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Abstract. We propose a copula-based index to detect the reflection asymmetry in trivariate
distributions. The proposed index is based on the definition of directional reflection asym-
metry over the set of directions. We derive the asymptotic distribution of the rank-based
estimator of the proposed index. The value of the index and the direction in which the asym-
metry occurs are easily computed, and we illustrate it with a simulation study and a real data
analysis.
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1 Introduction

Suitable models are often needed for multivariate data in many applications when departure
from normality assumption can be found in data. Following Sklar (1959) the joint cumulative
distribution function H of the vector X = (X1, ...,Xd), with the continuous marginal distribution
functions Fi, i = 1, ..., d, can then be expressed as H(x1, ..., xd) = C{F1(x1), ..., Fd(xd)}, in terms
of a unique copula C : [0, 1]d → [0, 1], which is itself the joint distribution function of the
vector U = (U1, ...,Ud) = (F1(X1), ..., Fd(Xd)) of uniform (0,1) random variables. Modeling
multidimensional data using copulas has found many applications in the last two decades;
see Nelsen (2006), Trivedi and Zimmer (2007), Cherubini et al. (2011) and Joe (2015) for a
review and references therein. The main reason for the interest in copulas is that they allow
for the modelling of different dependence structures of data. A natural question is how does
one choose an appropriate copula for a given data set? One model selection approach is to
consider the goodness-of-fit tests for copulas; see Genest et al. (2009) and Berg (2009). A
complimentary to the goodness-of-fit methods are first testing the copula structure of interest
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such as symmetries to suggest a sensible class of parametric families of copulas.

Fitting an inappropriate model to the data by neglecting some properties such as the
asymmetries can lead to incorrect conclusions. Even though there is a unique way of defining
symmetry about a point in one-dimension, there exist several definitions for symmetry in the
multidimensional case. Nelsen (1993) discusses several definitions for bivariate symmetry.
A kind of symmetry that exhibited, for instance, by elliptically contoured distributions, is
the radial symmetry or reflection symmetry which is also known as central or diagonal symmetry
(Sefling (2006)).

Throughout this paper, we assume that the center of symmetry is known. Hence, without
loss of generality, we consider the problem of reflection about zero. Formally, the random
vector X is reflection symmetric if X =D −X, where =D denotes the equality in distribution.
Equivalently, X is reflection symmetric if, and only if, H(x) = H̄(−x), for all x = (x1, .., xd) ∈ Rd,
where H̄(x) = P(X1 > x1, ...,Xd > xd) is the survival function associated with H. Consequently,
reflection symmetric random variables X1, ...,Xd must be marginally symmetric, i.e., Fi(x) =
1 − Fi(−x), i = 1, ..., d, for all x ∈ R. Of course, the converse is false. Many commonly used
distributions such as multivariate normal and the other elliptically contoured distributions
are reflection symmetric (Fang et al. (1989)). Let Ĉ denote the survival copula associated with
the copula C, defined by Ĉ(u1, ..., ud) = C̄(1 − u1, ..., 1 − ud) for all (u1, ..., ud) ∈ [0, 1]d, which is
the joint distribution of the vector (1 − U1, ..., 1 − Ud) of uniform (0,1) random variables and
C̄(u1, ..., ud) = P(U1 > u1, ...,Ud > ud) is the survival function associated with the copula C.
For d = 2, Ĉ(u1, u2) = u1 + u2 − 1 + C(1 − u1, 1 − u2) and the expression for Ĉ becomes more
complicated for d > 2. If Fis, i = 1, ..., d are symmetric about zero, then the distribution of the
vector (U1, ...,Ud) = (F1(X1), ..., Fd(Xd)) is symmetric about the point (1/2, ...., 1/2) if, and only
if, C(u1, ..., ud) = Ĉ(u1, ..., ud), for all (u1, ..., ud) ∈ [0, 1]d. Thus the problem of investigating the
symmetry of a bivariate distribution can be reduced to that of investigating the symmetry of
its associated copula as far as we know the center of symmetry.

A natural approach to measure the amount of asymmetry in a copula is based on a suitable
distance between the copula and its associated survival copula. For the case d = 2, recently
several copula-based measures of reflection asymmetry and statistical tests of symmetry are
defined and studied in literature; see Buzebda and Cherfi (2012), Dehgani et al. (2013),
Genest and Neślehová (2014), and Alikhani-Vafa and Dolati (2018). Rosco and Joe (2013)
studied reflection asymmetry measures using an approach based on the univariate skewness
to account the direction of the asymmetry. Modarres (2017) considered the problem of
estimation of a bivariate reflection symmetric distribution. In the multivariate case, the
situation is more complicated. Due to the complexity of the relation between the copula
and its associated survival copula, the extension of the distance-based bivariate asymmetry
measures beyond dimension 2 is a difficult task. Recently, Krupskii (2017) proposed a
multivariate measure of reflection asymmetry for copulas based on a weighting function.

As we will see in Section 2, this index measures the strength of reflection asymmetry, but
it could not account for the correct direction of reflection asymmetry in dimensions d > 2. To
solve this problem, we propose a copula-based index to measure the strength and also the
direction of reflection asymmetry in trivariate case. The index is based on the definition of
directional reflection asymmetry over the set of directions. The rest of the paper is organized
as follows. In Section 2 we propose the new index. In Section 3 we investigate the asymptotic
normality of the empirical counterpart of the proposed index. The power of the test of sym-
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metry based on the proposed index and that of Krupskii (2017) is compared in Section 4. The
measure is then applied to analyze a real data set in Section 4. Section 5 concludes the paper
with a discussion.

2 A directional Reflection Asymmetry Measure

Let (U1, ...Ud) be a vector of uniform (0,1) random variables having a copula C. Krupskii
(2017) proposed a measure of multivariate reflection asymmetry of the form

G(∆R, k) =
∫

[0,1]d
w(u1, ..., ud)

(
C(u1, ..., ud) − Ĉ(u1, ..., ud)

)
du1...dud,

where w(u1, ..., ud) =
(

1
2 − 1

d
∑d

i=1 ui

)k
I{∑d

i=1 ui≤ d
2 }

is a weighting function and k is a positive inte-
ger. A closed expression for this index is given by

G(∆R; k) =
(−d)d

(k + 1)(k + 2)...(k + d)
E


∣∣∣∣∣∣∣∣12 − 1

d

d∑
j=1

U j

∣∣∣∣∣∣∣∣
k+d

.sign

1
2
− 1

d

d∑
j=1

U j


 . (2.1)

For a given copula C, let G(C) = G(∆R; k)/md where the normalizing constant md is the maxi-
mal value of G(∆R; k). The index G(C) ranges over (−1, 1), with larger values indicating more
reflection asymmetry in the copula C. As the following example shows this index fails to
detect the reflection asymmetry in many situations.

Example 2.1. Let (U1,U2,U3) follow the trivariate Clayton copula (see; Nelsen (2006)) given
by

C1(u1,u2, u3) =
(
u−θ1 + u−θ2 + u−θ3 − 2

)−1/θ
, θ > 0. (2.2)

Consider the rotated Clayton copula associated with the vector (U1,U2, 1−U3), which is given
by C2(u1, u2,u3) = P(U1 ≤ u3,U2 ≤ u2, 1 − U3 ≤ u3) = C1(u1,u2, 1) − C1(u1, u2, 1 − u3). Both
C1 and C2 are reflection asymmetric, i.e., C1 , Ĉ1 and C2 , Ĉ2, but for a common level of
dependency, say, Kendall’s τ = 0.5, we see that G(C1) = 0.5112 and G(C2) = 0.0006 � 0. Thus
the index G(.) fails to measure the asymmetry of the copula C2.

In the following, we propose a generalization of (2.1) to resolve this problem. First, we
define the directional reflection asymmetric.

Definition 2.1. For αi ∈ {−1, 1}, i = 1, ..., d, we say that the vector (U1, ...,Ud) of uniform (0,1)
random variables is reflection asymmetric in the direction (α1, ..., αd) if(

α1(U1 −
1
2

), ..., αd(Ud −
1
2

)
)
,D

(
α1(

1
2
−U1), ..., αd(

1
2
−Ud)

)
. (2.3)
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For the directions (α1, ..., αd) = (1, ..., 1) and (α1, ..., αd) = (−1, ...,−1), the condition (2.3) is
equivalent to C(u1, ..., ud) , Ĉ(u1, ..., ud), for some (u1, ..., ud) ∈ [0, 1]d, where C is the copula
associated with the vector (U1, ...,Ud). For a reflection symmetric copula, we have

d∑
j=1

α j(U j −
1
2

) =D
d∑

j=1

α j(
1
2
−U j),

or equivalently
d∑

j=1

α jU j −
1
2

d∑
j=1

α j =
D 1

2

d∑
j=1

α j −
d∑

j=1

α jU j.

Let

T =
1

2d

d∑
j=1

α j −
1
d

d∑
j=1

α jU j.

For a reflection symmetric copula, we have T =D −T; that is T is symmetric about zero. Thus,
any univariate measure of skewness for T would be an index for measuring the amount of
asymmetry for a vector (U1, ...,Ud) or its associated copula C, in the direction (α1, ..., αd). A
natural index of asymmetry could be

λ(α1,...,αd) =
E
[
|T|k.sgn(T)

]
m(k, d)

, (2.4)

where k is a positive integer, d ≥ 2 is the dimension of the copula C and m(k, d) is a normalizing
constant to ensure that the index falls in the interval (−1, 1). This index measures the amount
and direction of reflection asymmetry that exist in the copula C. It is proportional to the index
G(∆R; k) defined by (2.1) when (α1, ..., αd) = (1, ..., 1). If C(u1, ..., ud) , Ĉ(u1, ..., ud), for some
(u1, ..., ud) ∈ [0, 1]d, then this reflection asymmetry could be observed in some direction.

In the multivariate case, the situation is more complicated and we consider just the trivari-
ate case. In this case, the direction (α1, α2, α3) of asymmetry belongs to one of the following sets

D1 = {(1, 1, 1), (1, 1,−1), (1,−1, 1), (1,−1,−1)}

or
D2 = {(−1,−1,−1), (−1,−1, 1), (−1, 1,−1), (−1, 1, 1)}.

Note that D1 and D2 are two complementary sets. In view of (2.3), for instance, the directions
(1, 1, 1) and (−1,−1,−1) are the same. We consider D1 as the set of directions of asymmetry.
For simplicity, we use the following notions in the sequel

λ1 = λ
(1,1,1), λ2 = λ

(1,1,−1), λ3 = λ
(1,−1,1) and λ4 = λ

(1,−1,−1). (2.5)

Definition 2.2. Let (X1,X2,X3) be a random vector with the associated copula C and let
λ(α1,α2,α2) denote the index defined by (2.4). Let (α∗1, α

∗
2, α
∗
3) be the direction for which the

absolute value of the index has a maximum value. We define λ(α∗1,α
∗
2,α
∗
3) as the index of

directional asymmetry of the copula C in the direction (α∗1, α
∗
2, α
∗
3).
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We consider the normalizing constant m(k, 3) in (2.4) as the value of the index for a vector
(U∗1,U

∗
2,U

∗
3) with the maximum reflection asymmetry in some direction (α1, α2, α3). For this

purpose, we use the family of singular copulas that considered in Krupskii (2017). Let U1,
U2 and U3 be three independent uniform (0,1) random variables. For 0 ≤ θ ≤ 1, consider the
vector (U∗1,U

∗
2,U

∗
3) = (U1,U1,U1) if U1 < θ and (U∗1,U

∗
2,U∗3) = (U1,U2,U3) if U1 > θ. So, we

have

E
[
|T|k.sgn(T)

]
=


∫ θ

0 ( 1
2 − u)kdu +

∫ 1
0

∫ 1
0

∫ 1
θ
|T|k.sgn(T)du1du2du3, θ < 1

2 ,∫ 1
2

0 ( 1
2 − u)kdu −

∫ θ
1
2

(u − 1
2 )k +

∫ 1
0

∫ 1
0

∫ 1
θ
|T|k.sgn(T)du1du2du3, θ > 1

2 .

We maximize the numerator of (2.4) for the copula of the vector (U∗1,U
∗
2,U

∗
3). After some

algebra the derivative of E
[
|T|k.sgn(T)

]
with respect to θ is given by

∂

∂θ
E
[
|T|k.sgn(T)

]
= |1

2
− θ|k.sgn(

1
2
− θ) −

( 3
2 − θ)k+2 − 2| 12 − θ|k+2.sgn( 1

2 − θ) − ( 1
2 + θ)k+2

3k(k + 1)(k + 2)
.

This is a polynomial of order k + 2 and the roots can be obtained numerically for each k. For
instance, when k = 2 we obtain that the maximum is attained atθ = 0.655 and m(k, 3) = 0.02957.
When k = 3 the maximum is attained at θ = 0.67 and m(k, 3) = 0.01264. For choosing a suitable
value for k, we have examined the values of λi, i = 1, 2, 3, 4 for 1 ≤ k ≤ 80 as a function of k.

Figure 1 shows the values of λ1 as a function of k for Clayton and Gumbel copulas. The
results were similar for λi, i = 2, 3, 4 and the other reflection asymmetric copulas. As we
see from Figure 1 small values of k leads to this observation that the measures λi are less
sensitive to an asymmetric dependence and large values of k result in a large variability of λi.
So selecting 4 ≤ k ≤ 10 can be a rational choice.

We also computed and plotted the power of the corresponding asymmetry test statistic as
a function of k for several reflection asymmetric copulas in Figure 2 in Section 4, it can be seen
that the corresponding statistical test with λ1 has the largest power for 5 ≤ k ≤ 8. So we have
selected the value k = 7 in our calculations. In this section, the normalizing constant m(k, 3)
is given by 0.00046. The following example shows the value of the λi, i = 1, 2, 3, 4 for several
reflection asymmetric copulas.

Example 2.2. Consider the trivariate Gumbel family of copulas (see; Nelsen (2006)) given by

G1(u1,u2, u3) = exp
[
(− log(u1))θ + (− log(u2))θ + (− log(u3))θ

]1/θ
, θ ∈ [1,∞).

Let G2, G3, and G4 be the rotated versions of G1; i.e, the copulas associated with the vectors
(U1,U2, 1−U3), (U1, 1−U2,U3) and (U1, 1−U2, 1−U3), respectively. Let C2, C3 and C4 be the
rotated versions of the trivariate Clayton copula (2.2). The values of the directional asymmetry
measures λi, i = 1, 2, 3, 4 are given in Table 1. As we note, while the copulas C2, C3, C4, G2, G3,
and G4 are reflection asymmetric, the value of the index λ1 is near zero for these copulas. The
column (α∗1, α

∗
2, α
∗
3) shows the direction of the reflection asymmetry for each copula.
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Figure 1: The plot of λ1 as a function of k for the Clayton copula (the left panels) and the Gumbel
copula (the right panels) for Kendall’s τ ∈ {0.25, 0.5, 0.75} (the top to the bottom ).



A Copula–Based Index to Measure Directional Reflection Asymmetry 145

Table 1: Values of λi, i = 1, 2, 3, 4, for the Clayton copula (C1) and its rotated versions (C2,C3,C4) and
the Gumbel copula (G1) and its rotated versions (G2,G3,G4) for different values of Kendall’s τ.

Copula τ λ1 λ2 λ3 λ4 (α∗1, α
∗
2, α
∗
3)

C1 0.2 0.241 0.015 0.015 0.015 (1,1,1)
C2 0.4 0.004 0.466 0.004 0.005 (1,1,-1)
C3 0.6 -0.001 0.001 0.499 -0.001 (1,-1,1)
C4 0.8 0.000 0.000 0.000 0.302 (1,-1,-1)
G1 0.2 -0.235 0.027 0.027 -0.026 (1,1,1)
G2 0.4 0.021 -0.329 -0.021 0.021 (1,1,-1)
G3 0.6 0.007 -0.007 -0.269 0.007 (1,-1,1)
G4 0.8 0.000 0.000 0.000 -0.108 (1,-1,-1)

The value of the index λi, i = 1, 2, 3, 4, for the trivariate case could not be expressed in
terms of the bivariate marginal indices. These indices discusses in the following. In the
bivariate case we have two directions of radial asymmetry with directions D1 = {(1, 1), (1,−1)}
or D2 = {(−1,−1), (−1, 1} and the index (2.4) reduces to

λ(α1,α2) =
E
[
|T|k.sgn(T)

]
m(k, 2)

. (2.6)

Note that λ(1,1) and λ(1,−1) are the reflection asymmetry measures studied in Krupskii (2017)
and Rosco and Joe (2013). The normalizing constant m(k, 2) is the maximum reflection
asymmetry obtained in Rosco and Joe (2013). Similar to the trivariate case we consider the
set D1 as the set of directions of asymmetry and for simplicity we use the following notions
in the sequel

ξ1 = λ
(1,1), ξ2 = λ

(1,−1), . (2.7)

Table 2 shows the values of the indices ξ1 and ξ2 for the bivariate marginal of rotated Clayton
copula (denoted by C3,12, C3,13, C3,23) and that of Gumbel copula (denoted by G2,12, G2,13, G2,23)
in Example 2.2.

Table 2: Values of ξ1 and ξ2 for the bivariate marginal of rotated Clayton copula (denoted by C3,12,
C3,13, C3,23) and that of Gumbel copula (denoted by G2,12, G2,13, G2,23) in Example 2.2.

Copula ξ1 ξ2 (α∗1, α
∗
2)

C3,12 -0.0001 0.3790 (1,-1)
C3,13 0.3803 0.0000 (1,1)
C3,23 -0.0002 -0.3805 (1,-1)
G2,12 -0.2074 0.0000 (1,1)
G2,13 0.0007 -0.2043 (1,-1)
G2,23 0.0004 -0.2061 (1,-1)
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3 Empirical Version and Asymptotic Normality

Let (X1 j,X2 j,X3 j), j = 1, 2, ..., n be a sample of size n from a vector (X1,X2,X3) of continuous
random variables with the copula C. For j = 1, ..., n, let (R1 j,R2 j,R3 j) denote the corresponding
vectors of ranks, i.e., Ri j =

∑n
l=1 II{Xil ≤ Xi j}, for i = 1, 2, 3 and 1 ≤ j ≤ n, where II{A} denotes

the indicator function of the set A. Let

Cn(u1, u2,u3) =
1
n

n∑
j=1

II{U1 j ≤ u1,U2 j ≤ u2,U3 j ≤ u3}, (3.1)

with the pseudo–observations Ui j = Ri j/(n+1), i = 1, 2, 3, j = 1, 2, ..., n, be the empirical copula
(Fermanian et al. (2004)). Let

T(u, v,w) =
α1 + α2 + α3

6
− α1u + α2v + α3w

3
,

and

B j = T
(

R1 j

n + 1
,

R2 j

n + 1
,

R3 j

n + 1

)
.

A plug-in rank-based estimator of the index λ(α1,α2,α3) defined by (2.4), is given by

λ(α1,α2,α3)
n =

1
m(k, 3)

∫
[0,1]3
|T(u1, u2,u3)|k sgn (T(u1,u2, u3)) dCn(u1, u2, u3)

=
1

n ×m(k, 3)

n∑
j=1

∣∣∣B j
∣∣∣k sgn(B j). (3.2)

The following theorem provides the asymptotic distribution of λ(α1,α2,α3)
n .

Theorem 3.1. The asymptotic distribution of the empirical measure λ(α1,α2,α3)
n defined by (3.2) is given

by √
n(λ(α1,α2,α3)

n − λ(α1,α2,α3)) −→w Zλ,

where Zλ ∼ N(0, σ2
λ) with

σ2
λ = var

g(U1,U2,U3) +
3∑

i=1

Ti(g)(Ui)

 ,
g(u1, u2,u3) =

1
m(k, 3)

∣∣∣∣∣∣∣16
3∑

i=1

αi −
1
3

3∑
i=1

αiui

∣∣∣∣∣∣∣
k

sgn(
1
6

3∑
i=1

αi −
1
3

3∑
i=1

αiui),

Ti(g)(ui) =
∫

[0,1]3
ġi(x, y, z)I{ui≤x}dC(x, y, z),

where for i = 1, 2, 3, ġi(u1, u2, u3) = ∂
∂ui

g(u1, u2,u3).
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Proof. Let Dn =
√

n(Cn − C) denote the empirical copula process (Fermanian et al. (2004)).
Then we have

√
n(λ(α1,α2,α3)

n − λ(α1,α2,α3)) =
√

n
∫

[0,1]3
g(u1, u2,u3)dDn.

In view of Theorem 7 in Radulovic et al. (2017), we have

∫
[0,1]3

g(u1,u2,u3)dDn =

∫
[0,1]3

g(u1,u2, u3) +
3∑

i=1

Ti(g)(ui)

 dαn(u1, u2,u3) + op(1), (3.3)

where

αn(u1, u2,u3) =
1√
n

 n∑
j=1

II{U1 j ≤ u1,U2 j ≤ u2,U3 j ≤ u3} − C(u1,u2, u3)

 ,
with the pseudo–observations Ui j = Ri j/(n + 1), i = 1, 2, 3, j = 1, 2, ..., n. If we take

h(u1,u2, u3) = g(u1,u2, u3) +
3∑

i=1

Ti(g)(ui), (3.4)

then the integral on the right-hand side of (3.3) is asymptotically equal to

1√
n

n∑
i=1

{h(U1i,U2i,U3i) − E[h(U1i,U2i,U3i)]} ,

where (U1i,U2i,U3i), i = 1, ..., n is a random sample of size n from the vector (U1,U2,U3) with
the copula C. An application of the central limit theorem yields the desired result. □

Making inference based on Theorem 3.1 requires estimation of the asymptotic variance.
We propose to estimate σ2

λ by the empirical variance of the (observable) sample Z1, ...,Zn,
where Zi = h(U1i,U2i,U3i), i = 1, ..., n, as defined in (3.4).

Note that in applications, we first estimate the value of the proposed index for the data
set, in four directions. Then, for the direction (α∗1, α

∗
2, α
∗
3) with the largest value of the index,

the test H0 : λ(α∗1,α
∗
2,α
∗
3) = 0 is performed. We can reject H0 if

∣∣∣∣√nλ
(α∗1,α

∗
2,α
∗
3)

n

∣∣∣∣ ≥ σ̂λZ1− α2 where
Z1− α2 is 1 − α2 quantile of the standard normal distribution. If the test was significant, then an
appropriate copula will be selected via a copula goodness of fit test (see, e.g., Genest et al.
(2009) and Berg (2009)) among the trivariate copulas that are asymmetric in that direction.

4 Simulations and Applications

4.1 Simulations

In this subsection, we study the power of the test statistics based on the sample versions of
λ1 and ξ1. We compare the power of the test statistics for the asymptotic method obtained in
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Theorem 3.1 and the bootstrap or jackknife method applied in Krupskii (2017). We simulate
from the bivariate and trivariate Clayton copula having a strong dependence in the lower
tail and the Gumbel copula having a strong dependence in the upper tail. We consider two
different sample sizes n = 100, 200 and five different degrees of dependence in terms of the
Kendall’s τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The results are shown in Table 3. The numbers in the first
row of the table represent the power of the test statistics for asymptotic method obtained in
Theorem 3.1 and the numbers in the second row show the power of the test statistics for the
method applied in Krupskii (2017). All tests were carried out at the 5% nominal level. As we
see the power of the asymmetry test for the asymptotic method obtained in Theorem 3.1 is
better than the bootstrap or jackknife method applied in Krupskii (2017) in almost all cases,
unless when τ tends to 0.9. Note that when τ tends to one the copula C tends to the reflection
symmetric copula M (the Frechét–Hoeffding upper bound copula), thus this phenomenon is
not wondering. We also plot the power of the test for the Clayton and the Gumbel copula for
1 ≤ k ≤ 20, n = 200, d = 3 and Kendall’s τ ∈ {0.25, 0.5, 0.75} in Figure 2. The maximum power
obtained; for 4 ≤ k ≤ 8. Therefore, selecting k = 7 is a good choice. Results are similar in the
bivariate case and for other reflection asymmetry copulas.

Table 3: Power of the reflection asymmetry test based on sample versions of the measures λ1 (for
dimension d = 3) and ξ1 (for dimension d = 2) using 1000 random samples of size n = 100, 200 from
the Clayton and the Gumbel copulas, with Kendall’s τ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The numbers in the first
row of the table show the power of the test by using the asymptotic method given in Theorem 3.1 and
the numbers in the second row show the power of the test for the method applied in Krupskii (2017).

Copula Clayton Gumbel normal
Dimension τ n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

0.199 0.252 0.096 0.152 0.520 0.500
0.1

0.154 0.234 0.092 0.150 0.480 0.490
0.680 0.922 0.272 0.481 0.060 0.045

0.3
0.631 0.916 0.261 0.476 0.057 0.040
0.933 1.000 0.367 0.632 0.510 0.037

d = 2 0.5
0.924 1.000 0.342 0.615 0.044 0.035
0.972 1.000 0.357 0.689 0.026 0.030

0.7
0.984 1.000 0.319 0.671 0.019 0.029
0.444 1.000 0.007 0.266 0.002 0.003

0.9
0.845 1.000 0.086 0.586 0.007 0.007

0.219 0.358 0.162 0.387 0.055 0.051
0.1

0.136 0.309 0.169 0.384 0.051 .0.045
0.802 0.972 0.569 0.864 0.065 0.046

0.3
0.740 0.961 0.565 0.851 0.062 0.041
0.983 1.000 0.654 0.926 0.051 0.048

d = 3 0.5
0.975 1.000 0.630 0.903 0.046 0.045
0.998 1.000 0.593 0.908 0.027 0.036

0.7
0.998 1.000 0.575 0.905 0.029 0.035
0.854 1.000 0.022 0.568 0.001 0.004

0.9
0.992 1.000 0.227 0.805 0.009 0.017
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Figure 2: The power of the test of symmetry for the Clayton copula (left panels) and the Gumbel
copula (right panels) for τ = 0.25, 0.5, 0.75 ( top to bottom ) and 1 ≤ k ≤ 20.
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4.2 Application to a Real Data Set

In this subsection, we apply directional reflection asymmetric measures to analyze LifeCy-
cleSavings data; see Belsley et al. (1980) for details. This data set has 50 observations on
5 variables. We use only three variables pob15 (percentage of population under 15), pop75
(percentage of the population over 75) and dpi (real per-capita disposable income).

The Spearman’s rho, Kendall’s tau and Pearson’s moment correlation denoted by rs, t and
r, respectively, are given in Table 4. From the correlation values, we see that the variables
pob75 and dpi have positive dependence and the variable pob15 has negative dependence on
the variables pob75 and dpi. It is expected that if there is reflection asymmetry in the vector
(pop15, po75, dpi), it must be in the direction (1,−1,−1). The bivariate and trivariate scatter
plots of real data and their uniform rank values are presented in Figure 3. The estimated values
of the asymmetry measures defined in (2.5) are given by λ̂1 = 0.001, λ̂2 = 0.001, λ̂3 = −0.005
and λ̂4 = 0.175. Note that as defined in (2.5), λ4 = λ(1,−1,−1). Thus the maximum reflection
asymmetry has occurred in the direction (1,−1,−1), but the value of the test statistic 1.04 is
less than the critical value 1.96, which is not significant at level α = 0.05.

For bivariate marginal variables ξ̂1(pop15, pop75)=0, ξ̂1(pop15, dpi)= −0.0024, ξ̂1(pop75,
dpi)= −0.018, ξ̂2(pop15, po75)= 0.122, ξ̂2(pop15, dpi)= 0.226 and ξ̂2(pop75, dpi)= 0. Note
that as defined in (2.7), ξ2 = λ(1,−1). Thus the maximum reflection asymmetry for bivariate
margins has occurred for the pair (pob15, dpi), which is in the direction (1,-1). The value of the
test statistic is 1.23, which is not significant at the level α = 0.05. Thus there are no reflection
asymmetry in bivariate cases for the pairs (pob15, pob75), (pob15, dpi) and (pob75, dpi).

We have also performed goodness of fit test to choose an appropriate copula for data. We
fit the Normal, t-student, Frank, Clayton and Gumbel copulas. For the rotated vector (pop15,
1-po75, 1-dpi) the Frank copula with the parameter 7.78 is a good fit by using the Cramér-von
Mises statistics (Genest et al. (2009)). We have also performed copula goodness of fit tests for
bivariate marginal copulas. For the pairs (pob15, pob75) and (pob15, dpi) the Frank copula
with the respective parameters -10.57 and -7.01 and for the pair (pop75, dpi) the Frank copula
with the parameter 8.006 is the best fit.

Table 4: The Spearman’s rho (rs), Kendall’s tau (t) and Pearson’s moment correlation (r) for three
variables pop15, po75 and dpi of LifeCycleSavings data.

Correlation rs t r
Variable pop15 pop75 dpi pop15 pop75 dpi pop15 pop75 dpi
pop15 1.00 -0.88 -0.77 1.00 -0.69 -0.57 1.00 -0.9 -0.76
pop75 -0.88 1.00 0.80 -0.69 1.00 0.60 -0.90 1.00 0.78

dpi -0.77 0.80 1.00 -0.57 0.60 1.00 -0.76 0.78 1.00
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Figure 3: Two and three dimensional scatter plot of the variables pop15, pop75 and dpi in LifeCycle-
Savings data (the left panels) and their normalized ranks (the right panels).
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5 Concluding Remarks

A complementary to the goodness-of-fit methods for choosing a suitable copula is first testing
the copula symmetry to suggest a sensible class of parametric families of copulas. Some
tests for reflection asymmetry studied in the literature do not provide information about the
direction of asymmetry. In this paper, we have introduced the concept of directional reflection
asymmetry and proposed an index for measuring this kind of asymmetry in dimension d > 2.
The empirical estimate of the index is sample moments and could be readily estimated. A
statistical test of asymmetry based on the proposed measure could be easily constructed using
asymptotic normality of the corresponding estimator.

Acknowledgements

The authors wish to thank the two anonymous reviewers for their careful reading and in-
sightful comments on an earlier version of this paper.

References

Alikhani-Vafa, A. and Dolati, A. (2018), A measure of radial asymmetry for bivariate copulas
based on Sobolev norm. Hacettepe Journal of Mathematics and Statistics, 47(3), 649–658.

Belsley, D. A., Kuh. E., and Welsch, R. E. (1980), Regression Diagnostics. New York, Wiley.

Berg, D. (2009), Copula Goodness-Of-Fit Testing: An Overview and Power Comparison, The
European Journal of Finance, 15, 675–701.

Bouzebda, S. and Cherfi, M. (2012), Test of symmetry based on copula function. Journal of
Statistical Planning and Inference, 142, 1262–1271.

Cherubini, U., Mulinacci, S., Gobbi, F., and Romagnoli, S. (2011), Dynamic Copula methods in
finance. John Wiley & Sons.

Dehgani, A., Dolati, A., and Úbeda-Flores, M. (2013), Measures of radial asymmetry for
bivariate random vectors. Statistical Papers, 54, 271–286.

Fang, K. T., Kotz, S., and Ng, K. W. (1989), Symmetric Multivariate and Related Distributions.
Chapman & Hall, London.

Fermanian, J. D., Radulovic, D., and Wegkamp, M. (2004), Weak convergence of empirical
copula processes, Bernoulli, 10 (5), 847–860.
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