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Abstract.This paper develops a new class of spatio-temporal process models that can
simultaneously capture skewness and non-stationarity. The proposed approach which
is based on using the closed skew-normal distribution in the low-rank representation of
stochastic processes, has several favorable properties. In particular, it greatly reduces
the dimension of the spatio-temporal latent variables and induces flexible correlation
structures. Bayesian analysis of the model is implemented through a Gibbs MCMC
algorithm which incorporates a version of the Kalman filtering algorithm. All fully
conditional posterior distributions have closed forms which show another advanta-
geous property of the proposed model. We demonstrate the efficiency of our model
through an extensive simulation study and an application to a real data set comprised
of precipitation measurements.
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1 Introduction

Spatio-temporal stochastic processes play a crucial role in the analysis of a variety
of problems ranging from meteorological and ocean measurements to environmental
pollutants, and disease incidences. It is a common practice to assume that these
processes are Gaussian and stationary. While convenient, such assumptions are rarely
realistic. More precisely, data often exhibit obvious asymmety in their distributions.
In addition, due to local influences in the correlation structure of spatio-temporal
processes, there is no justification for assuming stationarity. As a motivating example,
we consider the annual total precipitation data (in millimeters) from 92 meteorological
stations, geographically distributed across Iran, between 2006 and 2015. The data were
prepared based on the monthly precipitation observations that are available online
from the Iranian meteorological organization at http://www.irimo.ir. Our explanatory
data analysis reveals that the distribution of the data is skewed (See Figure 1). Besides,
due to the climatic diversity in Iran, it seems unreasonable to assume spatial covariance
structures to be stationary over the spatial scale. The p-values of the stationary test
introduced by Bandyopadhyay and Rao (2017) for each time point are displayed in
Figure 2, which confirms spatial non-stationarity over time except for the time t = 7.
Thus, there is a need for a flexible and computationally tractable approach to remove
Gaussianity and stationarity assumptions.
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Figure 1: The skewness coefficient of the data versus time.



A Skew–Gaussian Spatio–Temporal Process with Non–Stationary Correlation Structure 65

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

time

p−
va

lu
e

Figure 2: The p-values of the stationarity test for each time point.

Non-stationarity is an important problem in spatial statistics. In recent years,
there has been an increasing interest to introduce non-stationary covariance functions,
including deformation method (Sampson and Guttorp , 1992), process convolution
method (Higdon , 1998; Higdon et al. , 1999), piecewise Gaussian processes (Kim et al. ,
2005), kernel-based methods (Fuentes , 2001, 2002a,b; Nott and Dunsmuir , 2002), basis
function models (Nychka et al. , 2002) and processes based on stochastic partial differen-
tial equations with spatially varying coefficients (Lindgren et al. , 2011). In all of these
methods, the underlying spatial process is assumed to be Gaussian or transformed
Gaussian, which may be unrealistic in practice. Specifically, in the presence of spatial
heterogeneity in physical phenomena, the data usually exhibit skewness. Various ap-
proaches have been provided in the literature to handle departures from Gaussianity.
A common method is to search for the most suitable transformation for the observed
data in a family of transformations. De Oliveira et al. (1997) proposed a transformed
Gaussian spatial model with a transformation from the Box-Cox family. Recently, Xu
and Genton (2017) proposed the Tukey g-and-h stochastic process, a flexible class of
transformed Gaussian processes. Interestingly, these processes accommodate different
levels of skewness and tail heaviness in marginal distributions. Zareifard et al. (2018)
proposed a convolution of log-Gaussian and Gaussian processes to tackle skewness.
Another possible alternative to build skewed spatial processes is based on employing
the skew-normal distributions that not only take skewness into account but also share
several similar properties with the normal distribution. In this direction, two recently
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developed approaches have shown great appeal. The first approach seeks a multivari-
ate skew-normal distribution for the finite dimensional distributions of the underlying
stationary spatial process. Kim and Mallick (2004) constructed a skew-Gaussian ran-
dom field using the multivariate skew- normal distribution in Azzalini and Dalla Valle
(1996). But, Genton and Zhang (2012) showed some identifiability issues with this
model. Since the multivariate skew-normal distribution lacks the closure properties,
Allard and Naveau (2007) introduced a skew-Gaussian process based on the multi-
variate closed skew-normal (CSN) distribution. Rimstad and Omre (2014) provide an
extension of the model proposed by Allard and Naveau (2007). Zareifard and Khaledi
(2013) applied the multivariate unified skew-normal distribution (Arellano–Valle and
Azzalini , 2006) which unifies several plethora of skew-normal models to introduce a
skew-Gaussian process. This model extended to the multivariate case by Rivaz (2016).
The second approach is based on exploiting the stochastic representation of the skew-
normal distribution to create a class of stationary processes that have skewed marginal
distributions (Zhang and El-Shaarawi , 2010). All of the aforementioned works are
in the spatial context. To the best of our knowledge, there is only one article that
introduces skewness into spatio-temporal models. Strictly speaking, Schmidt et al.
(2017) presented an extension of the spatial skewed model proposed by Zhang and El-
Shaarawi (2010) for the spatio-temporal data. However, several questions with regard
to this model were posed by Genton and Hering (2017). Besides, the finite-dimensional
distributions of the process do not belong to any of the commonly considered families
of the multivariate skew-normal distributions.

In this paper, we develop a new approach to construct a non-stationary skew-
Gaussian spatio-temporal process. More specifically, we propose to use the closed
skew-normal distribution for the random coefficients in a low rank (LR) representation
of the spatio-temporal processes. The proposed model includes several widely used
classes of spatio-temporal models, for instance, the spatio-temporal random effects
model (Cressie et al. , 2010) and Gaussian predictive processes (Finley et al. , 2012) as
special cases. In addition, it not only induces flexible correlation structures but it also
reduces the dimension of the spatio-temporal latent variables.

The outline of the article is as follows. In Section 2, we briefly review the definition
of the closed skew-normal distribution and some of its properties. In Section 3, we
present our skewed extension of the Gaussian LR model with its properties. Details on
Bayesian implementation of the model are illustrated in Section 4, while in Sections 5
and 6 we show the efficiency of our model by using simulated data as well as a real
data set. Finally, we conclude in Section 7 with some discussions.
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2 A Brief Review of the CSN Distribution

We recall the definition and a few key properties of the closed skew-normal distribu-
tion, given by Dominguez-Molina et al. (2003) and Gonzalez–Farias et al. (2004).
The multivariate CSN distribution is an extension of the normal density which admits
skewness to increase the applicability of it. The CSN distribution inherits many inter-
esting properties of the normal one including being closed under marginalization and
conditioning.

A random vector x = (x1, ..., xn)
′

has a CSN distribution (hereafter it is denoted by
CSNn,m(x;µ,Σ, Γ,ν,∆)) if it has the distribution

[Φm(0;ν,∆ + ΓΣΓ
′
)]−1Φm(Γ(x − µ);ν,∆)ϕn(x;µ,Σ), (2.1)

where µ ∈ Rn, Γ ∈ Rm×n, ν ∈ Rm and Σ ∈ Rn×n and ∆ ∈ Rm×m are both covariance
matrices. Moreover,ϕm(x,µ,Σ) andΦm(x,µ,Σ) are PDF and the cumulative distribution
function (CDF) of an m-dimensional normal distribution with mean µ and covariance
Σ, respectively. The integer value m defines the skewness dimension. If Γ = 0, the
CSN distribution reduces to an n- variate normal distribution with mean vector µ
and covariance matrix Σ. Additionally, if m = 1, the CSN density clearly reduces the
proposed skew-normal distribution by Azzalini (2005).

The mean vector and covariance matrix of a CSN distribution are as follows

E(X) = µ + ΣΓ
′
ψ, (2.2)

Cov(X) = Σ + ΣΓ
′
ξΓΣ − ΣΓ′ψψ′ΓΣ, (2.3)

where ψ =
[
∇sΦm(s;ν,∆+ΓΣΓ

′
)
]′

Φm(0;ν,∆+ΓΣΓ
′
)

∣∣∣∣∣∣
s=0

and ξ = ∇s∇
′
sΦm(s;ν,∆+ΓΣΓ

′
)

Φm(0;ν,∆+ΓΣΓ
′
)

∣∣∣∣∣
s=0

with ∇s =
(
∂
∂s1
, ..., ∂∂sm

)
.

Let X be distributed as CSNn,m(x;µ,Σ, Γ,ν,∆). The stochastic representation of X is

X
d
=µ + (Σ−1 + Γ

′
∆−1Γ)−

1
2 V + ΣΓ

′
(∆ + ΓΣΓ

′
)−1U, (2.4)

where V and U are independent random vectors following Nn(0, I) and TNm(0; 0,∆ +
ΓΣΓ

′
) distributions, respectively. It must be noted that TNm(c;µ,Σ) denotes the normal

distribution Nm(µ,Σ) truncated below at a point c. In the following, we review several
important properties of the CSN distribution that are used in this paper.
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Proposition 2.1 Let X be a random vector with a closed skew-normal distribution CSNn,m(x;µ,Σ,D,ν,∆)
and A be a q × n full rank matrix, then

AX ∼ CSNq,m(µA,ΣA,DA,ν,∆A), (2.5)

where
µA = Aµ, ΣA = AΣA′, DA = DΣA′Σ−1

A ,

and ∆A = ∆ +DΣD′ −DΣA′Σ−1
A AΣD′.

Proposition 2.2 Let X be a random vector with a closed skew-normal distribution CSNn,m(x;µ,Σ,D,ν,∆)
and Z be an n-dimensional normal random vector with mean µz and covariance Σz, and inde-
pendent of X. Then X + Z follows from a closed skew-normal distribution

CSNn,m(µX+Z,ΣX+Z,DX+Z,υX+Z,∆X+Z), (2.6)

with µX+Z = µ + µz, ΣX+ Z = Σ + Σz, DX+Z = DΣ(Σ + Σz)−1, υX+Z = υ and ∆X+Z =
∆ + (D −DX+Z)ΣD′.

Proposition 2.3 Let X be a random vector with a closed skew-normal distribution CSNn,m(x;µ,Σ,D,ν,∆)
and assume that it is partitioned into two components, X1 and X2, of dimensions k and n − k,
respectively, with corresponding partition for µ,Σ,D and ν. Then the conditional distribution
of X2 given X1 = x1 is

CSNn−k,m(µ2 + Σ21Σ
−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11Σ12,D2,ν −D1x1,∆).

3 Proposed Model

Let’s assume that the spatio-temporal stochastic process Y(., .) = {Y(s, t); s ∈ D ⊆ Rd, t ∈
{1, 2, · · · }} is observed at locations sit at time t for i = 1, ..., nt and t = 1, 2, ...,T. Also,
suppose that the sampling model is

Y(sit, t) = µ(sit, t) + ν(sit, t) + ε(sit, t), (3.7)

where µ(sit, t) models the large-scale variability and is assumed to be a linear function
of p regressors f

′
t(.) = ( ft,1(.), ..., ft,p(.)) with the unknown vector of coefficients βt ∈ ℜp.
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Further, the random effect ε(sit, t) is the pure error process with distribution N(0, σ2
ε)

which is considered to be independent of the ν(sit, t).

At any fixed time t, we assume an LR structure for the random effect ν(sit, t) as

ν(sit, t) = b
′
t(sit)ηt, (3.8)

where b
′
t(sit) = (b1,t(sit), ..., brt,t(sit)) represents a set of rt (rt ≪ nt) known spatio-temporal

basis functions. It is assumed that a first-order Markovian evolution for the random
coefficient {ηt : t = 1, 2, · · · } which is given as

ηt = Htηt−1 +ωt, (3.9)

where Ht is the rt × rt evolution matrix that measures the dynamic dependence of
the process. Also, the innovation vector ωt which is independent of ηt, has an rt-
dimensional zero mean normal distribution with the covariance matrix Wt that controls
the magnitude of the change at time t. Now, we explain our idea for extending the
spatio-temporal model (3.7), (3.8) and (3.9) for capturing the skewness. The equation
(3.9) can be written in the recursive form

ηt = (
t∏

k=1

Hk)η0 +

t−1∑
j=1

(
t∏

k= j+1

Hk)ω j +ωt. (3.10)

As seen before, the random vector ηt is a linear combination of the initial state η0
and the error terms ω1, · · · ,ωt. Thus, in order to induce skewness in the equation
(3.10), it is enough to consider a CSN distribution for the random vector η0. Con-
sequently, with regard to the favorable properties of the CSN distribution, the dis-
tribution of the random vector ηt, as well as the random variable Y(sit, t) would be
CSN. To be more specific, the distribution of the random vector η0 is considered as
CSNr,m0(µ0,Σ0,D0,ν0,∆0). Hereupon, based on propositions (2.1) and (2.2), it is clear
that ηt has CSNr,m0(µηt

,Σηt
,Dηt
,υηt
,∆ηt

) with

µηt
= Htµηt−1

,

Σηt
= HtΣηt−1

H
′
t +Wt,

Dηt
= Dηt−1

Σηt−1
H
′
tΣ
−1
ηt
,

υηt
= υηt−1

,

∆ηt
= ∆ηt−1

+Dηt−1
Σηt−1

D
′
ηt−1
−Dηt−1

Σηt−1
H
′
tΣ
−1
ηt

HtΣηt−1
D
′
ηt−1
.
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Therefore, the marginal distribution of Y(sit, t) is CSN1,m0(µ(sit,t)
,Σ(sit,t),D(sit,t),υ(sit,t),∆(sit,t))

with the parameters

µ(sit,t)
= f

′
t(s)βt + b

′
t(sit)µηt

,

Σ(sit,t) = b
′
t(sit)Σηt

bt(sit) + σ2
ε,

D(sit,t) = Dηt
Σηt

bt(sit)Σ−1
(sit,t)
,

υ(sit,t) = υηt
,

∆(sit,t) = ∆ηt
+Dηt

Σηt
D
′
ηt
−Dηt

Σηt
bt(sit)Σ−1

(sit,t)
b
′
t(sit)Σηt

D
′
ηt
.

It is worth mentioning that the Gaussianity can be recovered by D0 = 0. The hierarchical
structure of the proposed model, according to the stochastic representation (2.4), is
given as

Y(s; t)|βt,ηt, σ
2
ε ∼ N(f

′
t(s)βt + b

′
t(s)ηt, σ

2
ε); s = 1, · · · , nt, t = 1, ...,T (3.11)

ηt|ηt−1,Wt ∼ Nr(Htηt−1,Wt),

η0|U0 ∼ Nr(µ0 + Σ0D
′
0(∆0 +D0Σ0D

′
0)−1U0, (Σ−1 +D

′
0∆0D0)−1),

U0 ∼ TNm0(0; 0,∆0 +D0Σ0D
′
0).

It is worth noting that we can also consider the CSN distribution for the error terms
ω1, . . . ,ωt. However, this method unnecessarily increases the complexity of the model.
This issue may impact the identifiability of the model parameters. Besides, the skew-
ness dimension will increase as time progresses (as stated before by Naveau et al. (2005)
in the state-space models). Accordingly, we only consider a CSN distribution for the
random effect η0. As a result, the skewness dimension is the same as η0 for all the time
epochs. Furthermore, according to the proposed modeling approach, the mean and
covariance functions of the random field Y(·, ·) have well-known structures similar to
the Gaussian model as

E(Y(sit, t)) = E(µ(sit, t) + b
′
t(sit)ηt + ε(sit, t)) (3.12)

= µ(sit, t) + b
′
t(sit)E(ηt)

= µ(sit, t) + b
′
t(sit)

t∏
k=1

HkE(η0),
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and

Cov(Y(sit, t),Y(s jt+k, t + k)) = b′t(sit)Cov(ηt,ηt+k)b′t+k(s jt+k)) + σ2
εI{k=0,i= j} (3.13)

= b′t(sit)Var(η0)

 k∏
l=0

H
′
t+l

 b
′
t+k(s jt+k)) + σ2

εI{k=0,i= j},

where E(η0) and Var(η0) are determined from the distribution of the initial state η0. The
expression (3.13) indicates that this modeling strategy can solve the non-stationarity
problem in the second-order structure of the random filed.

In the following section, we deal with the Bayesian inference of the hierarchical
model (3.11).

4 Bayesian Implementation

The specification of our Bayesian hierarchical model is completed by placing priors
on the model parameters. In the absence of prior information, we adopt independent
vague normals for the elements of the regression parameters, βt, t = 1, ...,T, and a vague
inverse Gamma prior IG(a0, b0) with mean b0/(a0 − 1) for σ2

ε. Additionally, we assume
that Wt is time-invariant and assign an inverse Wishart prior, i.e. W ∼ IW(ν0,Ψ) where
ν0 denotes the degrees of freedom andΨ is a scale positive definite matrix. There are
several approaches to model the Ht’s. For example, it may be assumed that they are
structurally known up to some unknown parameters that change over time (Xu et al.
, 2015; Ghosh et al. , 2010). Here we assume that Ht is time-invariant and known.
However, in the simulation study and applied example we assume that the matrix H
has a known structure up to some unknown parameters.

Our posterior inference is based on a Gibbs MCMC algorithm incorporating the
Kalman filter algorithm. Therefore, to carry out the Bayesian inference, we need to
compute the full conditional distributions of parameters. For this purpose, we utilize
data augmentation to incorporate η1:T = (η1, ...,ηT). Let Y ≡ (Y

′
1, ...,Y

′
T)
′

be the vector
of all observations with Y

′
t = (Y(s1,t, t), ...,Y(snt,t, t)). By defining

Θ = (β1, ...,βT , σ
2
ε,W,η1:T),
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the full conditional distributions for each t, t = 1, 2, ...,T, are

βt|Yt,Θ−βt
∼ N((

1
σ2
ε

FtF
′
t + Σ

−1
βt

)−1
(

1
σ2
ε

F
′
t(Yt − Btηt) + Σ

−1
βt
µβt

)
, (

1
σ2
ε

FtF
′
t + Σ

−1
βt

)−1),

W|Yt,Θ−W ∼ IW(ν0 + r + T + 1,
T∑

t=1

((
ηt,ϕt
−Htηt−1,ϕt

) (
ηt,ϕt
−Htηt−1,ϕt

)′
+Ψ

)
),

σ2
ε|Yt,Θ−σ2

ε
∼ IG(a0 +

T∑
t=1

nt/2, b0 +
1
2

T∑
t=1

nt∑
i=1

(
Y(si, t) − f

′
t(si)βt − b

′
t(s)ηt

)2
),

where Θ−δ denotes all model parameters except δ, Bt = (B(s1,t), ...,B(snt,t))
′

and Ft =
(ft(s1,t), ..., ft(snt,t))

′
.

In the following, the inference of ηt will be presented using the Kalman filtering
method. Let

ηt−1|Yt−1,Θ−ηt−1
∼ CSNr,m0(µ̂t−1, Σ̂t−1, D̂t−1, ν̂t−1, ∆̂t−1) (4.14)

whereYt denotes the available data until time the point t. Such a distributional assump-
tion is valid due to the distribution of the initial state. On observing Yt, the posterior
of ηt will be

ηt|Yt,Θ−ηt ∼ CSNr,m0(µ̂t, Σ̂t, D̂t, ν̂t, ∆̂t) (4.15)

with

µ̂t = Htµ̂t−1 + Σ̃tB
′
t

(
σ2
εI + BtΣ̃tB

′
t

)−1
et,

et = Yt − Ftβt − BtHtµ̂t−1,

Σ̃t = HtΣ̂t−1H
′
t +Wt,

Σ̂t = Σ̃t − Σ̃tB
′
t

(
σ2
εI + BtΣ̃tB

′
t

)−1
BtΣ̃t,

D̂t = D̂t−1 − Σ̂t−1H
′
tΣ̃
−1
t ,

ν̂t = ν̂t−1,

∆̂t = ∆̂t−1 +
(
D̂t−1 − D̂tHt

)
Σ̂t−1D̂t−1.

Details of full conditionals and Kalman filtering are presented in the Appendix.
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5 Simulation Study

This section presents two simulation examples to evaluate the performance of our
proposed non-stationary skew-Gaussian spatio-temporal (NS-SG) model. The first
example is to assess the model identifiability whereas the second example is designed
to evaluate the impact of misspecification of latent variables distribution on estimation.
For this purpose, we generate different datasets from the model (3.11) with 100 spatial
sampling points randomly taken on the square [0, 10] × [0, 10] for each time point t,
t = 1, . . . , 10. The basis functions we use are bisquare functions with two resolutions,
one with 4 knots and the other one with 16 knots, given as

B j(l)(s) ≡
{
{1 − (||s − u j(l)||/rl)2}2 ||s − u j(l)|| ≤ rl
0 otherwise, (5.16)

where {u j(l)} j are the center points of lth resolution and ||.||denotes the Euclidean distance
between points s and u j(l). Additionally, the radius of a bisquare basis function of
a particular resolution, rl, is defined as 1.5 times the shortest distance between the
center points of that resolution (Cressie and Johannesson , 2008). A homotopic CSN
distribution (Allard and Navaue, 2007) is considered for η0 as CSN(µ0,Σ0, αIr,µ0,Σ0)
such thatµ0 is a zero vector andΣ0 = Ir. It is worth mentioning that the distribution ofη0
reduces to the Gaussian distribution as α→ 0. Different values of α represent different
behaviors of skewness. Additionally, in the data generation setup, we use a simple
random walk to generate η1:T. For priors, we consider β ∼ N(0, 103), σ2

ε ∼ IG(0.01, 0.01),
W ∼ IW(r, Ir), and for the skewness parameter α, we choose N(0, 102). According to
our sensitivity analysis, we see that estimations of parameters are robust in the face of
moderate changes in the prior of α. Moreover, to construct a more flexible model, the
evolution matrix H is considered as ρIr, where Ir is an r × r identity matrix and ρ is an
unknown autoregressive parameter with a uniform prior distribution on the interval
(−1, 1). For each dataset, the MCMC algorithm was run with a total number of 20,000
iterations based on the NS-SG model. The posterior inferences are based on the last
10,000 iterations. To reduce the correlation between samples after burn-in time, the lag
value was taken to be 5.

Example 1

The main objective of this example is to demonstrate model identifiability. To this
end, according to the above mechanism with µ(sit; t) = β = 2 and σ2

ε = 0.25, we
generated 20 datasets for each value of α by assuming α ∈ {0, 1, 2, 4}, representing
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different behaviors from very weak to strong skewness. To assess the NS-SG model
estimation, we computed the bias and mean square error (MSE) which were calculated
as

Bias(θ̂) = ¯̂θ − θTrue, MSE(θ̂) =
1

20

20∑
i=1

(θ̂i − θTrue)2

where θ̂i is the estimated parameter from the ith simulated dataset and ¯̂θ is the average
of θ̂i s. Table 1 illustrates the average posterior means, standard deviation (in paren-
thesis), bias and MSE. As it is evident, all the Bias, MSE and sd are small for different
values of α, which clearly indicates that data allow for meaningful inference on the
parameters.

Table 1: Posterior mean (standard deviation), Bias and MSE of model parameters under
different values for α.

Parameter True value α = 0 α = 1
Mean (sd) Bias MSE Mean (sd) Bias MSE

α 0.00 (0.06) 0.00 0.00 0.84 (0.17) -0.16 0.5
β 2 1.89 (0.56) -0.11 0.33 2.02 (0.45) 0.02 0.21
ρ 1 0.96 (0.07) -0.04 0.01 1.00 (0.00) 0.00 0.00
σ2
ε 0.25 0.25 (0.00) 0.00 0.00 0.25 (0.00) 0.00 0.00

Parameter True value α = 2 α = 4
Mean (sd) Bias MSE Mean (sd) Bias MSE

α 1.8 (0.28) -0.2 0.12 3.82(0.4) -0.18 0.2
β 2 1.96 (0.26) -0.04 0.07 2.02 (0.5) 0.02 0.3
ρ 1 0.99 (0.00) 0.01 0.00 0.97 (0.08) -0.03 0.00
σ2
ε 0.25 0.25 (0.00) 0.00 0.00 0.25 (0.00) 0.00 0.00

Example 2

Now we assess the impact of misspecification of latent variables distribution on esti-
mation using several simulated datasets. For this purpose, we select α from {0, 1, 4}
and generate 20 datasets for each value of α from the previous mechanism with
µ(sit, t) = β0 + β1lat(sit) + β2long(sit). In all the simulated data, we fix β0 = 2, β1 = 1
and β3 = −3. Then similar to the previous example, we fit the NS-SG model to the
data and compare its performance with the Gaussian LR (GLR) model under the same
conditions. Table 2 illustrates the posterior mean, bias, MSE and DIC (deviance infor-
mation criterion) of our model as well as the GLR. The results indicate that the amount
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of skewness plays a crucial role in estimation and goodness of fit. More precisely, when
we go from α = 1 to α = 4, GLR tends to perform worse in terms of bias and MSE
as well as DIC. It should be noted that there is no significant difference between GLR
and NS-SG models in estimation of σ2

ϵ and ρ. In fact, under both models, bias and
MSE of the variance of measurement error and parameter of propagation matrix are
noticeably small. However, when α = 0, the NS-SG model outperforms the GLR model
in parameters estimation (based on bias, MSE and DIC), unexpectedly. According to
the posterior mean of skewness parameter (α = −0.6), we conclude that most of the
simulated datasets have a left skewed distribution. Therefore, our proposed model has
shown better performance in comparison to the GLR model. To summarize, the NS-SG
model provides a more robust result in comparison to the GLR model.

Table 2: Posterior mean, bias, MSE and DIC of NS-SG and GLR models under different values
for α.

Parameter True value α = 0
NS-SG GLR

Mean Bias MSE Mean Bias MSE
α -0.6 -0.60 2.65 - - -
β0 2 2.79 0.79 1.30 5.87 3.87 17.53
β1 1 0.90 -0.09 0.01 1.03 0.03 0.02
β2 -3 -3.02 -0.02 0.00 -3.45 -0.45 0.21
ρ 1 0.96 -0.03 0.00 0.92 -0.08 0.00
σ2
ε 0.25 0.25 0.00 0.00 0.26 0.01 0.00

DIC 392.34 1068.22
Parameter True value α = 1

NS-SG GLR
Mean Bias MSE Mean Bias MSE

α 0.81 -0.19 2.80 - - -
β0 2 2.61 0.61 1.15 4.79 2.79 9.11
β1 1 0.92 -0.08 0.01 1.15 0.15 0.03
β2 -3 -2.97 0.03 0.00 -3.36 -0.36 0.16
ρ 1 0.97 -0.03 0.00 0.93 -0.07 0.00
σ2
ε 0.25 0.25 0.00 0.00 0.26 0.01 0.00

DIC 407.51 1056.72
Parameter True value α = 4

NS-SG GLR
Mean Bias MSE Mean Bias MSE

α 3.20 -0.80 2.33 - - -
β0 2 2.98 0.98 1.96 5.97 3.97 16.98
β1 1 0.96 -0.04 0.01 1.08 0.08 0.01
β2 -3 -3.03 -0.03 0.01 -3.43 -0.43 0.2
ρ 1 0.97 -0.03 0.00 0.92 -0.08 0.00
σ2
ε 0.25 0.25 0.00 0.00 0.26 0.00 0.00

DIC 386.55 1068.56
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6 Application To Modeling of Precipitation Data

Drought due to adverse consequences on socio-economic activities and agricultural
productions has become one of the most challenging environmental problems in Iran.
Drought is the result of abnormally dry periods that last long enough to cause an
imbalance in hydrologic processes (storage and consumption). Due to the geographical
location of Iran and the synoptic systems that affect this region, it is clear that one of
the important reasons of drought is a significant reduction in annual precipitation.
Therefore, accurate knowledge of precipitation levels is a fundamental requirement
for understanding and managing climate changes. In this section, we aim to assess
the effectiveness of the proposed NS-SG model in prediction of precipitation. We also
compare the results with those obtained from the Gaussian LR model on transformed
data.

The locations of 92 meteorological stations are shown in Figure 3. As pointed out
before, the dataset includes T = 10 time points and for each t = 1, 2, . . . ,T, nt = 92.
Table 3 summarizes the descriptive statistics of the data. As observed, the distributions
at each time point showed fairly right-skewed distributions. Since the explanatory
analysis of the data showed a significant linear relation between annual total precipi-
tation and elevation, the mean function is assumed to be a first order linear function of
elevation (calculated as the elevation (in meters) divided by 100).

45 50 55 60 65

25

30

35

40

Figure 3: Location of meteorological stations.
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Table 3: Descriptive statistics for precipitation data.

Year Minimum Maximum Skewness
coefficient

2006 24.83 1929.14 2.42
2007 25.31 1360.81 2.03
2008 14.76 1828.38 3.28
2009 45.75 1321.97 2.25
2010 6.87 1336.17 2.34
2011 31.44 2914.23 3.44
2012 24.02 1926.69 2.69
2013 23.56 1608.94 2.76
2014 6.00 1823.23 2.92
2015 0.00 1772.00 2.66

In the sequel, we need to construct a set of appropriate basis functions. Although
in the simulation study, we focused on bisquare basis functions, another choice could
be orthogonal basis functions. One of the most familiar orthogonal basis functions
is empirical orthogonal functions (EOFs), which are the eigenvectors of the empirical
covariance matrix (Cressie and Wikle, 2011). The use of EOFs as basis vectors leads to
dramatic dimension reduction and therefore great simplicity in MCMC implementa-
tion. The first few EOFs are candidates for basis vectors. For our data, the first seven
EOFs capture about 90% of the total variance. To construct a more flexible model, we
consider H = diag(ρ1, ..., ρr) where ρ1, ..., ρr are unknown autoregressive parameters.

In what follows, we evaluate the predictive performance of our NS-SG model
in smoothing, filtering and forecasting with the Gaussian LR model. To assess the
performance of our model in smoothing and filtering, we create 10 datasets by randomly
taking 90% of the available data as training data and the rest as prediction locations.
Then, two models will be compared based on the root of mean squared prediction error
(RMSPE) and percentage prediction error (PPE) which were calculated as

RMSPE =

√√√
1

npT

T∑
t=1

npt∑
i=1

(Y(si,t, t) − Ŷ(si,t, t))
2
,

PPE =
1

npT

T∑
t=1

npt∑
i=1

100 × (Y(si,t, t) − Ŷ(si,t, t))/Y(si,t, t),
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where npt is the number of prediction locations in time point t, np =
∑T

t=1 npt , Ŷ(si,t, t)
is the posterior mean of the predictive distribution of Y(si,t, t). It is worth mentioning
that, we made a square root transform of the original data (to make them near normal)
before fitting the GLR model.

we ran 50, 000 MCMC iterations for each model where the burn-in time was 20, 000
and the lag value was taken to be 10 in order to reduce the correlation between sam-
ples after burn-in time. The convergence of the MCMC was verified through the
autocorrelations and visual inspection of the trace plots. Evidence reveals no obvious
convergence problem. The hyperparameters were fixed to a0 = b0 = 0.01, ν0 = r, and
Ψ = Ir. Additionally, we considered a homotopic CSNr,r(µ,Σ, αIr,µ,Σ) for η0 in the
NS-SG model, where µ = (0, ..., 0)

′
and Σ = diag(100, r). Also, a vague normal prior

was considered for α. In the case of GLR model, we assign a normal distribution
Nr(0, 100Ir) to the initial state vector. For the autoregressive parameters, we chose a
uniform distribution on the interval (−1, 1). Figures 4 shows the distributions of the
RMSPE and PPE across the 10 sets of holdout samples. In general, the NS-SG model
performs much better than the GLR model under both RMSPE and PPE criteria. The
estimated values of autoregressive parameters are between 0.6 and 0.8. Moreover, the
95% credible interval for α is 0.32 ± 0.15 which confirms the right skewness of the
precipitation data.
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Figure 4: Box plots of the RMSPE and PPE for two models fit to the precipitation data,
summarized for each of 10 holdout replicates.

To evaluate the NS-SG model in forecasting, we split the data into two parts: the
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first 9 years as training data and the last year as testing data. Similar to the above,
the hyperparameters were chosen and the MCMC samples were obtained. Table 4
shows the prediction results for the two models on the hold out values. Based on two
criteria, the NS-SG model outperforms the transformed GLR model. More precisely,
relative RMSPE and PPE are 1.11 and 1.21 for GLR model compared with NS-SG model,
respectively.

Table 4: Forecasting results for NS-SG and transformed GLR models.

NS-SG GLR
RMSPE 284.50 315.80

PPE 28.00% 33.88%

7 Discussion

In this paper, we proposed a non-stationary skew Gaussian spatio-temporal process
based on using the closed skew-normal distribution in the low-rank representation of
stochastic processes. Our model not only inherits favorable properties of the low-rank
models but also greatly reduces the dimension of the spatio-temporal latent variables.
Through simulation studies, we assess the performance of our model in parameters
estimation. Also based on a real data example comprised of precipitation measure-
ments, we demonstrated that our model outperforms the transformed Gaussian LR in
filtering, smoothing and forecasting. Although, our example does not include many
spatial locations, the proposed model can easily be applied to large datasets due to its
low-rank structure.

Further extensions of our model can be explored. In many real problems, spatio-
temporal datasets exhibit different features in time, such as multimodality and heavy
tails as well as skewness. Although there are some remedies in the literature, an
approach that addresses these issues in a simple computational way would be very
valuable. Another extension of the proposed model could be in the case of areal data
such as crime data that is a peak topic in spatio-temporal analysis.
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Appendix

This section includes the details of the posterior inference.

π(βt|Yt,Θ−βt
) ∝ π(Yt|βt,Θ−βt

)π(βt)

∝ exp
(
− 1

2σ2
ε
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)′ (
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))
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2

(
βt − µβt

)′
Σ−1
βt

(
βt − µβt
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In what follows, we present the proof of Kalman filter equations. Consider (3.9),
we have

[
ηt|Yt−1,Θ−ηt

]
=

[
Htηt−1 +ωt|Yt−1,Θ−ηt

]
= Ht

[
ηt−1|Yt−1,Θ−ηt

]
+ωt.

Utilizing Propositions 2.1-2.2 and the above equation, we have[
ηt|Yt−1,Θ−ηt

]
= CSNr,m0(Htµ̂t−1, Σ̃t, D̂t, ν̂t, ∆̂t),

where Σ̃t = HtΣ̂t−1H
′
t +Wt, D̂t = D̂t−1Σ̂t−1H

′
t(HtΣ̂t−1H

′
t +Wt)−1, ν̂t = ν̂t−1 and ∆̂t =

∆̂t + (D̂t−1 − D̂tHt)Σ̂t−1D̂t−1.

On observing Yt, our objective is to compute the posterior of ηt, i.e.
[
ηt|Yt−1,Θ−ηt

]
.

To this end, we introduce et = Yt − Bt[Htµ̂t−1 + µωt
] − µε as the error in predicting Yt
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from point t − 1. Following this definition and µωt
= µε = 0, we have

[et|ηt,Yt−1,Θ−ηt
] = [Bt(ηt −Htµ̂t−1) + εt|ηt,Yt−1,Θ−ηt

]

= [Bt(ηt −Htµ̂t−1)t|ηt,Yt−1,Θ−ηt
] + εt.

Then, the normality of εt imply that

[et|ηt,Yt−1,Θ−ηt
] = Nnt(Bt(ηt −Htµ̂t−1), σ2

εInt).

To obtain the posterior of ηt, we link the posterior of it with the

[ηt|Yt,Θ−ηt
] = [ηt|Yt−1,Yt,Θ−ηt

] = [ηt|Yt−1, et].

Then applying proposition 2.3 to the distribution of [et|ηt,Yt−1,Θ−ηt
] and [ηt|Yt−1,Θ−ηt

,Θ−ηt
],

the distribution of [ηT
t , e
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.

Again, by employing proposition 2.3, we have

[ηt|Yt,Θ−ηt
] = [ηt|et,Yt−1,Θ−ηt

] = CSNn,m(µ̂t, Σ̂t, D̂t, ν̂t, ∆̂t).

with the given components of (4.15).




