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Abstract. Testing exponentiality has long been an interesting issue in statistical infer-
ences. The present article is based on a modified measure of distance between two
distributions. The proposed new measure is similar to the Kullback-Leibler divergence
and it is related to the Lin-Wong divergence applied on the residual lifetime data. A
modified measure is developed here which is a consistent test statistic for testing the
hypothesis of exponentiality against some alternatives. First, we consider a method
similar to Vasicek’s and Correa’s techniques of estimating the density function in or-
der to construct statistic for LW divergence. Then the critical values of the test are
computed, using a Monte-Carlo simulation method. Also, we find the differences of
exponential distribution detection power between the proposed test and other tests. It
is shown that the proposed test performs better than other tests of exponentiality when
the hazard rate is in the form of an increasing function. Finally, a case of application of
the proposed test is shown through two illustrative examples.
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1 Introduction

Recently, many researchers shown an interest in studying the measurement methods
of uncertainty associated with probability distribution tests. Of particular interest in
probability and statistics is the notion of entropy, introduced by Shannon (1948). If X
is a random variable having an absolutely continuous distribution function G(x) with
the probability density function (PDF) g(x), then the entropy of the random variable X
is defined as

H(g) = −
∫ ∞

0
g(x) log g(x) dx, (1.1)

where the log function denotes the natural logarithm. Some significant applications
are divergence measurement and distance information extraction. A prominent source
of concern within the applications of probability theory is to find an appropriate mea-
sure of the distance between two probability distributions. A number of divergence
measures have been already proposed and extended to carry out this task.

Let g(x) and f (x) be PDF of variables X and Y, respectively. The Kullback-Leibler
(KL) information of g(x) and f (x) has been defined by Kullback and Leibler (1951)
based on Shannon entropy as

DKL(g∥ f ) =
∫ ∞

0
g(x) log

g(x)
f (x)

dx. (1.2)

Various generalized forms of the Shannon entropy and the KL information measure
have been introduced over the past 6 decades. We focus on the Lin-Wong (LW) di-
vergence measures in the present paper. The LW divergence is a prominent measure
of divergence in this realm. The LW divergence measure is defined by Lin and Wong
(1990) as

DLW(g∥ f ) =
∫ ∞

0
g(x) log

g(x)
1
2

(g(x) + f (x))
dx. (1.3)
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Lin and Wong presented and characterized a new direction specific measure, which
complements the traditional KL measure. However, they remained closely faithful
to the KL divergence. The LW divergence has many desirable properties such as
the qualities of nonnegativity, finiteness, semiboundeness, and boundedness (in some
cases). The LW divergence is discussed by Lin (1991) and Shioya And Da-Te (1995).

In this case, we observe that a living organism or a subject has survived up to time
t, and that the H(g) entropy measure would not be a useful instrument for measuring
the uncertainty about the remaining lifetime of the unit. Consider a system X that
has survived up to time t. The Equation (1.2) is not appropriate when calculating the
uncertainty about the residual life of such a system. Ebrahimi (1996) introduced a
new measure to ascertain the uncertainty about the residual life of a random variable
Xt = (X|X ≥ t) given by

H(gt) = −
∫ ∞

t
ḡt(x) log ḡt(x)dx, (1.4)

in which, X denotes the failure time for a system of living organisms or a component

of it and ḡt(x) =
g(x)
Ḡ(t)

represents the failure density function, where G(t) = P(X ≤ t) is

the cumulative distribution function (CDF) and Ḡ(t) = 1 − G(t).

Ebrahimi (1996) and Ebrahimi and Pellerey (1995) proposed the concept of residual
entropy in terms of a conditional measure. The reader is referred to Nair and Rajesh
(1998), Asadi and Ebrahimi (2000), and Navarro et al. (2010) for discussions about the
properties and applications of H(gt).

Furthermore, the KL information based on the Shannon entropy for the residual
lifetime data is defined by Ebrahimi and Kirmani (1996a) as follows

D(t,∞)
KL (g∥ f ) =

∫ ∞
t

ḡt(x) log(
ḡt(x)

f̄t(x)
) dx. (1.5)

Most statistical methods, either explicitly or implicitly, presume that the data follow
some known distribution pattern in order to derive their results, because there are
situations within the context of reliability study, especially within the applied sciences
in which it is so desirable to understand if any particular underlying distribution is
presented within the data.

In social studies, engineering, medical sciences, reliability studies, and management
science, it is very important to know whether the underlying data follow a particular
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distribution. Therefore, many authors are interested in investigating the goodness of
fit test methods. Recently, goodness of fit tests based on the Shannon entropy have
been developed by many researchers. For example Jager and Wellner (2007), Alizadeh
(2010) and Zamanzade and Arghami (2011).

Testing methods to detect exponential distribution patterns still attract much atten-
tion and are the topic of a large number of recent researches. Many authors provide
test statistics for detecting departures from the hypothesis of exponentiality against
specific or general alternatives, for example, see Hanis (1976), Henze and Meintanis
(2002b), and Baratpour and Habibirad (2012).

Ebrahimi et al. (1992) obtained an estimator for the exponential goodness of fit
test, using the Kullback-Leibler divergence measure on the general. Ebrahimi (1998)
performed this estimator, applying (1.5) for the residual lifetime data.

A large number of recent results pertaining to lifetime tests are obtained based on the
assumption that the lifetime of a system is described by an exponential distribution. The
main focus of this paper is the goodness of fit test for the exponential distribution based
on the LW divergence on the residual lifetime data. The exponential data distribution
is commonly used in literature and many practical applications to describe sets of
data, which are mainly produced through measurements regarding failure times of
organisms or man-made systems. The model based on the exponential distribution in
such a context is widely known as a lifetime model in the reliability theory. Theoretical
justifications of using lifetime model as a reliable probabilistic model for failure times
of a system (or its components) are also ubiquitously studied.

In the following, we illustrate the testing exponentiality based on the LW informa-
tion with the residual lifetime data. In the past, Abbasnejad et al. (2012) improved the
applications of LW measure by proposing a new goodness of fit measure to assess the
fitness of exponential distributions with data.

The rest of present in the paper is organized as follows. A modified measure of
divergence in the context of a residual lifetime is presented in Section 2, and some of
its characteristics are introduced. We propose test statistics for exponentiality based
on the LW divergence measure to Vasicek’s and Correa’s techniques when applied to
residual lifetime data. In Section 3, behaviors of our test measure are assessed, using
some simulated data in terms of value size and distribution detection power. Imple-
mentation of the proposed test is illustrated by two examples in Section 4. Finally, our
conclusions are summarized within Section 5.
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2 Test Statistics

Based on Khalili et al. (2017), using Equation (1.3), the LW divergence on the residual
lifetime data can be stated as follows

D(t,∞)
LW (g∥ f ) =

∫ ∞
t

ḡt(x) log
ḡt(x)

1
2

(ḡt(x) + f̄t(x))
dx.

A number of implications are explained regarding the definition of divergences.

• It can be readily observed that

lim
t→∞

D(0,t)
LW (g∥ f ) = DLW(g∥ f ) = lim

t→0+
D(t,∞)

LW (g∥ f ),

which is similar to relations pertaining to the KL divergence; see Di Crescenzo
and Longobardi (2004) for more details.

• In analogy to the LW discrimination information, in light of assumptions made
about ϕ(x) = − log(x), as a convex function, and using the Jensen’s inequality,
we observe that D(t,∞)

LW (g∥ f ) ≥ 0, and this inequality holds true if and only if
f (x) = g(x), for all x ∈ (t,∞).

• In analogy to Lin and Wong (1990), we find the upper boundary of the LW
divergence value when applied on the residual lifetime data as

D(t,∞)
LW (g∥ f ) ≤ log 2,

which transforms into D(t,∞)
LW (g∥ f ) ≤ 1, for the logarithm on base of 2.

Many researchers have introduced the goodness of fit tests based on various entropy
estimators. Among those estimators of the entropy, Vasicek’s sample entropy measure
is most widely used in the goodness of fit tests. Let X1,X2, . . . ,Xn be a random sample
from a continuous distribution G. Using G(x) = p, Vasicek (1976) expressed (1.1) as

H(g) =
∫ 1

0
log(

d
dp

G−1(p))dp.

After replacing the distribution function G by the empirical distribution function Gn
and using a difference operator instead of the differential operator, the derivative of
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G−1(p) is estimated by
X(i+m) − X(i−m)

2m
n

.

Therefore H(g) is estimated as

Vmn =
1
n

n∑
i=1

log
( n
2m

(X(i+m) − X(i−m))
)
,

where, m is a positive integer with values smaller than n/2, while X(1) ≤ X(2) ≤ · · · ≤ X(n)
are order statistics satisfying the condition X(i) = X(1) if i < 1, and X(i) = X(n) if i > n.
Vasicek proved that

Vmn
pr.→ H(g) as n→∞,m→∞, m

n
→0.

Lemma 2.1. Based on Maximum Likelihood Estimator (MLE), the estimator of the parameter
θ in the exponential distribution on residual lifetime data is given by

θ̂ =
1

x̄ − t
. (2.1)

Proof. Since gt(x) =
θe−θx

e−θt , the proof is clear. □

Let X1, . . . ,Xn be a random sample from a continuous nonnegative CDF F(x) with a
PDF f (x). Consider the following hypothesis:

H0 : f (x;θ) = f0(x;θ),

while the alternative hypothesis would be

H1 : f (x;θ) , f0(x;θ),

where f0(x;θ) = θ e−θx , x > 0, and θ > 0 is unknown.

It motivates us to use D(t,∞)
LWV

( f ∥ f0) as a test statistic for exponentiality. Note that
such an evaluation requires the knowledge of G, which is not operational. Instead, we
consider a sample estimate of D(t,∞)

LWV
( f ∥ f0).
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The LW divergence on the residual lifetime data, when comparing f (x) against f0(x),
is stated as

D(t,∞)
LWV

( f ∥ f0) =
∫ ∞

t
f̄t(x) log

f̄t(x)

1
2

( f̄t(x) +
θ e−θx

e−tθ )
dx, (2.2)

for which the null hypothesis of D(t,∞)
LWV

( f ∥ f0) = 0 and positive values of H1 are assumed.

To estimate D(t,∞)
LWV

( f ∥ f0), we use the two following methods. In the first method,
using F̄t(x) = P, similar to Vasicek’s method and using difference operator in place of
the differential operator, we express (2.2) as

∫ 1

0
log

2(−
dF−1

t (p)
dp

)−1

(−
dF−1

t (p)
dp

)−1 +
θ e−θx

e−tθ

dp.

There are many types of estimators for
dF−1

t (p)
dp

. Amongst various functions proposed

for estimating the entropy, Vasicek’s sample entropy method has been extensively im-
plemented by scholars when developing statistical procedures based on the entropy
concept. We follow Vasicek (1976) regarding the estimator for the density quantile
function as follows

2m
n0(X(i+m) − X(i−m))

≃ (
dF−1

t (p)
dp

)−1, (2.3)

where X(i) is the ordered statistic and the window size m is a positive integer with
values smaller than n/2. We obtain an estimator of D(t,∞)

LW ( f ∥ f0) as

D̂(t,∞)
LWV

( f ∥ f0) = − 1
n0

n0∑
i=1

log
(1
2
+

(X(i+m) − X(i−m))n0(θ̂e−X(i)θ̂)

4m(e−tθ̂)

)
, (2.4)

where m is a positive integer with values smaller than
n0

2
, while n0 = #Xi ≥ t; t ≤ X(1) ≤

X(2) ≤ · · · ≤ X(n0) are order statistics satisfying the condition X(i) = X(1) if i < 1, and
X(i) = X(n0) if i > n0; and θ̂ is the MLE of θ.
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Now, similar to the proof of Theorem 2 of Alizadeh and Arghami (2011), we prove
that the test based on D̂(t,∞)

LWV
( f ∥ f0) is consistent.

We first consider the estimation of the population entropy H(gt) by introducing
the Vasicek’s entropy estimator. Among various entropy estimators, Vasicek’s sample
entropy is the most widely used in developing statistical procedures.

We use the following theorems in order to obtain a new test statistic.

Theorem 2.1. Let X1, . . . ,Xn denote a sample from the continuous distribution with PDF
g(x) and CDF G(x), concentrated on (0,+∞). Then, for any significance level α ∈ (0, 1), the
goodness of fit test based on the test statistic D̂(t,∞)

LWV
(g∥ f ) is a consistent test for the hypotheses

testing problem.

Proof. According to the consistenty of the empirical distribution function, we have

2m
n(X(i+m) − X(i−m))

p→
G(X(i+m)) − G(X(i−m))

(X(i+m) − X(i−m))
,

also there exists xi ∈ (X(i+m),X(i−m)), in which

G(X(i+m)) − G(X(i−m))
(X(i+m) − X(i−m))

≃ g(xi).

As n→∞ ,m→∞ , m
n
→ 0, then

1
n

n∑
i=1

log
(
1 +

n f (Xi) (X(i+m) − X(i−m))
2m

)
p→ Eg

(
log(1 +

f (Xi)
g(Xi)

)
)
. (2.5)

Hence, using (2.5), the test statistic D̂(t,∞)
LWV

(g|| f ) is a consistent test.

The next theorem states that the scale of the random variable X does not affect the
accuracy of D̂(t,∞)

LWV
(g|| f ).

□

Theorem 2.2. Suppose that X1, ...,Xn is a sequence of iid random variables from a continuous
exponential distribution G(x) with a density function g(x) on the residual lifetime data and
that tX and tY are the time points for the random variables X and Y, respectively. Put tY = ktX,
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and Yi = kXi, i = 1, ..., n, where k > 0. Let D̂(tX,∞)
LWVX

(g|| f ) and D̂(tY,∞)
LWVY

(g|| f ) be the estimators for
D(tX ,∞)

LWVX
(g|| f ) and D(tY ,∞)

LWVY
(g|| f ) on the residual lifetime data, respectively. Then, we can see that the

test statistic is invariant with respect to scale transformations, and the following properties

(i) E(D̂(tX,∞)
LWVX

(g|| f )) = E(D̂(tY,∞)
LWVY

(g|| f )),

(ii) Var(D̂(tX,∞)
LWVX

(g|| f )) = Var(D̂(tY,∞)
LWVY

(g|| f )),

(iii) MSE(D̂(tX,∞)
LWVX

(g|| f )) =MSE(D̂(tY,∞)
LWVY

(g|| f )).

Proof. From the right-hand side of (2.1), we have

θ̂Y =
1

Ȳ − tY
=

1
kX̄ − ktX

=
1
k
θ̂X. (2.6)

So, we can get D̂(tX,∞)
LWVX

(g|| f ) = D̂(tY,∞)
LWVY

(g|| f ), and the proof is complete.
□

Lemma 2.2. Similar to D̂(t,∞)
LWV

(g|| f ) in (2.4), the estimator D̂(t,∞)
KL (g|| f ) for the KL divergence

on the residual lifetime data is given by Ebrahimi (1998) as

D̂(t,∞)
KL (g|| f ) =

1
n0

n0∑
i=1

log
( 2m(e−tθ̂)

(X(i+m) − X(i−m))n0(θ̂e−X(i)θ̂)

)
. (2.7)

Lemma 2.3. Suppose that X1, . . . ,Xn is a random sample from a continuous exponential dis-
tribution G(x) with a density function g(x) on residual lifetime data. Then, similar to Theorem
2.1, D(t,∞)

KL is scale invariant and consistent.

(i) E(D̂(tX,∞)
KLX

(g|| f )) = E(D̂(tY,∞)
KLY

(g|| f )),

(ii) Var(D̂(tX,∞)
KLX

(g|| f )) = Var(D̂(tY,∞)
KLY

(g|| f )),

(iii) MSE(D̂(tX,∞)
KLX

(g|| f )) =MSE(D̂(tY,∞)
KLY

(g|| f )).

Another important way to estimate the LW divergence is to use nonparametric

Correa’s technique for estimating
dF(−1)(p)

dp
. Correa (1995) proposed a new estimator of
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entropy. This new estimator is based on local linear regression. The Correa estimator
of the density function is

bi =

∑i+m
j=i−m

(
X( j) − X̄(i)

)( j
n
− i

n

)
∑i+m

j=i−m

(
X( j) − X̄(i)

)2 ,

where

X̄(i) =

i+m∑
j=i−m

X( j)

2m + 1
,

and m, is a positive integer, m <
n
2

; and X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics
with X(i) = X(1) if i < 1, and X(i) = X(n) if i > n. Therefore, the LW divergence on the
residual lifetime data to Correa’s method can be written as

D̂(t,∞)
LWC

( f ∥ f0) = − 1
n0

n0∑
i=1

log
(1
2
+

n0(θ̂e−X(i)θ̂)

2nbi(e−tθ̂)

)
. (2.8)

Furthermore, the Kolmogorov-Smirnov (KS) statistic belongs to the supremum class of
empirical distribution function (EDF) statistics, and this class of statistics is based on
the largest vertical difference between the hypothesized and empirical distributions.
Consider n ordered data points, X(1) ≤ X(2) ≤ · · · ≤ X(n), Conover in 1999 defined the
test statistic proposed by Kolmogorov (1933) as

T = supx|F∗(x) − Fn(x)|,

where "sup" stands for supremum, F∗(x) is the hypothesized distribution function, and
Fn(x) is the EDF estimated based on the random sample. So, following the notation
of Koziol and Byar (1975), the modifications to the KS statistic for the residual lifetime
data may be written as

KS(t,∞) = max1≤i≤n0{
i

n0
− F∗t(Xi), F∗t(Xi) −

i − 1
n0
},

where n0 = #Xi ≥ t, and

F∗t(Xi) =
F(xi) − F(t)

F̄(t)
=

F̄(t) − F̄(Xi)
F̄(t)

= 1 − F̄(Xi)
F̄(t)

= 1 − e−x(i)θ̂

e−tθ̂
.
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Anderson and Darling (1954) defined the statistic for this test as

W2
n = −n − 1

n

n∑
i=1

(2i − 1){log F∗(Xi) + log(1 − F∗(Xn+1−i)},

where F∗(x) is the cumulative distribution function of the specified distribution, X(i)’s
are the ordered data, and n is the sample size. Therefore, the modified Anderson and
Darling (AD) statistic for the residual lifetime data can be rewritten as

AD(t,∞) = −n0 −
1
n0

n0∑
i=1

(2i − 1){log F∗t(Xi) + log(1 − F∗t(Xn0+1−i)}.

Conover (1999) stated that the Cramer-Von Mises (CVM) test is developed by Cramer
(1928), Von Mises (1931), and Kolmogorov (1933). The CVM statistic is as below

CVM =
1

12n
+

n∑
i=1

[
F∗(x(i)) −

2i − 1
2n

]2
.

So, The CVM statistic on the residual lifetime data can be computed as

CVM(t,∞) =
1

12n0
+

n0∑
i=1

[
F∗t(Xi) −

2i − 1
2n0

]2
.

Moreover, Zhang (2002) introduced the new statistics ZA, ZC, and ZK. The test statistics
for residual lifetime data are approximately equivalent to

Z(t,∞)
A = −

n0∑
i=1

[ log{F∗t(x(i))}
n0 − i + .5

+
log{1 − F∗t(x(i))}

i − .5

]
,

Z(t,∞)
C =

n0∑
i=1

[
log
{F∗t(x(i))

−1 − 1
(n0 − .5)
(i − .75)

− 1
}
]2
,

and

Z(t,∞)
K = max1≤i≤n0

{
(i − .5) log

[ i − .5
n0F∗t(x(i))

]
+ (n0 − i + .5) log

[ n0 − i + .5
n0{1 − F∗t(x(i))}

]}
.
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3 Simulation Study

A simulation study is performed to analyze the behavior of the proposed test statistic.
We determine the critical points, using the Mont-Carlo simulation. For this end, 10000
samples, with different sample sizes n = 5, . . . , 20 and 25 (5) 50, cutting points F(t) =
0.25, 0.5, 0.75 and significance levels α = 0.1, 0.05, are generated for remaining data
which follow the exponential distribution with the mean 1. Then we compare the
quantiles of order (1 − α) × 100 for the test. For any choice of m, we use the formula
m = [

√
n + .5], which was used by Wieczorkowski and Grzegorzewski (1999).

Tables 1 and 2 give the critical values of D̂(t,∞)
LWV

(g|| f ) and D̂(t,∞)
LWC

(g|| f ) for various
sample sizes. Note that the test statistics are considered as the basis for comparison,
hence the critical values would not depend on the unknown mean parameter.

In order to compare the performance of the proposed test with that of previously
published test methods, some alternative methods according to the type of hazard
function have been assessed which are listed below

a) Increasing Hazard Rate (IHR) including Gamma: G(3, 1), Weibull: W(3, 1), and
Generalized Exponential: GE(3, 1).

b) Decreasing Hazard Rate (DHR) including Gamma: G(0.5, 1), Weibull: W(0.5, 1),
and Generalized-Exponential: GE(0.5, 1).

c) Nonmonotone Hazard Rate (NHR) including Log-Normal: LN(0, 0.5), Log-Laplace:
LL(0,.5), and Generalized-Logistic: GL(0.5,1).

We use 10000 Monte Carlo simulations for n = 10 and 20 to estimate the statis-
tics LWV, LWC, KL, AD, CM, KS, ZA, ZC, and ZK for different cutting points F(t) =
0.25, 0.5, 0.75 and significance levels α = 0.1, 0.05.

The simulation results are summarized in Tables 3-8 in terms of the proportions of
rejected cases. Tables 3-5 and 6-8 show the results with significance levels of α = .1 and
α = .05, respectively. The values indicated by boldface fonts in each row show that the
pertaining statistic has the highest performance when compared to other tests on that
row.

As can be seen here, the LWV statistic performs better than other tests for all of
the alternatives IHR and the distribution detection power of the LWC and KL tests are
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almost near to that of LWV, respectively. Also, the AD statistic has a better performance
when the hazard function is in the form of a DHR; while the CM test performs slightly
better than AD in a few cases.

Regarding an NHR function, LWV statistic performs better than other tests in some
cases; while none of the tests can be considered to have overall advantage over the
others. In general, the LWV and LWC statistics are more powerful in detecting the
exponential distribution when compared to other statistics in cases within the IHR
class, while the AD statistic should be used in the DHR group. Moreover, as the size of
the cutting point F(t) grows, the tests including the LWV and LWC tests would be less
sensitive to the exponential distributions.

Table 1: Critical values of D(t,∞)
LWV

(g|| f ) for various α,n,F(t).

α = 0.1 α = 0.05
n F(t)=0.25 F(t)=0.5 F(t)=0.75 F(t)=0.25 F(t)=0.5 F(t)=0.75
5 0.3429 0.3424 0.3417 0.3993 0.3906 0.3907
6 0.2956 0.2970 0.2909 0.3375 0.3415 0.3435
7 0.2810 0.2824 0.2840 0.3249 0.3208 0.3234
8 0.2504 0.2467 0.2490 0.2880 0.2884 0.2855
9 0.2232 0.2240 0.2254 0.2605 0.2601 0.2559

10 0.2031 0.2056 0.2066 0.2335 0.2339 0.2357
11 0.1876 0.1876 0.1891 0.2146 0.2174 0.2167
12 0.1733 0.1750 0.1741 0.2013 0.2033 0.2019
13 0.1708 0.1706 0.1729 0.2026 0.1989 0.1985
14 0.1591 0.1580 0.1621 0.1870 0.1860 0.1875
15 0.1498 0.1538 0.1520 0.1751 0.1756 0.1735
16 0.1425 0.1419 0.1408 0.1663 0.1635 0.1665
17 0.1370 0.1361 0.1356 0.1581 0.1568 0.1566
18 0.1308 0.1293 0.1281 0.1512 0.1504 0.1512
19 0.1228 0.1251 0.1238 0.1431 0.1434 0.1444
20 0.1184 0.1180 0.1186 0.1376 0.1357 0.1382
25 0.1007 0.1012 0.0995 0.1176 0.1168 0.1172
30 0.0855 0.0867 0.0863 0.0998 0.1003 0.1006
35 0.0783 0.0775 0.0770 0.0908 0.0897 0.0902
40 0.0704 0.0694 0.0697 0.0800 0.0795 0.0820
45 0.0636 0.0631 0.0638 0.0748 0.0742 0.0746
50 0.0591 0.0589 0.0588 0.0681 0.0687 0.0683
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Table 2: Critical values of D(t,∞)
LWC

(g|| f ) for various α,n,F(t).

α = 0.1 α = 0.05
n F(t)=0.25 F(t)=0.5 F(t)=0.75 F(t)=0.25 F(t)=0.5 F(t)=0.75
5 0.6916 0.6812 0.6819 0.7612 0.7765 0.7675
6 0.6164 0.6197 0.6154 0.6965 0.6896 0.6923
7 0.5919 0.5897 0.5920 0.6555 0.6594 0.6664
8 0.5482 0.5490 0.5515 0.6115 0.6153 0.6047
9 0.5183 0.5142 0.5135 0.5677 0.5660 0.5756
10 0.4944 0.4894 0.4978 0.5413 0.5439 0.5419
11 0.4684 0.4702 0.4718 0.5154 0.5199 0.5201
12 0.4553 0.4539 0.4525 0.5011 0.4972 0.4975
13 0.4497 0.4508 0.4483 0.4878 0.4878 0.4916
14 0.4347 0.4406 0.4383 0.4738 0.4754 0.4728
15 0.4264 0.4287 0.4246 0.4615 0.4625 0.4640
16 0.4174 0.4138 0.4174 0.4507 0.4495 0.4504
17 0.4046 0.4081 0.4075 0.4394 0.4409 0.4391
18 0.3997 0.3990 0.3997 0.4335 0.4311 0.4323
19 0.3931 0.3921 0.3921 0.4230 0.4225 0.4232
20 0.3862 0.3875 0.3880 0.4158 0.4129 0.4201
25 0.3695 0.3692 0.3673 0.3917 0.3898 0.3931
30 0.3523 0.3528 0.3532 0.3730 0.3728 0.3739
35 0.3435 0.3439 0.3447 0.3624 0.3603 0.3602
40 0.3334 0.3340 0.3355 0.3513 0.3496 0.3514
45 0.3292 0.3301 0.3299 0.3441 0.3458 0.3451
50 0.3246 0.3244 0.3237 0.3380 0.3365 0.3376

Table 3: Power comparisons for exponential test, F(t) = 0.25, α = 0.1.

IHR DHR NHR

n Test G(3) W(3) GE(3) G(.5) W(.5) GE(.5) LN(.5) LL(.5) GL(.5)
10 LWV 0.6844 0.8699 0.473 0.0683 0.0099 0.066 0.0809 0.1876 0.2437

LWC 0.6604 0.8641 0.4562 0.0664 0.0105 0.0649 0.0784 0.1766 0.2377
KL 0.5984 0.829 0.404 0.0694 0.0483 0.0684 0.0847 0.2231 0.2153
AD 0.4684 0.7381 0.2826 0.1361 0.4342 0.1351 0.1603 0.3168 0.1456
CM 0.5302 0.7902 0.3322 0.1198 0.3687 0.1157 0.1597 0.3463 0.1761
KS 0.456 0.689 0.2909 0.1122 0.3369 0.113 0.1501 0.3212 0.1574
ZA 0.5545 0.7459 0.3618 0.109 0.339 0.1027 0.1404 0.3328 0.1717
ZC 0.5796 0.7812 0.3766 0.1003 0.3005 0.0982 0.131 0.3146 0.1827
ZK 0.4232 0.6131 0.2718 0.1219 0.3666 0.1211 0.1347 0.285 0.1425

20 LWV 0.877 0.9828 0.6215 0.0444 0.0029 0.0474 0.0553 0.1296 0.2894
LWC 0.835 0.974 0.5762 0.0479 0.0046 0.0502 0.0562 0.114 0.2663
KL 0.8022 0.9683 0.5313 0.0702 0.2063 0.0719 0.1 0.2933 0.2385
AD 0.8111 0.9643 0.5199 0.1608 0.6683 0.1489 0.2298 0.4896 0.2053
CM 0.8271 0.973 0.5518 0.1399 0.6237 0.1349 0.2333 0.5115 0.2343
KS 0.7531 0.9337 0.4881 0.131 0.5814 0.1263 0.2131 0.4786 0.2123
ZA 0.844 0.9585 0.5755 0.1058 0.539 0.1019 0.2091 0.5034 0.2294
ZC 0.8529 0.9605 0.5784 0.1085 0.5221 0.1018 0.2072 0.4875 0.2343
ZK 0.7404 0.8842 0.4616 0.131 0.5819 0.1277 0.1829 0.4275 0.1792



Testing Exponentiality Based on the Lin–Wong Divergence 53

Table 4: Power comparisons for exponential test, F(t) = 0.50, α = 0.1.

IHR DHR NHR

n Test G(3) W(3) GE(3) G(.5) W(.5) GE(.5) LN(.5) LL(.5) GL(.5)
10 LWV 0.4692 0.415 0.2515 0.076 0.0173 0.0827 0.0532 0.102 0.2041

LWC 0.4601 0.4141 0.2489 0.0735 0.0168 0.082 0.0529 0.0998 0.2034
KL 0.4136 0.3849 0.2246 0.0801 0.0434 0.0837 0.0622 0.1641 0.1836
AD 0.289 0.2676 0.141 0.1135 0.3489 0.1072 0.1927 0.3052 0.1239
CM 0.3407 0.3163 0.1711 0.1047 0.298 0.0955 0.1729 0.3164 0.1457
KS 0.3034 0.2812 0.1632 0.1049 0.2788 0.1023 0.1652 0.3068 0.1398
ZA 0.3569 0.2983 0.1873 0.1018 0.2655 0.0965 0.158 0.2965 0.1483
ZC 0.3776 0.3198 0.1961 0.0962 0.2343 0.096 0.141 0.2772 0.1598
ZK 0.2621 0.225 0.1461 0.107 0.2894 0.1005 0.1596 0.2736 0.1204

20 LWV 0.6226 0.6013 0.2986 0.0596 0.0042 0.0668 0.0319 0.0545 0.2453
LWC 0.572 0.5768 0.2763 0.0626 0.0064 0.0663 0.0327 0.0501 0.2284
KL 0.5201 0.5269 0.2428 0.0728 0.1297 0.0794 0.078 0.2489 0.2012
AD 0.5071 0.4656 0.2071 0.1166 0.5302 0.1089 0.2702 0.4683 0.166
CM 0.5491 0.5136 0.2419 0.1053 0.4932 0.0979 0.2571 0.4816 0.1923
KS 0.4896 0.4467 0.2226 0.1092 0.4582 0.0973 0.238 0.4705 0.1836
ZA 0.5526 0.4821 0.2488 0.094 0.4085 0.0936 0.22 0.4643 0.1942
ZC 0.5627 0.4959 0.2477 0.0946 0.398 0.0962 0.2177 0.4515 0.1969
ZK 0.4481 0.3604 0.1954 0.1083 0.4455 0.1079 0.2168 0.4244 0.161

Table 5: Power comparisons for exponential test, F(t) = 0.75, α = 0.1.

IHR DHR NHR

n Test G(3) W(3) GE(3) G(.5) W(.5) GE(.5) LN(.5) LL(.5) GL(.5)
10 LWV 0.2759 0.1718 0.1522 0.088 0.0238 0.0903 0.0456 0.0232 0.1747

LWC 0.2737 0.1681 0.1493 0.0892 0.0256 0.0915 0.0459 0.0223 0.1727
KL 0.2486 0.1593 0.1443 0.0906 0.0449 0.0913 0.0583 0.123 0.1666
AD 0.1592 0.1099 0.1066 0.1075 0.2841 0.1011 0.2136 0.4243 0.1178
CM 0.1976 0.1223 0.1177 0.1016 0.2417 0.0988 0.1891 0.4027 0.1337
KS 0.1802 0.1187 0.1158 0.0993 0.226 0.0956 0.1771 0.3779 0.1255
ZA 0.1996 0.1256 0.1236 0.1031 0.2152 0.0975 0.1656 0.356 0.14
ZC 0.2149 0.1302 0.1288 0.1008 0.1876 0.0973 0.1449 0.324 0.1458
ZK 0.1542 0.1108 0.1084 0.1035 0.2365 0.1006 0.1761 0.3643 0.1147

20 LWV 0.3676 0.2007 0.1606 0.0795 0.0111 0.0843 0.0295 0.0086 0.2116
LWC 0.346 0.1966 0.1552 0.0815 0.015 0.0876 0.0316 0.0101 0.2037
KL 0.2993 0.1701 0.14 0.0845 0.106 0.088 0.083 0.3133 0.1776
AD 0.2374 0.1211 0.1057 0.1024 0.4251 0.0999 0.2829 0.6357 0.133
CM 0.279 0.143 0.1215 0.1011 0.4 0.096 0.2694 0.6326 0.1546
KS 0.2564 0.1429 0.1214 0.1052 0.37 0.0996 0.2505 0.6059 0.1495
ZA 0.2908 0.1452 0.1327 0.0981 0.3322 0.0966 0.2332 0.565 0.1682
ZC 0.2963 0.1496 0.1335 0.0969 0.3207 0.0973 0.2321 0.5602 0.1674
ZK 0.2204 0.1254 0.1128 0.1036 0.3572 0.1031 0.2405 0.5604 0.1346
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Table 6: Power comparisons for exponential test, F(t) = 0.25, α = 0.05.

IHR DHR NHR

n Test G(3) W(3) GE(3) G(.5) W(.5) GE(.5) LN(.5) LL(.5) GL(.5)
10 LWV 0.4925 0.7282 0.3054 0.0287 0.0038 0.0288 0.0352 0.1141 0.1318

LWC 0.4796 0.7268 0.2995 0.0289 0.0044 0.0296 0.0355 0.1112 0.1302
KL 0.4432 0.6971 0.2719 0.0312 0.0244 0.0347 0.0406 0.1453 0.1245
AD 0.2834 0.5472 0.1484 0.0733 0.3565 0.0695 0.0961 0.213 0.0707
CM 0.3586 0.6235 0.2019 0.0584 0.2927 0.0557 0.094 0.2447 0.0937
KS 0.3057 0.5273 0.1797 0.0595 0.2652 0.054 0.0928 0.2364 0.0901
ZA 0.4033 0.5998 0.236 0.0516 0.2554 0.0505 0.0769 0.2282 0.1012
ZC 0.3858 0.6104 0.2158 0.0541 0.245 0.0503 0.0739 0.2088 0.0982
ZK 0.2674 0.4355 0.1582 0.0623 0.2882 0.0645 0.0757 0.1945 0.0735

20 LWV 0.7605 0.9539 0.481 0.0196 0.0016 0.021 0.0251 0.0878 0.1827
LWC 0.7064 0.9353 0.4296 0.0209 0.0018 0.0208 0.0247 0.0714 0.1616
KL 0.6718 0.9293 0.3945 0.0322 0.1364 0.0333 0.0516 0.2149 0.1466
AD 0.6639 0.9171 0.3648 0.095 0.5901 0.0897 0.1507 0.3776 0.1153
CM 0.702 0.9384 0.4081 0.0829 0.5388 0.0783 0.1524 0.4072 0.147
KS 0.591 0.85 0.3387 0.0728 0.4729 0.0689 0.1326 0.3694 0.1229
ZA 0.7314 0.9117 0.4495 0.0536 0.4465 0.0512 0.1239 0.3927 0.1445
ZC 0.7246 0.9102 0.4276 0.0659 0.4631 0.0607 0.1373 0.3888 0.1397
ZK 0.5736 0.7699 0.3309 0.0761 0.4732 0.0736 0.1007 0.3128 0.0989

Table 7: Power comparisons for exponential test, F(t) = 0.50, α = 0.05.

IHR DHR NHR

n Test G(3) W(3) GE(3) G(.5) W(.5) GE(.5) LN(.5) LL(.5) GL(.5)
10 LWV 0.3043 0.2688 0.1387 0.0354 0.0066 0.0351 0.0229 0.0556 0.1122

LWC 0.2907 0.2652 0.1369 0.0329 0.0065 0.0345 0.0218 0.0524 0.1082
KL 0.2714 0.2514 0.1307 0.0389 0.0185 0.036 0.0277 0.1025 0.1073
AD 0.1696 0.1501 0.0728 0.0623 0.2736 0.0597 0.1386 0.235 0.0613
CM 0.2233 0.1993 0.0982 0.0529 0.2254 0.0503 0.1198 0.2428 0.079
KS 0.1994 0.1784 0.0904 0.0542 0.2063 0.0492 0.1147 0.2352 0.0808
ZA 0.2398 0.1925 0.108 0.0508 0.1884 0.0477 0.099 0.2155 0.0867
ZC 0.2189 0.1849 0.0978 0.0475 0.1761 0.0458 0.0926 0.196 0.0795
ZK 0.1601 0.1276 0.0732 0.0568 0.2139 0.0541 0.1025 0.1957 0.0631

20 LWV 0.4774 0.4632 0.1962 0.0284 0.0018 0.0301 0.0114 0.0353 0.1559
LWC 0.4397 0.445 0.1818 0.0291 0.0019 0.0314 0.0135 0.0324 0.1484
KL 0.3999 0.4129 0.1621 0.0392 0.0833 0.0403 0.0429 0.1989 0.1317
AD 0.3692 0.3337 0.1254 0.066 0.454 0.0583 0.1965 0.3937 0.0928
CM 0.4114 0.3823 0.1489 0.0585 0.407 0.0504 0.1797 0.403 0.108
KS 0.3455 0.3093 0.1349 0.0563 0.3684 0.0548 0.1597 0.3797 0.1021
ZA 0.414 0.3483 0.1639 0.0426 0.3108 0.0422 0.1398 0.3738 0.1228
ZC 0.3851 0.3259 0.1374 0.0485 0.3241 0.0463 0.1569 0.3779 0.108
ZK 0.3027 0.2219 0.1122 0.0542 0.3473 0.0557 0.1398 0.3238 0.0876
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Table 8: Power comparisons for exponential test, F(t) = 0.75, α = 0.05.

IHR DHR NHR

n Test G(3) W(3) GE(3) G(.5) W(.5) GE(.5) LN(.5) LL(.5) GL(.5)

10 LWV 0.1636 0.0902 0.0801 0.0428 0.0116 0.0485 0.0203 0.0101 0.1032
LWC 0.1621 0.0867 0.0786 0.0423 0.0106 0.0462 0.0196 0.0098 0.1012
KL 0.1497 0.0867 0.0779 0.0459 0.0188 0.0489 0.0271 0.077 0.0966
AD 0.08 0.0498 0.0486 0.0554 0.2132 0.0528 0.1405 0.3598 0.0578
CM 0.1115 0.0626 0.0592 0.0537 0.1767 0.0516 0.1209 0.3392 0.0722
KS 0.0968 0.0615 0.0552 0.0533 0.1549 0.0493 0.1093 0.31 0.0669
ZA 0.1213 0.0697 0.0689 0.0528 0.1455 0.0482 0.1006 0.2814 0.08
ZC 0.1138 0.0686 0.0656 0.0514 0.1383 0.0478 0.095 0.2655 0.0749
ZK 0.0769 0.0528 0.053 0.0585 0.1624 0.0514 0.1075 0.2867 0.0592

20 LWV 0.2403 0.116 0.0944 0.0402 0.0046 0.044 0.013 0.0047 0.124
LWC 0.2189 0.1112 0.0892 0.0406 0.0049 0.0444 0.0122 0.0052 0.1168
KL 0.1831 0.0952 0.0757 0.0413 0.0564 0.043 0.0384 0.2461 0.0955
AD 0.1507 0.065 0.0581 0.0577 0.3605 0.0545 0.2152 0.5882 0.0754
CM 0.1857 0.0788 0.0689 0.0546 0.3267 0.0522 0.2021 0.5825 0.0927
KS 0.1583 0.0742 0.0644 0.0541 0.2851 0.0516 0.1751 0.537 0.082
ZA 0.1881 0.0861 0.0765 0.0489 0.2447 0.0478 0.1454 0.4889 0.0985
ZC 0.1756 0.0789 0.0707 0.0548 0.2634 0.0512 0.1637 0.5049 0.0915
ZK 0.1192 0.0594 0.0539 0.0482 0.2551 0.0517 0.1469 0.477 0.0692

4 Illustrative Examples

In this section, we consider the proposed goodness of fit test with real data. We
present two examples to illustrate the use of test D̂(t,∞)

LWV
(g|| f ) for testing the validity of

exponential distribution.

Examples 4.1. The data given below consist of the amount of lifetimes for 21 tools from
Meaker (1987)(see Table 9).

A residual truncated reminder sample is obtained in terms of t value which is
determined from the F(t) = 0.25 based on the real sample. To do so, we have obtained
the truncated point t = 45.6 equivalent to quantile (0.25). So 6 out of 21 observations
are eliminated while 15 data points kept for the study. In this way, we can examine the
critical value of α = 0.1, 0.05 in Table 1 and n0 = 15, using the sample p-value and the
LW statistic value for our sample.

In the same way, we obtain t = 55.56 for F(t) = 0.50. So, 11 members of the data
are eliminated and n0 = 10 of the data are kept. Also, for F(t) = 0.75, we compute
t = 93.12. In that case, 16 members of the data are omitted and n0 = 5 of the data are
kept. Table 10 shows critical values, test statistics, and p-values. Since the values of
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D̂(t,∞)
LWV

(g|| f ) are less than the critical values (or p-values are larger than α), the test accepts
the null hypothesis that data follow from an exponential distribution at significance
levels α = 0.1 and α = 0.05.

Table 9: Amount of lifetime for 21 tools in Example 4.1.

17.88 28.92 23 41.52 42.12 45.6 48.4 51.84 51.96 54.12 55.56
67.8 68.64 68.88 84.12 93.12 98.64 105.84 127.92 128.04 173.4

Table 10: Critical values, test statistics, and p-values in Example 4.1.

p-value D(t,∞)
LWV

(g∥ f ) Critical value Significance level F(t)

0.4946 0.0771 0.1498 α = 0.1 0.25
0.4946 0.0771 0.1751 α = 0.05
0.1629 0.1769 0.2056 α = 0.1 0.50
0.1629 0.1769 0.2339 α = 0.05
0.5649 0.1571 0.3417 α = 0.1 0.75
0.5649 0.1571 0.3907 α = 0.05

Examples 4.2. The normal distribution is considered in this example. Table 11 shows
yearly amounts of rainfall in the New York city from 1910 to 1973 (Parzen (1979)).

In this case, we have n = 63, n0 = 47, t = 61.95, equivalently F(61.95) = 0.25. Simi-
larly, we compute t = 79.3 for F(t) = 0.50. Therefore, 32 data are omitted and n0 = 31
data kept. Also, we obtain t = 93.95 for F(t) = 0.75. That is, 47 data are eliminated and
n0 = 16 data kept. The result of the goodness of fit test for the exponential distribution
is presented in Table 12.

Table 12 shows critical values, test statistics, and p-values. Since the values of
D̂(t,∞)

LWV
(g|| f ) are greater than the critical values (or p-values are smaller than α), the data

do not follow from the exponential distribution at the significance levels α = 0.1 and
α = 0.05.
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Table 11: Yearly rain precipitation in the New York city in Example 4.2.

12.5 25.0 39.8 39.9 40.1 46.7 49.1 49.6 51.1 51.6 53.5
54.7 55.5 55.9 58.0 60.3 63.6 65.4 66.1 69.3 70.9 71.4
71.5 71.8 72.9 74.4 76.2 77.8 78.1 78.4 79.0 79.3 79.6
80.7 82.4 82.4 83.0 83.6 83.6 84.8 85.5 87.4 88.7 89.6
89.8 89.9 90.9 97.0 98.3 101.4 102.4 103.9 104.5 105.2 110.0

110.5 110.5 113.7 114.5 115.6 120.7 124.7 126.4

Table 12: Critical values, test statistics, and p-values in Example 4.2.

p-value D(t,∞)
LWV

(g∥ f ) Critical value Significance level F(t)

0.0000 0.1406 0.0615 α = 0.1 0.25
0.0000 0.1406 0.0717 α = 0.05
0.0000 0.1017 0.0860 α = 0.1 0.50
0.0000 0.1017 0.1001 α = 0.05
0.0000 0.2215 0.1408 α = 0.1 0.75
0.0000 0.2215 0.1665 α = 0.05

5 Conclusions

In this article, the LW divergence on the general data is modified and applied on the
residual lifetime data. Furthermore, in the present study, we construct a consistent
goodness of fit test for the exponential distribution on the LW divergence measure on
the residual lifetime data. By a simulation study, the powers of the proposed tests are
computed under several alternatives and different sample sizes. It is shown that LWV
and LWC tests on the residual lifetime data are better than other competing tests in the
IHR function.

It may be noted that the LW divergence on the residual lifetime data, can be used
to construct general goodness of fit tests (not just for exponentiality). One can consider
any known density function (with known or unknown parameters) under the null
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hypothesis and use it instead of the function f (x) in the definition of LW distance to
obtain the test statistic. For example, a test of normality is considered by the authors;
however, it has a poor performance, but it can be extended for the other distributions
such as Weibull, gamma, and lognormal in the future. Also, a work is under way by
us for testing exponentiality based on the LW divergence on the past lifetime data.
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