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Abstract. This paper presents a skew-normal mean-variance mixture based on Birnbaum-
Saunders (SNMVBS) distribution and discusses some of its key properties. The SN-
MVBS distribution can be thought as a flexible extension of the normal mean-variance
mixture based on Birnbaum-Saunders (NMVBS) distribution as it possesses one ad-
ditional shape parameter for providing more flexibility with skewness and kurtosis.
Next, we develop a computationally feasible ECM algorithm for the maximum like-
lihood estimation of the model parameters. Asymptotic standard errors of the ML
estimates are obtained through an approximation of the observed information matrix.
Finally, the usefulness of the proposed model and its fitting method are illustrated
through a Monte-Carlo simulation as well as three real-life datasets.
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1 Introduction

The normal distribution is a popular model for many practical problems since it has
many desirable statistical properties. However, in many applications such as finance,
engineering, medicine, and actuarial sciences, the density is usually strongly peaked,
skewed, and heavy-tailed than the normal distribution. To model such a data, many
authors have proposed distributions that are more flexible than the normal distribution
in terms of skewness and tail thickness.

In a well-known attempt, Barndorff–Nielsen (1977) introduced a broad class of
normal mean-variance mixture (NMVM) distributions. The idea behind the NMVM
distribution is to introduce randomness into the variance and the mean of a normal
distribution via a positive mixing variable. Specifically, let Y denote an NMVM random
variable. Then, Y can be represented as

Y = ξ +Wλ +W1/2Z, (1.1)

where Z ∼ N(0, σ2) and W > 0 is a scalar-valued random variable that is independent
of Z. The parameters ξ and λ are in R and σ > 0. Generalized hyperbolic (GH) dis-
tribution, introduced by Barndorff–Nielsen (1978), is one of the popular distributions
in this class. This class includes several important distributions such as skew Laplace
(Arslan , 2010) and Normal inverse Gaussian (NIG) as special cases. The random vari-
able with GH distribution can be represented as an NMVM variable when W in (1.1) is
the generalized inverse Gaussian (GIG) random variable. A positive random variable
W follows a GIG distribution, denoted by W ∼ GIG(κ, χ, ψ), if its probability density
function (PDF) is given by

fGIG(w;κ, χ, ψ) = (
ψ

χ
)κ/2

wκ−1

2Kκ(
√
ψχ)

exp
{
− 1

2
(w−1χ + wψ)

}
, w > 0, (1.2)

where Kκ(·), κ ∈ R, denotes the modified Bessel function of the third kind with property
Kκ(·) = K−κ(·). The parameters χ and ψ are such that χ ≥ 0, ψ > 0 if κ > 0; ψ ≥ 0, χ > 0
if κ < 0, and χ > 0, ψ > 0 if κ = 0. This unimodal density contains gamma and inverse
gamma densities as special cases when χ = 0 and ψ = 0, respectively.
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Let the random variable Y be represented as in (1.1), where W ∼ GIG(κ, χ, ψ) and
Z ∼ N(0, σ2). Then, the PDF of Y is given by

fGH

(
y; ξ, σ2, λ, κ, χ, ψ

)
= C

Kκ−1/2

(√
( (y−ξ)2

σ2 + χ)(λ2

σ2 + ψ)
)

(√
( (y−ξ)2

σ2 + χ)(λ2

σ2 + ψ)
) 1

2−κ
eλ

(y−ξ)
σ2 , y ∈ R,

where C =
(ψχ )κ/2( λ

2

σ2 +ψ)
1
2−κ

√
2πσKκ

(√
χψ

) . The corresponding cumulative distribution function (CDF) is

denoted by FGH(·; ξ, σ2, λ, κ, χ, ψ). For further details about GIG and GH distributions,
one may refer to Hu (2005).

Pourmousa et al. (2015) presented an NMVBS distribution, which is another
NMVM distribution with Birnbaum-Saunders (BS) as a mixing random variable (Birn-
baum and Saunders , 1969). A positive random variable W follows a BS distribution
with shape parameter α and scale parameter β, denoted by W ∼ BS(α, β), if its PDF is
given by

fBS(w;α, β) =
w + β

2α
√
βw3

ϕ

 1
α


√

w
β
−

√
β

w


 , w > 0;α > 0, β > 0.

In a similar vein, Azzalini (1985) proposed the skew-normal (SN) distribution by
adding skewness to the normal distribution. Let Y ∼ SN(ξ, σ2, λ) denote a random
variable distributed as the SN distribution with location parameter ξ, scale parameter
σ2, and skewness parameter λ. The PDF of Y is given by

fSN(y; ξ, σ2, λ) =
2
σ
ϕ(u)Φ(λu), y ∈ R,

where u = (y − ξ)/σ, and ϕ(·) and Φ(·), respectively, denote the PDF and CDF of
standard normal distribution. If Z ∼ SN(0, σ2, λ) is used in (1.1), then a skew-normal
mean-variance mixture distribution is obtained. In a multivariate setup, Arslan (2015)
assumed that W is a GIG distribution and studied properties of that model.

This paper aims to introduce a skew-normal mean-variance mixture based on the
BS (SNMVBS) distribution. The random variable Y ∈ R has an SNMVBS distribution
if it has the representation

Y = ξ +Wλ1 +W1/2Z, (1.3)
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where Z ∼ SN(0; σ2, λ2) and W ∼ BS(α, 1) are independent random variables. The
parameters ξ, λ1, and λ2 are in R and σ2 > 0.

The SNMVBS model extends the NMVBS distribution and serves as an alternative
to the skew-t (ST) model introduced by Azzalini and Capitaino (2003). The density of
the ST distribution is given by

fST(y; ξ, σ2, λ, ν) =
2
σ

t(u1; ν)T

λu1

√
ν + 1
ν + u2

1

; ν + 1

 , (1.4)

where u1 =
y−ξ
σ . Also, t(·; ν), and T(·; ν) denote the PDF and CDF of Student’s t

distribution having the degrees of freedom (df) of ν, respectively. We shall adopt the
notation Y ∼ ST(ξ, σ2, λ, ν) if Y has the PDF given by (1.4).

Although the ST distribution is also a mean-variance mixture of SN distribution, it
is well-known that the estimation of the degree of freedom parameter in the ST model
poses difficulties. Interestingly, the ML estimates of the parameters in SNMVBS model
have been obtained by solving some simple linear equations. But, with an additional
scale parameter λ1, the SNMVBS model possesses more flexibility to provide a better
fit than the ST model.

The rest of this paper is organized as follows: Section 2 introduces the SNMVBS
distribution and discusses some of its key properties. Section 3 develops an expectation-
conditional maximization (ECM) algorithm for the estimation of the parameters of the
SNMVBS distribution and also explains a method for obtaining the standard errors of
the ML estimates. In Section 4, the performance of this estimation method is evaluated
using a Monte Carlo simulation study. Section 5 illustrates the usefulness of the pro-
posed model and its fitting method with three real-data sets. A multivariate version
of the proposed model is discussed in Section 6. Finally, some concluding remarks are
made in Section 7.

2 SNMVBS Distribution: Properties and Characteristics

Let Y be a random variable following the representation in (1.3). Then, Y is said to
follow an SNMVBS distribution, and we denote it by Y ∼ SNMVBS(ξ, σ2, λ1, λ2, α).
Using (1.3) and the known properties of SN distribution, a hierarchical representation
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of an SNMVBS random variable can be provided as follows

Y|W = w ∼ SN(ξ + wλ1,wσ2, λ2),
W ∼ BS(α, 1). (2.1)

The following lemma is useful for deriving the density of Y.

Lemma 2.1. If W ∼ GIG(κ, χ, ψ), then:

(i) W−1 ∼ GIG(−κ, χ, ψ),

(ii) E(Wr) = ( χψ )r/2R(κ,r)(
√
ψχ),

(iii) EW
(
Φ(aW1/2 − bW−1/2)

)
= P(Y < a),

where R(κ,r)(x) = Kκ+r(x)
Kκ(x) , a ∈ R, and b ∈ R. The random variable Y follows a univariate

generalized hyperbolic distribution with ξ = 0, σ2 = 1, λ = b, χ and ψ.

Parts (i) and (ii) of the above lemma are well-known properties of GIG distribution;
see, e.g., Hu (2005) for details. Part (iii) has been proved by Arslan (2015).

Theorem 2.1. Let the random variable Y follow the representation in (2.1). Then, the PDF of
Y is given by

fSNMVBS(y; ξ, σ2, λ1, λ2, α) = fGH(y; ξ, σ2, λ1,−
1
2
, α−2, α−2)H1

+ fGH(y; ξ, σ2, λ1,
1
2
, α−2, α−2)H2, (2.2)

where H1 and H2 refer to FGH(a; 0, 1, b, κ, δ1, δ2) with κ = −1 and 0, respectively. Further,

δ1 = u2 + α−2, δ2 =
λ2

1
σ2 + α

−2, a = λ2u, b = λ1λ2
σ , and u = (y − ξ)/σ.
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Proof. From (2.1), the PDF of Y is given by

f (y) =
∫ ∞

0
fSN(y|w) fBS(w)dw

= 2
∫ ∞

0
ϕ(

w−1/2

σ
(y − ξ − wλ1))Φ(

λ2w−1/2

σ
(y − ξ − wλ1)) fBS(w)dw

=

∫ ∞

0

w−2(1 + w)
(2π)ασ

Φ(w−1/2λ2u − w1/2λ2λ1/σ)

× exp
{
−1

2

(
w−1

σ2 (y − ξ − wλ1)2 +
1
α2 (
√

w − 1√
w

)2
)}

dw

=
exp{λ1(y − ξ)/σ2}
2(2π)σK1/2(α−2)

×
∫ ∞

0
w−2(1 + w)Φ(w−1/2a − w1/2b) exp

{
−1

2

(
δ1w−1 + δ2w

)}
dw

= fGH(y; ξ, σ2, λ1,−1/2, α−2, α−2)EW1

(
Φ(W−1/2

1 a −W1/2
1 b)

)
+ fGH(y; ξ, σ2, λ1, 1/2, α−2, α−2)EW2

(
Φ(W−1/2

2 a −W1/2
2 b)

)
.

where W1 ∼ GIG(−1, δ1, δ2) and W2 ∼ GIG(0, δ1, δ2). The proof is now completed by
using Part (iii) of Lemma 2.1. □

The notation used in Theorem 2.1 will be used throughout this paper. In the special
cases, if λ1 = 0, then the PDFin (2.2) reduces to a scale mixture of two SN distributions
with the BS model as mixing distribution. In comparison, the ST distribution with
the PDF (1.4) is a scale mixture of one SN distribution when the mixing distribution is
Gamma with ν/2 as the scale and shape parameters. Also, if λ2 = 0, then Y has NMVBS
distribution studied by Pourmousa et al. (2015) and the PDF of Y reduces to

fNMVBS(y; ξ, σ2, λ1, λ2, α) =
1
2

fGH(y; ξ, σ2, λ1,−
1
2
, α−2, α−2)

+
1
2

fGH(y; ξ, σ2, λ1,
1
2
, α−2, α−2). (2.3)

Figure 1 presents some plots of the density function in (2.2). We have taken ξ = 0 and
σ2 = 1 in all cases. In this figure, we compare the SNMVBS model with NMVBS, SN,
and ST models. It is clear that in the cases of SN and ST, the density of SNMVBS has
fatter tails whenλ1 is far from zero. Also, withλ1 < 0, the SNMVBS model has a heavier
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left tail as compared to the SN and ST models. Similarly, when λ1 > 0, the distribution
has a heavier right tail. In comparison with NMVBS distribution, the SNMVBS density
has a heavier right tail than the NMVBS when λ2 > 0.
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Figure 1: The PDF of the SNMVBS distribution for different parameter settings and a compar-
ison with the NMVBS, skew-normal and skew-t distributions.

Lemma 2.2. Let W ∼ BS(α, 1). Then:

(i) The PDF of W can be represented as

f (w) =
1
2

{
fGIG(w;

1
2
, α−2, α−2) + fGIG(w;−1

2
, α−2, α−2)

}
;

(ii) E(Wr) = 1
2

(
R( 1

2 ,r)(α
−2) + R(− 1

2 ,r)(α
−2)

)
.
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In paticular, we have E(W) =
(
1 + 1

2α
2
)

and Var(W) = α2
(
1 + 5

4α
2
)
.

The proof of Lemma 2.2 and some other useful properties of BS distribution can be
found in Leiva (2016). Based on Part (i) of Lemma 2.2, the BS distribution is a mixture
of two GIG distributions with special parameters. As mentioned in the introduction,
Arslan (2015) introduced a mean-variance mixture of the skew-normal distribution
with the GIG as mixing distribution. So, the SNMVBS model is an extension of Arslan’s
model when the proper settings of parameters are derived.

The following theorem gives some orders of moments of the SNMVBS distribution
which are useful in studying some properties of this model.

Theorem 2.2. Let Y ∼ SNMVBS(ξ, σ2, λ1, λ2, α). Then, the first four moments of Y are as
follows

µ1 = E(Y) = ξ + ω1,

µ2 = E(Y2) = ξ2 + 2ξω1 + ω2,

µ3 = E(Y3) = ξ3 + 3ξ2ω1 + 3ξω2 + ω3 + ζ1a3/2,

µ4 = E(Y4) = ξ4 + 4ξ3ω1 + 6ξ2ω2 + 4ξ
(
ω3 + ζ2a3/2

)
+ ω4 + 4λ1ζ2a5/2, (2.4)

where

ω1 = λ1a1 +

√
2
π
δσa1/2,

ω2 = λ
2
1a2 + σ

2a1 + 2

√
2
π
δσλ1a3/2,

ω3 = λ
3
1a3 + 3λ1σ

2a2 + 3

√
2
π
δσλ2

1a5/2,

ω4 = λ
4
1a4 + 6σ2λ2

1a3 + 3σ4a2 + 4

√
2
π
δσλ3

1a7/2,

and ζ1 =
√

2
πδσ

3
(
2 + 1

1+λ2
2

)
, ζ2 =

1√
2π
δσ3

(
5 + 2

1+λ2
2

)
with δ = λ2√

1+λ2
2

, a1 = 1 + α2

2 , and

a2 = 1 + 2α2 + 3
2α

4. Moreover, ak’s, for k = 1
2 ,

3
2 ,

5
2 ,

7
2 can be obtained from Part (ii) of Lemma

2.2 where ak = E(Wk).

Proof. The proof is obtained by using iterated expectations on representation (2.1) and
Part (ii) of Lemma 2.2. □
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Thus, using the moments in Theorem 2.2, the variance and the coefficients of skew-
ness (γy),and kurtosis (κy) of Y can be readily computed.

Figure 2 shows the skewness and kurtosis contours of the SNMVBS, NMVBS, and
ST distributions. In all cases, we have taken ξ = 0 and σ2 = 1. The figures offer helpful
information on how γy and κy change with different values of λ1, λ2, α, and ν. It
should be noted that the kurtosis of the SNMVBS distribution range over a slightly
wider interval than the NMVBS and ST distributions.

Figure 2: A comparison of skewness and kurtosis contours of the SNMVBS (λ2 = 1) and
NMVBS distributions for different combinations of λ1 and α (top), and SNMVBS (λ1 = 2) and
ST distributions for different combinations of λ2 and α (or ν) (bottom).
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From the well-known convolution-type of SN and (2.1), we readily obtain

Y = ξ +Wλ1 +W1/2σ

 λ2√
1 + λ2

2

|U0| +
1√

1 + λ2
2

U1

 ,
where U0 and U1 are two independent N(0, 1) random variables. Denoting by γ =

w1/2
√

1 + λ2
2|U0|, then the hierarchical representation of SNMVBS is given by

Y|(W = w, γ) ∼ N

ξ + wλ1 +
σλ2γ

1 + λ2
2

,w
σ2

1 + λ2
2

 ,
γ|(W = w) ∼ TN

(
0,w(1 + λ2

2) ; (0,∞)
)
,

W ∼ BS(α, 1), (2.5)

where TN(µ, σ2; (a, b)) represents the truncated normal distribution for N(µ, σ2) lying
within the interval (a, b).

The conditional distribution of γ, given Y = y and W = w, is given by

f (γ|y,w) =
f (y, γ,w)
f (y,w)

=
f (y|γ,w) f (γ|w) f (w)∫ ∞

0 f (y, γ,w)dγ
.

Using representation (2.5) and performing some algebra, we find

γ|(W = w,Y = y) ∼ TN (λ2u2,w; (0,∞)) ,

where u2 = (y − ξ − wλ1)/σ and

µγ = λ2u2 , σ
2
γ = w.

Thus, we have

E(γ|W = w,Y = y) = µγ + σγ
ϕ

(
µγ
σγ

)
Φ

(
µγ
σγ

) , (2.6)

and by the known properties of conditional expectations, we have

E(γ | y) = E(E(γ | w, y) | y),
E(γW−1 | y) = E(W−1E(γ | w, y) | y). (2.7)
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Theorem 2.3. Let Y ∼ SNMVBS(ξ, σ2, λ1, λ2, α) and W ∼ BS(α, 1). Then:
(i)

E(Wn | y) =
(
ω1(y)H3R(−1,n)(

√
δ1δ2) + ω2(y)H4R(0,n)(

√
δ1δ2)

) (δ1

δ2

)n/2
, n = ±1,

(2.8)

where

ω1(y) =
1

g(y)
fGH(y; ξ, σ2, λ1,−1/2, α−2, α−2),

ω2(y) =
1

g(y)
fGH(y; ξ, σ2, λ1, 1/2, α−2, α−2),

and H3 and H4 denote the CDF’s defined in Theorem 2.1 with κ = n − 1 and n, respectively;
(ii)

E
(
Wmq

(
W−1/2λ2U2

)
| y

)
=

(
ω∗1(y)R( 1

2 ,m)(α
−2) + ω∗2(y)R(− 1

2 ,m)(α
−2)

)
√

2π(1 + λ2
2)

,m = ±1/2,

(2.9)

where

ω∗1(y) =
1

g(y)
fGH(y; ξ,

σ2

1 + λ2
2

, λ1,m + 1/2, α−2, α−2),

ω2(y) =
1

g(y)
fGH(y; ξ,

σ2

1 + λ2
2

, λ1,m − 1/2, α−2, α−2),

and q(x) = ϕ(x)
Φ(x) .

Proof. The conditional density f (w | y) is obtained by the Bayes rule, which is a mixture
of two GIG PDF’s by Part (i) of Lemma 2.2. Then, we can get E(Wn | y) using Part
(ii) of Lemma 2.1. The second conditional expectation can be obtained straightforward
manner. □

It is difficult to find the parameter estimates for the SNMVBS distribution without
resorting to some data augmentation techniques such as the EM algorithm and its
variants. The conditional moments given in Theorem 2.3 in this case, become quite
useful in the development of an EM-type algorithm discussed in the next section.
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3 Parameter Estimation

3.1 ECM Algorithm

The expectation-maximization (EM) algorithm (Dempster et al. , 1977) is a versatile
tool for the maximum likelihood (ML) estimation in the case of missing data or latent
variables. Simplicity in implementation and monotone convergence are two important
features of the EM procedure. But, it is not directly applicable to estimate the SNMVBS
model since the M-step involves intractable computations. To avoid this complication,
we propose to use the ECM algorithm (Meng and Rubin , 1993), which replaces the
M-step of EM by a sequence of simpler conditional maximization steps.

Let y1, . . . , yn be n observations on Y, and the corresponding unobserved random
values are represented by γ1, . . . , γn and w1, . . . ,wn. Using (2.5), we have the following
hierarchical representation:

Yi|(wi, γ) ∼ N

ξ + wiλ1 +
σλ2γi

1 + λ2
2

,wi
σ2

1 + λ2
2

 ,
γi|wi ∼ TN

(
0,wi(1 + λ2

2) ; (0,∞)
)
,

Wi ∼ BS(α, 1). (3.1)

Then, under the hierarchical representation in (3.1) and ν = λ2/σ, it follows that
the complete data log-likelihood function of θ = (ξ, σ, λ1, λ2, α) for the complete data
yc = (y1, . . . , yn, γ1, . . . , γn,w1, . . . ,wn) is given by

ℓc(θ|yc) = −
n
2

log σ2 − 1
2

n∑
i=1

w−1
i

(y − ξ − wiλ1)2

σ2

− 1
2

n∑
i=1

w−1
i

(
γi − ν(y − ξ − wiλ1)

)2

− n logα − 1
2α2

n∑
i=1

(wi + w−1
i − 2). (3.2)

Now, to perform the ECM algorithm, we start with the E-step, given the current
parameter θ̂(k) = (ξ̂(k), σ̂(k), λ̂(k)

1 , λ̂
(k)
2 , α̂

(k)). Then, we compute the expected value of
ℓc(θ|yc), denoted by Q(θ | θ̂(k)) = E(ℓc(θ | yc) | y1, . . . , yn, θ̂(k)), which involves some
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conditional expectations, including

q̂(k)
1i = E(W−1

i | yi, θ̂
(k)), q̂(k)

2i = E(Wi | yi, θ̂
(k)),

q̂(k)
3i = E(γiW−1

i | yi, θ̂
(k)), q̂(k)

4i = E(γi | yi, θ̂
(k)). (3.3)

The quantities q̂(k)
1i and q̂(k)

2i are obtained from (2.3), while q̂(k)
3i and q̂(k)

4i , can be found from
(2.7) as

q̂(k)
3i = q̂(k)

1i λ2ui − λ1ν +M1,

q̂(k)
4i = λ2ui − q̂(k)

2i λ1ν +M2.

where M1 and M2 refer to E
(
Wmq

(
W−1/2λ2U2

)
| y

)
with m = −1/2 and 1/2, respectively,

which are as defined in (2.3).

Thus, the ECM algorithm proceeds as follows:

E-step: Given the current value θ = θ̂(k), calculate the Q-function as

Q(θ | θ̂(k)) = − n
2

log σ2 − n logα − 1
2α2

n∑
i=1

(q̂(k)
1i + q̂(k)

2i − 2)

− τ
2

n∑
i=1

q̂(k)
1i (yi − ξ)2 −

τλ2
1

2

n∑
i=1

q̂(k)
2i + ν

n∑
i=1

q̂(k)
3i (yi − ξ)

− νλ1

n∑
i=1

q̂(k)
4i + τλ1

n∑
i=1

(yi − ξ), (3.4)

where τ = 1
σ2 + ν

2.

CM-steps: Maximizing (3.4) is done with respect to ξ, σ, λ1, λ2 and α, we obtain the
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following closed-form expressions:

α̂(k+1) =

1
n

n∑
i=1

(q̂(k)
1i + q̂(k)

2i − 2)


1
2

,

ξ̂(k+1) =
1∑n

i=1 q̂(k)
1i

n∑
i=1

(
q̂(k)

1i yi −
ν̂(k)

τ̂(k)
q̂(k)

3i − λ̂
(k)
1

)
,

σ̂(k+1) =

1
n

n∑
i=1

(
q̂(k)

1i (yi − ξ̂(k+1))2 + λ̂2(k)
1 q̂(k)

2i − 2λ(k)
1 (yi − ξ̂(k+1))

)
1
2

,

λ̂(k+1)
1 =

1

τ̂(k)
∑n

i=1 q̂(k)
2i

n∑
i=1

(
τ̂(k)(yi − ξ̂(k+1)) − ν̂(k)q̂(k)

4i

)
,

ν̂(k+1) =
1

nσ̂2(k+1)

n∑
i=1

(
q̂(k)

3i (yi − ξ̂(k+1)) − λ̂(k+1)
1 q̂(k)

4i

)
.

So, we update λ̂(k+1)
2 = ν̂(k+1)σ̂(k+1) .

The above procedure is repeated until a suitable stopping criterion is satisfied. This
stopping rule is specified in the following subsection.

3.1.1 Convergence of the Algorithm

To assess the convergence of the algorithm, there are two effective approaches: (i)
the difference between two successive log-likelihood values be less than a specified
tolerance, and (ii) changing all estimates of the parameters by a very small degree.
However, in our simulation, we observed that, since the log-likelihood function in each
step is related to the CDF of a generalized hyperbolic distribution, the algorithm has a
slow convergence. Hence, to speed up the convergence of the algorithm, we used the
second approach. In this way, the stopping criterion is related to the relative error of
the components of parameter θ as

max j

∣∣∣∣∣∣∣∣
θ(k)

j − θ
(k+1)
j

θ(k+1)
j

∣∣∣∣∣∣∣∣ < ϵ,
where (k) is the iteration index and θ j is the jth component of θ. We chose ϵ = 10−6 in
our implementation of the algorithm.
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3.1.2 Initial Values

The EM-type algorithm is likely to get trapped in one of the local maxima of the
likelihood function. To deal with this problem, we generated many reasonable initial
values and then selected the set of parameters associated with the highest converged
log-likelihood value. For the location parameter ξ, the initial value was uniformly
generated between the first and third quartiles of the observed sample. The initial
scale variance σ2 was obtained as ds2, where s2 is the sample variance and d is a factor
uniformly generated between 0.5 and 2. Similarly, the initial value for λ2 was set to be
the sample skewness multiplied by d. As for the initial values of λ1 and α, they were
integers randomly chosen in the interval 1 to 10.

3.2 Provision of Standard Errors

Under some regularlity conditions, the asymptotic covariance matrix of the ML esti-
mates θ̂ can be approximated by the inverse of the observed information matrix. For
this, Meilijson (1989) suggested the following empirical information matrix:

Ie(θ | y) =
n∑

i=1

s(yi | θ)s⊤(yi | θ) − 1
n
S(y | θ)S⊤(y | θ),

where S(y | θ) =
∑n

i=1 s(yi | θ) and s(yi | θ) are individual scores that can be determined
as

s(yi | θ) =
∂ log f (yi | θ)

∂θ
= E

{
∂ℓc(θ | yi, γi,wi)

∂θ
| yi,θ

}
,

where ℓc(θ | yi, γi,wi) is the individual complete-data log-likelihood defined in (3.2)
based on a single observation (yi, γi,wi).

Substituting the ML estimate θ̂, a natural estimator of Ie(θ | y) is

Ie(θ̂ | y) =
n∑

i=1

ŝiŝ
⊤
i , (3.5)

where ŝi = (ŝiξ, ŝiσ, ŝiλ1 , ŝiλ2 , ŝiα). Explicit expressions for the elements of ŝi are as



102 M. Tamandi et al.

follows:

ŝiα = − 1
α̂
+

1
α̂3 (q̂1i + q̂2i − 2),

ŝiξ = τ̂q̂1i(yi − ξ̂) − ν̂q̂3i − τ̂λ̂1,

ŝiλ1 = τ̂(yi − ξ̂) − τ̂λ̂1q̂2i − ν̂q̂4i,

ŝiσ =
1
σ̂2

(
q̂1i(yi − ξ̂)2 + λ̂2

1q̂2i − 2λ̂1(yi − ξ̂)
)
− 1
σ̂
,

ŝiλ2 =
1
σ̂

(
q̂3i(yi − ξ̂) − ν̂q̂1i(yi − ξ̂)2 − ν̂λ̂2

1q̂2i − λ̂1q̂4i + 2ν̂λ̂1(yi − ξ̂)
)
.

The standard errors of the ML estimates can then be found by calculating the square
roots of the diagonal elements of I−1

e (θ̂ | y).

4 Simulation Study

To examine the performance of the proposed model and the estimation method, a Monte
Carlo simulation experiment is performed in this section. We specifically examine the
finite-sample performance of the ML estimates of the SNMVBS parameters. We chose
samples of size n = 250, 500, 1000, 1500 and 2000 with parameters ξ = 1, σ = 2, λ1 =
1, λ2 = −1, and α = 2 for the simulation study. Each simulated data set was fitted under
the true model via the ECM algorithm described in Subsection 3.1. For each sample,
this experiment was replicated 300 times.

To examine the accuracy of the parameter estimates, we computed the absolute bias
and the mean squared error (MSE) as

AB =
1

300

300∑
i=1

| θ̂i − θtrue | and MSE =
1

300

300∑
i=1

(
θ̂i − θtrue

)2
,

where θ̂i denotes the estimate of a specific parameter at the ith replication. Numerical
results, displayed in Table 1, confirm the empirical consistency of the ML estimates
since the Bias and MSE values shrink to zero when n increases.

Furthermore, we compute the standard deviations (STD) of the ML estimates across
300 simulated samples and compare them with the average values of the approximate
standard errors (ASE) obtained by using the method described in Subsection 3.2. As can
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be seen from the estimation accuracy of standard errors, by an increase in sample size,
the value of ASE tends to be closer to the corresponding standard deviations obtained
from 300 MC estimates (STD). In small sample sizes, the differences between ASEs and
STDs are significantly large, perhaps due to a worse approximation of the values of the
Bessel function in R codes. But generally, the information-based method can offer a
reasonably satisfactory approximation to the asymptotic covariance matrix of the ML
estimates of model parameters, when the associated sample size is sufficiently large.

Table 1: The simulation results of parameter estimates and standard errors for various sample
sizes.

Sample size Measure ξ σ λ1 λ2 α
250 AB 0.1430 0.1758 0.2210 0.2765 0.2298

MSE 0.0333 0.0469 0.0775 0.1530 0.0840
STD 0.1682 0.2127 0.2785 0.3833 0.2902
ASE 0.4769 1.1213 1.4980 2.6856 0.8302

500 AB 0.0752 0.1120 0.1170 0.1354 0.1324
MSE 0.0095 0.0199 0.0229 0.0404 0.0273
STD 0.0963 0.1401 0.1512 0.2001 0.1641
ASE 0.2898 0.6192 0.7471 1.3647 0.4661

1000 AB 0.0502 0.0767 0.0774 0.0917 0.0873
MSE 0.0042 0.0097 0.0108 0.0217 0.0132
STD 0.0647 0.0976 0.1033 0.1456 0.1143
ASE 0.1645 0.3230 0.3475 0.5843 0.2541

1500 AB 0.0398 0.0610 0.0578 0.0632 0.0643
MSE 0.0025 0.0061 0.0058 0.0115 0.0066
STD 0.0502 0.0777 0.0760 0.1051 0.0811
ASE 0.1175 0.1419 0.1687 0.2902 0.1623

2000 AB 0.0320 0.0491 0.0451 0.0427 0.0542
MSE 0.0017 0.0039 0.0040 0.0064 0.0047
STD 0.0416 0.0621 0.0629 0.0785 0.0687
ASE 0.0949 0.1058 0.1124 0.1903 0.0981

5 Illustrative Examples

In this section, three examples are presented to illustrate the usefulness of the distribu-
tion. In all examples, there are some outlier points and since the SNMVBS distribution
has heavier tails than other distributions, the proposed SNMVBS distribution provides
a satisfactory fit.
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5.1 cDNA Microarray Data Set

In the first example, we consider the cDNA microarray data set of the NCI60 cancer
cell lines used earlier by Arslan (2010). This data set contains the measurements of
1400 cancer drugs activity levels on 60 human cancer cell (NCI60) lines. We will use
the column "OV: SK-OV-3" in drug activity data set to demonstrate the performance
of the proposed distribution. We obtained the maximum likelihood estimates of the
SNMVBS model by using the ECM algorithm described in Section 3. We also fitted
the SN, ST, NIG, and NMVBS distributions for the sake of comparison. To fit SN and
ST, we used the package "sn", and for NIG, we used the package "ghyp" in R statistical
software. Table 2 shows the results assuming α = ν and ᾱ for ST and NIG models,
respectively. Performance assessments for these models were made on the adequacy of
overall fitness in terms of Akaike Information Criterion (AIC) and Bayesian Information
Criteria (BIC), defined by

AIC = 2m − 2ℓmax and BIC = m log n − 2ℓmax,

where m is the number of parameters and ℓmax is the maximized log-likelihood value.
Of course, lower values of AIC or BIC indicate a better fit. These criteria have also
been shown in Table 2. The Kolmogorov-Smirnov (K-S) test statistic values and the
corresponding P-values are also shown in Table 2. As can be seen from the AIC and
BIC values and the K-S test statistics, the SNMVBS model provides the best fit for the
OV: SK-OV-3 data. Figure 3 depicts the histograms and the fitted densities for this
data. The plots demonstrate that the SNMVBS distribution can capture very well the
skewness and heavy-tails of the data. Moreover, the P-P plot in Figure 3 shows that the
SNMVBS distribution provides a good fit to the data.

5.2 Austrian Bank Interest Rates Data

These data consist of 91 monthly interest rates of an Austrian bank. Künsch (1984)
fitted an autoregressive time series model of order one, AR(1), to these data. Let Y(t)
be the interest rate at month t, and so an AR(1) model is given by

Y(t) = β0 + β1Y(t − 1) + ϵt, β0 ∈ R, | β1 |≤ 1.

where ϵt are i.i.d. error variables. The ordinary least squares (OLS) method, ϵt ∼
N(0, σ2

t ), for fitting an AR(1) model to these data yields β̂0 = 1.928 and β̂1 = 0.792.
Azzalini and Genton (2008) assumed that the error terms ϵt are i.i.d. from a skew-t
distribution. The maximum likelihood estimates of parameters in this case are found
to be β̂0 = 0.18 and β̂1 = 0.98.
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Table 2: The parameter estimates and the estimated standard errors (in parentheses) of the
models fitted for OV: SK-OV-3 data.

Parameter SN NIG NMVBS ST SNMVBS
ξ 5.95 (0.220) 5.73 (0.016) 5.73 (0.088) 5.47 (0.083) 5.40 (0.046)
σ 1.214 (0.093) 1.18 (0.028) 1.006 (0.045) 0.912 (0.046) 1.79 (1.073)
λ1 - 0.225 (0.045) 0.168 (0.072) - -0.315 (0.390)
λ2 -0.081 (0.270) - - 0.662 (0.145) 1.903 (1.583)
α - 0.722 (0.016) 0.816 (0.032) 3.526 (0.375) 1.116 (0.237)
ℓ(θ̂) -2245.48 -2132.53 -2139.43 -2129.39 -2123.08
AIC 4496.97 4273.07 4286.86 4266.79 4256.16
BIC 4512.69 4294.02 4307.81 4287.75 4282.35

K-S test 0.066 0.032 0.045 0.040 0.027
(P-value) (< 1e − 4) (0.093) (0.008) (0.038) (0.25)
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Figure 3: The histogram of data, the fitted distributions (left) and P-P plot for SNMVBS (right)
for OV: SK-OV-3 data.

Alternatively, we assume here that ϵt ∼ SNMVBS(0, σ2, λ1, λ2, α), or equivalently,
Yt | Yt−1 ∼ SNMVBS(β0 + β1Yt−1, σ2, λ1, λ2, α). The maximum likelihood estimation
procedure described earlier yields β̂0 = 0.126, β̂1 = 0.985, σ̂ = 0.147, λ̂1 = 0.0049, λ̂2 =
−0.066 and α̂ = 3.49. Since the expected value of ϵt is not zero, in this case, we must
adjust the fitted model by adding Ê(ϵ), which is the mean of the fitted error distribution
of the model. Hence, we have Ŷt = β̂0 + Ê(ϵ) + β̂1Ŷt−1, where β̂0 + Ê(ϵt) = 0.147. Figure
4 presents the fitted AR models by assuming ϵt with Normal, SN, ST, and SNMVBS
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distributions. We adjust other models in the same way as we did in the SNMVBS model.
It is observed that the fitted SNMVBS distribution is quite close to the ST distribution
and clearly better than the OLS and SN models. Figure 4 also shows the histogram of
the residuals and the fitted SNMVBS density function. Figure 5 shows the P-P plots
for all the fitted models for the error component ϵt. We observe that the P-P plots of
SNMVBS and ST are quite close to the diagonal line, and it is also clear that OLS and
SN autoregressive models are inappropriate for these data.

Moreover, to identify the best model studied, we use the summary index of dis-
crepancy (Q(p)), proposed by Azzalini and Genton (2008), which is defined as

Q(p) =
n∑

t=1

| Yt − Ŷt |p, p = 0.5, 1, 2,

where Ŷt is the fitted value of Yt. Table 3 shows the results for the studied models. The
K-S test statistic values and the corresponding P-values for residuals are also shown
in this table. This table shows that the SNMVBS model is slightly better than the ST
model.
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Figure 4: The scatterplot and fitted regression lines (left), the histogram of residuals obtained
from the SNMVBS regression model and the fitted SNMVBS distribution (Right) for the Austrian
bank data.
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Figure 5: The P-P plots for the four fitted models for the Austrian bank data.

Table 3: The summary index of discrepancy Q(p) for different AR(1) models fitted to the data
and the K-S test statistic values and the corresponding p-values (in parentheses) for residuals
for the Austrian bank data.

p=0.5 p=1 p=2 K-S test (p-value)
OLS 37.50 21.48 17.45 0.229 (< 1e − 4)
SN 42.48 25.39 18.37 0.234 (< 1e − 4)
ST 34.85 20.18 19.20 0.075 (0.65)

SNMVBS 32.60 19.15 19.20 0.068 (0.76)
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5.3 AIS Data: Multiple Regression

Finally, we consider the well-known Australian Institute of Sport (AIS) data set. This
data set, which gives somebody indices of Australian athletes, has been analyzed by
several authors working on skewed distributions. For example, Arellano-Valle et al.
(2008) fitted some skewed linear regressions to these data by taking lean body mass
(LBM) of male athletes as the response variable and height (Ht) and weight (Wt) as
explanatory variables. Here, we consider the variable body fat percentage (Bfat), the
sum of skin folds (SSF) and Ht associated with 102 Australian male athletes. Although
Bfat is a key element of overall fitness, it is difficult to be measured directly. Therefore,
one can use other indices to predict it. In this data, we observe that there is a linear
relationship between Bfat and SSF. The variable Ht is also added to fit a more accurate
model. Thus, we fit the linear regression

Bfat = β0 + β1SSF + β2Ht + ϵ,

where ϵ ∼ SNMVBS(0, σ2, λ1, λ2, α). The resulting model, after adjustment, is

B̂fat = 6.61 + 0.16 SSF − 0.03 Ht.

The estimates of other parameters are σ̂ = 0.588, λ̂1 = −0.07, λ̂2 = 0.725, and α̂ = 1.88.
For the sake of comparison, we also fitted the OLS, SN and ST regression models.

The resulting Q(p) values for all fitted models are presented in Table 4. This table
shows that the SNMVBS model overall provides a better fit than other models. Figure
6 shows the fitted SNMVBS regression plane. Figure 7 shows P-P plots of all the fitted
models for the error component ϵ. It is observed that the SNMVBS distribution gives
a satisfactory fit among other rival models.

Table 4: The summary index of discrepancy Q(p) between observed and fitted values for the
described linear regression models and the K-S test statistic values with the corresponding
P-values for residuals for the AIS data .

p=0.5 p=1 p=2 K-S test (P-value)
OLS 67.07 57.50 62.87 0.107 (0.17)
SN 68.20 58.21 63.30 0.111 (0.13)
ST 67.03 57.32 63.12 0.084 (0.42)

SNMVBS 66.99 57.30 63.70 0.049 (0.95)
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Figure 6: The fitted SNMVBS regression model to AIS data.
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Figure 7: The P-P plots of four fitted models for the AIS data.
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6 The Multivariate SNMVBS Distribution

In this section, we briefly discuss a multivariate version of the univariate SNMVBS
distribution discussed in the preceding sections. As in the univariate case, we shall
use the multivariate SN distribution to define the multivariate SNMVBS (MSNMVBS)
distribution. The multivariate version of SN (MSN) distribution was introduced by
Azzalini and Dalla Valle (1996) and Arellano–Valle et al. (2005), which extends the
multivariate normal model by allowing a shape parameter to account for skewness.

A random vector Y is said to follow a p-variate MSN with location vector ξ, scale co-
variance matrix Σ and skewness parameter vector λ ∈ Rp, denoted by Y ∼SNp (ξ,Σ, λ)
if it has a density

g(y; ξ,Σ, λ) = 2ϕp(y; ξ,Σ)Φ
(
λ⊤Σ−1/2 (y − ξ)

)
, (6.1)

where ϕp(·; ξ,Σ) is the PDF of Np (ξ,Σ) and Φ(·) stands for the CDF of univariate
standard normal distribution.

So, extending the representation (1.3), the random variable Y ∈ Rp is said to have a
multivariate SNMVBS (MSNMVBS) distribution if

Y = ξ +Wλ1 +W1/2Z, (6.2)

where Z ∼ SNp(0,Σ, λ2), W ∼ BS(α, 1), and W and Z are independent. The parameter
vectors ξ, λ1 and λ2 are in Rp, and Σ is a positive definite matrix. We denote the
random variable Y in (6.2) by Y ∼MSNMVBSp(ξ,Σ, λ1,λ2, α). Using (6.2) the stochastic
representation of an MSNMVBS random variable can be obtained as follows

Y|W = w ∼ SNp(ξ + wλ1,wΣ, λ2), (6.3)

Theorem 6.1. Let the random vector Y follow the representation (6.3), then the PDF of Y is
given by

g(y) = fGHp(x; ξ, Σ, λ1,−1/2, α−2, α−2)H{− p+1
2 }

(a)

+ fGHp(x; ξ, Σ, λ1, 1/2, α−2, α−2)H{− p−1
2 }

(a) , y ∈ Rp, (6.4)

where H{κ}(x) = FGH1(x; 0, 1, b, κ, δ1, δ2) and fGHp(·) and FGHp(·) denote the PDF and CDF of
a multivariate GH distribution, respectively. In addition δ1 = (y − ξ)⊤Σ−1(y − ξ) + α−2,
δ2 = λ⊤1 Σ

−1λ1 + α−2, a = λ⊤2 Σ
−1/2(y − ξ) and b = λ⊤2 Σ

−1/2λ1.
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The mean vector and covariance matrix of Y ∼ MSNMVBSp(ξ,Σ, λ1,λ2, α) are
obtained by iterated expectations on representation (6.3) and the part (ii) of Lemma 2.2,
as

E(Y) = ξ + λ1E(W) +

√
2
π
Σ1/2δE(W1/2),

Cov(Y) = λ1λ
⊤
1 Var(W) +ΣE(W) − 2

π
Σ1/2δδ⊤Σ1/2E2(W1/2)

+ 2

√
2
π
Σ1/2δλ⊤1 cov(W,W1/2).

Finally, we must note that we do not discuss here more details on MSNMVBS distri-
bution, including marginal and conditional distributions, estimation and investigating
real data examples. They will be of great interest for further researches.

7 Conclusion

We have introduced a skew-normal mean-variance mixture distribution (SNMVBS)
using BS distribution as a mixing distribution. We have discussed some key properties
of this distribution and have developed a feasible EM-type scheme for the maximum
likelihood estimation of model parameters. We have demonstrated the performance
of the proposed EM algorithm with some simulations. Moreover, A brief discussion
on a multivariate version of the SNMVBS distribution is also provided. The SNMVBS
distribution has many key desirable properties and provides a flexible class of distribu-
tions for modeling skewed and heavy-tailed data. As compared to the skew-t model,
all parameters of the SNMVBS distribution have been obtained by solving some sim-
ple linear equations in the proposed EM algorithm. There are still several of possible
directions for future research. For instance, the robust mixture models of SNMVBS
distributions and the estimation for the multivariate version will be of great interest.
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