0 γ 0 1 5 10 15 20

10 1 16.7443(0.0896) 15.6202(0.0734) 13.3721(0.0569) 12.2480(0.0605) 11.6860(0.0664) 11.3480(0.0715)
5 16.7443(0.2987) 15.6202(0.2624) 13.3721(0.2268) 12.2480(0.2495) 11.6860(0.2771) 11.3480(0.2995)

20 1 16.7443(0.0896) 17.2869(0.0586) 18.3721(0.0230) 18.9147(0.0155) 19.1860(0.0139) 19.3488(0.0136)
5 16.7443(0.2987) 17.2869(0.2211) 18.3721(0.0992) 18.9147(0.0705) 19.1860(0.0651) 19.3488(0.0645)

30 1 16.7443(0.0896) 18.9535(0.0549) 23.3721(0.0694) 25.5814(0.1015) 26.6860(0.1211) 27.3488(0.1336)
5 16.7443(0.2987) 18.9535(0.2072) 23.3721(0.2735) 25.5814(0.3989) 26.6560(0.4665) 27.3488(0.5062)

40 1 16.7443(0.0896) 20.6202(0.0604) 28.3721(0.1570) 32.2480(0.2371) 34.1860(0.2793) 35.3488(0.3048)
5 16.7443(0.2987) 20.6202(0.2208) 28.3721(0.5416) 32.2480(0.7293) 34.1860(0.7991) 35.3488(0.8342)

50 1 16.7443(0.0896) 22.2869(0.0733) 33.3721(0.2613) 38.9147(0.3806) 41.6860(0.4379) 43.3488(0.4709)
5 16.7443(0.2987) 22.2869(0.2586) 33.3721(0.7560) 38.9147(0.9029) 41.6860(0.9415) 43.3488(0.9573)

shrinkage estimates have a smaller risk for γ = 1 than γ = 5.

The parameters a and b could be estimated using a form of inference, called fiducial
inference, see Casella and Berger (2001). The fiducial distribution of the parameter θ
given the observations r = (r1, · · · , rm) is used to describe our uncertainty about the
parameter after r is observed when there was no a prior information about θ. In this
inference, M(r)L(θ|r) is interpreted as a PDF for θ, where M(r) = (

∫ ∞
−∞ L(θ|r)dθ)−1. In

our situation, M(r) is given by

M(r) =
(
∏m

i=1 ri)2m−1Γ(m − 1)

r2(m−1)
m

, m > 1. (5.1)

Therefore, the fiducial distribution of θ given r is

f id(θ) =
r2(m−1)

m e−
r2
m

2θ

2m−1Γ(m − 1)θm , m > 1, (5.2)

which is an inverse gamma, IGamma(r2
m,m − 1). Then, the empirical estimates of a and

b are â = r2
m = 2mθ̂ and b̂ = m − 1. Therefore the empirical Bayesian estimators of θ is

θ̂EB(R) =
2mθ̂ + â

2(m + b̂)
=

2mθ̂
2m − 1

.

Using the empirical estimates of a and b, we have

λ̂⋆ =
m + (m − 1)k

2m − 1
, θ̂0 =

mθ̂
m − 1

.



Performance of a Class of Bayesian Shrinkage Estimators... 169

Therefore, the empirical generalized Bayesian shrinkage estimator of θ is

θ̂(k)
EGBS(R) = λ̂⋆θ̂ + (1 − λ̂⋆)θ̂0

=
m + (m − 1)k

2m − 1
θ̂ +

(m − 1)(1 − k)
2m − 1

mθ̂
m − 1

=
(2m − k)θ̂

2m − 1
.

It is to be noted that the empirical generalized Bayesian shrinkage estimator and em-
pirical Bayesian estimator are the same and the value of θ0 dose not affect the estimator.

Using a fiducial inference for estimation of a and b, we have â = r2
5 = (12.94)2 =

167.44 and b̂ = m − 1 = 4. Therefore, λ̂ = m/(m + b̂) = 0.56 and the empirical estimate
of θ0 is θ̂0 = 18.58. Then, the Bayesian shrinkage estimate of θ is

θ̂(0)
EGBS = 0.56(16.74) + (1 − 0.56)(20.93) = 18.58. (5.3)

6 Concluding Remarks

In this paper, we have obtained a generalized Bayesian shrinkage estimator for the
scale parameter of a Rayleigh distribution on the basis of record samples under the
RGL function in the presence of prior point information. The Bayesian and Bayesian
shrinkage estimators are derived under the RGL and their risks are computed. Com-
parisons are made between these estimators via the relative efficiency using graphical
and numerical methods. Our findings show that the Bayesian shrinkage estimator out-
performs the MLE if the prior point information about the value of the parameter is not
too far from its true value. Moreover, the Bayesian shrinkage estimator performs well
with respect to the MLE for θ0 in the vicinity of θ. In this case, the Bayesian shrinkage
estimators with larger values of b outperforms other estimators in the neighborhood
of θ0, when m and γ held fixed. In practice, as the true value of the parameter is
unknown, obtaining a point guess value is difficult. An empirical Bayesian procedure
has been followed to obtain an estimated guess value of the parameter and utilizing
so, the empirical Bayesian shrinkage estimates have been calculated.
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