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1 Introduction

Estimation of distribution functions has been one of the classical problems in statis-
tics. There has been extensive work on statistical estimation of a distribution function
using kernel methods. Several properties of the kernel distribution function estimator
have been investigated by many authors over the years. In the case of independent
identically distributed random variables, Nadaraya (1964), Winter (1973) and Yamato
(1973) proved almost uniform convergence of the kernel estimator; Watson and Lead-
better (1964) established asymptotic normality for the kernel estimator. Azzalini (1981)
obtained an asymptotic expression for the MSE of the kernel estimator, and he as well
as Lejeune and Sarda (1992), and Sarda (1993) derived the asymptotically optimal (in
the MSE sense) smoothing parameter hn . Swanepoel (1988) proved that the uniform
kernel estimator is optimal (in the mean integrated squared error sense) and derived
an expression for the smoothing parameter hn, which minimizes the mean integrated
squared error.

All references cited above deal with the i.i.d. case. In a Markovian framework,
Roussas (1969) proved almost sure uniform convergence of the kernel estimator. Under
various modes of mixing, Cai and Roussas (1992), and Cai (1993) established almost
sure rates of uniform convergence for the kernel estimator. Roussas (1995) obtained the
asymptotic normality of the kernel estimator under association and in the framework
of random fields.

However, despite the vast amount of reported studies in the literature on properties
of the kernel estimator under dependent cases, there are no reported studies concerning
NSD random variables introduced by Hu (2000). The definition of NSD random
variables is expressed on the basis of the superadditive functions. A function ϕ : Rn →
R is called superadditive if

ϕ(x ∨ y) + ϕ(x ∧ y) ≥ ϕ(x) + ϕ(y),

for all x, y ∈ Rn, where ∨ and ∧ stand for componentwise maximum and minimum,
respectively. Consequently, the NSD concept is expressed as follows. A random vector
(X1, . . . ,Xn) is said to be NSD if

Eϕ(X1, . . . ,Xn) ≤ Eϕ(X∗1, . . . ,X
∗
n), (1.1)

where X∗1, . . . ,X
∗
n are independent such that X∗i and Xi have the same distribution for

each i, and ϕ(·) is a superadditive function such that the expectations above exist. Also,
a sequence {Xn, n ≥ 1} of random variables is NSD if every finite subfamily is NSD.
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In this paper, we consider samples that satisfy the notion of NSD. Christofiedes and
Vaggelatou (2004) showed that the family of NSD sequences contains negatively asso-
ciated (NA) random variables as a special case. Therefore, the probability inequalities
obtained based on the NSD assumption is more general. A number of limit theorems
for NSD random variables have been studied; some recent works are Meng et al. (2017)
and Wang et al. (2018a,b).

The remaining sections of the paper are organized as follows. The exponential
inequality for the uniform convergence rate of the kernel estimator under NSD are
introduced in the next section where we derive the convergence rate of the kernel es-
timator. The asymptotic properties and convergence rate of the mean square error are
studied in Section 3, and then the optimal choice of the bandwidth hn is determined.
Moreover, we illustrate the behavior of the kernel and empirical estimators with respect
to their empirical the mean square error (EMSE) in Section 4. As an application, in Sec-
tion 5, rainfall depth data is considered and after checking the dependency structure,
the kernel estimator of the corresponding distribution function is obtained.

2 An Exponential Convergence Rate

Let {Xn; n ≥ 1} be a sequence of random variables with the common unknown distri-
bution function F(·) and probability density function f (·). The most common estimator
of F(·), constructed on the basis of the first n random variables from the sequence, is
the empirical distribution function, Fn(·) defined by

Fn(x) =
1
n

n∑
i=1

I(Xi ≤ x). (2.1)

This estimator does not take into consideration the smoothness of F(·), this omission
may be improved by utilizing the following kernel estimator F̂n(·), as

F̂n(x) =
1
n

n∑
j=1

K(
x − X j

hn
), (2.2)

where K(·) is a fixed distribution function and hn is a sequence of nonnegative real
numbers converging to zero.

In this section, we prove an exponential probability inequality for the centered ker-
nel estimator of F(·) and using this inequality, we obtain the exponential convergence
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rate for the kernel estimator.

All results are derived under the basic assumption of NSD. The remaining assump-
tions that we need to prove the main results are listed below.

• A1(i): {Xn, n ≥ 1} is an identically distributed sequence of NSD random variables
with distribution function F(·) and bounded density function f (·).

A1(ii): f (·) has bounded and continuous derivative.

A1(iii): Fi j(·, ·) (the joint distribution function of (Xi,X j)), has all partial derivatives
of order 2, and they are all bounded.

• A2(i): K(·) is a distribution function over an interval I ⊆ R with density function
k(·).

A2(ii):
∫

R uk(u)du = 0, and µ2(k) =
∫

R u2k(u)du < ∞.

• A3: The sequence of bandwidths {hn; n > 1} is such that, as n→∞:

(i) 0 < hn → 0 (ii) nhn →∞ (iii) nh4
n → 0

• A4: {Xn, n ≥ 1} is an identically distributed sequence of NSD random variables
and there is a constant c for which

|K(
x − Xi

hn
) − E[K(

x − Xi

hn
)]| ≤ chn a.s. (2.3)

Remark 1. Assumptions A1 to A3 are often applied in the asymptotic theory of kernel
estimators in the literature. A4 is reasonable because for any NSD sequence of random
variables we have

K(
x − Xi

hn
) − E[K(

x − Xi

hn
)] =

∫ x−Xi
hn

−∞
k(u)du −

∫ ∞

−∞
K(

x − v
hn

)dF(v),

where k(·) is the probability density function associated with K(·). Letting u = x + hnr
and v = x − hns in the above equation and some calculations, we’ll have

|K(
x − Xi

hn
) − E[K(

x − Xi

hn
)]| ≤ hn

∫ ∞

−∞
k(x + hnr)dr + hn

∫ ∞

−∞
K(s)ds = O(hn). a.s.



Convergence Rate for Estimator of Distribution Function 25

Lemma 2.1 (Hoeffding ,1963). Let X be a random variable with E(X) = µ. If there exist
a, b ∈ R such that P(a ≤ X ≤ b) = 1, then for every λ > 0,

E(eλX) ≤ eλµ exp(
λ2(b − a)2

8
).

Proposition 2.1. If A1(i), A2(i), A3(i) and A4 hold true, then for every ε > 0,

P
(
sup
x∈R

∣∣∣F̂n(x) − E[F̂n(x)]
∣∣∣ > ε) ≤ 2 exp(− nε2

2c2h2
n

). (2.4)

Proof. For i = 1, . . . ,n, let

Ti,n(x) = K(
x − Xi

hn
) − E[K(

x − Xi

hn
)],

then for every ε > 0,

P
(

sup
x∈R

∣∣∣F̂n(x) − E[F̂n(x)]
∣∣∣ > ε) = P

sup
x∈R

∣∣∣∣∣∣∣
n∑

i=1

Ti,n(x)

∣∣∣∣∣∣∣ > nε


= P

sup
x∈R

[(
n∑

i=1

Ti,n(x))+ + (
n∑

i=1

Ti,n(x))−] > nε


≤ P

sup
x∈R

(
n∑

i=1

Ti,n(x))+ >
nε
2

 + P

sup
x∈R

(
n∑

i=1

Ti,n(x))− >
nε
2


≤ P

sup
x∈R

n∑
i=1

T+i,n(x) >
nε
2

 + P

sup
x∈R

n∑
i=1

T−i,n(x) >
nε
2

 ,
(2.5)

where T+i,n(x) = max(Ti,n(x), 0) and T−i,n(x) = max(−Ti,n(x), 0). So for all t > 0; using
Markov’s inequality, we can write

P

sup
x∈R

n∑
i=1

T+i,n(x) >
nε
2

 ≤ P

 n∑
i=1

sup
x∈R

T+i,n(x) >
nε
2


≤ e−

nεt
2 E

exp(t
n∑

i=1

sup
x∈R

T+i,n(x))

 . (2.6)
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If ϕ(x1, . . . , xn) = exp(t
∑n

i=1 supx∈R T+i,n(x)), then we can show that ∂
2ϕ(x1,...,xn)
∂xi∂x j

≥ 0, for all
i , j. Therefore ϕ(x1, . . . , xn) is a superadditive function; so using (1.1) and by some
calculations, it follows that

E

exp(t
n∑

i=1

sup
x∈R

T+i,n(x))

 ≤ n∏
i=1

E
(
exp(t sup

x∈R
T+i,n(x))

)
. (2.7)

Consequently by (2.6) and (2.7),

P

sup
x∈R

n∑
i=1

T+i,n(x) >
nε
2

 ≤ exp(
−nεt

2
)

n∏
i=1

E
(
exp(t sup

x∈R
T+i,n(x))

)
. (2.8)

Also using Lemma 2.1 under the assumption A4,

E
(
exp(t sup

x∈R
T+i,n(x))

)
≤ exp(−tE(sup

x∈R
T+i,n(x)) +

t2c2h2
n

8
), (2.9)

by (2.8), (2.9) and the fact that E(supx∈R T+i,n(x)) is nonnegative we have,

P

sup
x∈R

n∑
i=1

T+i,n(x) >
nε
2

 ≤ exp(
−nεt

2
+

nt2c2h2
n

8
). (2.10)

Now substituting the optimal bound into (2.10), we obtain that

P

sup
x∈R

n∑
i=1

T+i,n(x) >
nε
2

 ≤ exp(− nε2

2c2h2
n

). (2.11)

Similarly, an optimal bound for the last term in (2.5) is achieved by

P

sup
x∈R

n∑
i=1

T−i,n(x) >
nε
2

 ≤ exp(− nε2

2c2h2
n

). (2.12)

These complete the proof. □

In fact, we derived some sufficient conditions to prove an exponential rate for the
kernel-type estimator of the distribution function. To prove the convergence rate, we
choose ε depending on n as

ε2
n =
αh2

n log n
n

. (2.13)
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In order to obtain a convergent series in the right-hand side of (2.4), α > 0 in (2.13) must
be conveniently chosen (it depends on constants appearing in the inequality). So, the

convergence rate of the kernel-type estimator is of order O(
√

h2
n log n/n).

3 The Mean Squared Error

In this section, we study the asymptotic properties and convergence rate of the mean
squared error (MSE) of the estimator. From which, we derive the optimal bandwidth
and convergence rate of order n−1/3.

For the formulation of the next auxiliary result, let for all i , j;

Inij(x) = Cov(K(
x − Xi

hn
),K(

x − X j

hn
)),

Ii j(x) = Cov(I(Xi ≤ x), I(X j ≤ x)) = Fi j(x, x) − F2(x).

Lemma 3.1. Suppose that A1(i)(ii), A2 and A3(i) are satisfied. Then

Bias(F̂n(x)) =
1
2

h2
n f
′
(x)

∫
R

u2k(u)du + o(h2
n), (3.1)

and

Var
(
K(

x − X1

hn
)
)
= F(x)(1 − F(x)) − hn f (x)

∫
R

ub(u)du + o(hn), (3.2)

where b(u) = 2K(u)k(u) and k(u) = dK(u)/du.
Also if A1(iii) is satisfied, then

Inij(x) = Ii j(x) + o(hn). (3.3)

Proof. Using integration by parts and Taylor expansion, the expectation of the kernel
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estimator can be derived as

E(F̂n(x)) =
∫

R
K(

x − u
hn

) f (u)du

=

∫
R

k(u)F(x − hnu)du

=

∫
R

k(u)[F(x) − hnu f (x) +
1
2

h2
nu2 f

′
(x) + o(h2

n)]du

= F(x) +
1
2

h2
n f
′
(x)

∫
R

u2k(u)du + o(h2
n).

So, the bias of the kernel estimator can be expressed as

Bias(F̂n(x)) =
1
2

h2
n f
′
(x)

∫
R

u2k(u)du + o(h2
n).

Similarly, the variance of kernel estimator can be written as

Var
(
K(

x − X1

hn
)
)
= E

(
K(

x − X1

hn
)
)2
− E2(F̂n(x))

=

∫
R

K2(
x − u

hn
) f (u)du − E2(F̂n(x))

=

∫
R

b(u)F(x − hnu)du − E2(F̂n(x))

=

∫
R

b(u)[F(x) − hnu f (x) + o(hn)]du − (F(x) + o(hn))2

= F(x)F̄(x) − hn f (x)
∫

R
ub(u)du + o(hn), (3.4)

and

Inij(x) = E
(
K(

x − Xi

hn
)K(

x − X j

hn
)
)
− E2(F̂n(x))

=

∫
R

∫
R

K(
x − u

hn
)K(

x − v
hn

)dFi j(u, v)dudv − E2(F̂n(x))

=

∫
R

∫
R

k(u)k(v)Fi j(x − hnu, x − hnv)dudv − E2(F̂n(x))

= Fi j(x, x) − F2(x) + o(hn)
= Ii j(x) + o(hn), (3.5)
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so the proof is complete. □

Proposition 3.1. Suppose that A1, A2 and A3 are satisfied. Then,

nMSE(F̂n(x)) = F(x)F̄(x) +
∑
i, j

Ii j − hn f (x)
∫

R
b(u)du

+ nh4
n

[
f
′
(x)
2

∫
R

u2k(u)du
]2

+ o(hn + nh4
n) + an, (3.6)

where an is independent of hn and tends to 0, as n → ∞. Therefore, an optimal convergence
rate of the MSE is achieved by choosing hn = cn−1/3. Also an explicit expression for the optimal
bandwidth hn, in the sense of minimizing the MSE, ĥn is given by

ĥn(x) =

 f (x)
∫

R ub(u)du

n
[

f ′(x)
∫

R u2k(u)du
]2


1/3

, (3.7)

provided that f
′
(x) , 0.

Proof. For every x ∈ R,

MSE(F̂n(x)) = E(F̂n(x) − F(x))2 = Bias2
(
F̂n(x)

)
+ Var

(
F̂n(x)

)
. (3.8)

We can write the last term in (3.8) as

Var
(
F̂n(x)

)
=

1
n

Var
(
K(

x − X1

hn
)
)
+

1
n2

∑
i, j

Inij. (3.9)

Using Lemma 3.1, we have

nMSE(F̂n(x)) = F(x)(1 − F(x)) +
1
n

∑
i, j

Ii j(x) − hn f (x)
∫

R
b(u)du

+ nh4
n

[
f
′
(x)
2

∫
R

u2k(u)du
]2

+ o(hn + nh4
n) + an, (3.10)

where

an = an(x) =
∞∑

i=n

∞∑
j=n, j,i

Ii j(x).

The expression an is independent of hn and tends to 0.

Finally, by optimizing the right-hand side of (3.10) with respect to hn, the optimal
bandwidth is obtained as (3.7) and the proof is complete. □
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4 Simulation Study

In this section, a comparison study of the kernel and empirical estimators via a simula-
tion study for multivariate normal sequences using R software is given. The sequence
{Xn, n ≥ 1} is called normal sequence if, for n ≥ 2, the random vector (X1, . . . ,Xn) has
the multivariate normal distribution. The multivariate normal distribution is NSD if
the off-diagonal elements of its covariance matrix are nonpositive (Hu , 2000). So for
generating the NSD data, suppose that X1, . . . ,Xn have a multivariate normal distribu-
tion with zero mean vector and the covariance matrix

Σ =
1

1 − ρ2


1 −ρ −ρ2 · · · −ρn−1

−ρ 1 −ρ · · · −ρn−2

...
...

...
. . .

...
−ρn−1 −ρn−2 −ρn−3 · · · 1

 ,
where ρ > 0. For n = 20, 50, 100, 200, we generate 1000 independent samples from the
n-dimensional multivariate normal distribution with ρ = 0.1, 0.3. Note that, if ρ > 0.33
for some n, Σ is not numerically positive definite, so we choose ρ = 0.3 as strong de-
pendence. Then for bandwidth rate hn = n−1,n−1/2,n−1/3,n−1/4, n−1/5, we compute the
kernel and empirical estimators. Also, the ratio of EMSE(F̂n(x)) (empirical mean square
error) to EMSE(Fn(x)) is plotted, where K(·) is the distribution function of standard the
normal. The results are presented in Figure 1.

Figure 1 shows that:

• For all n considered, EMSE(F̂n(x))/EMSE(Fn(x)) < 1, so the kernel estimator is
significantly better than the empirical estimator based on their mean squared
error for both weak (ρ = 0.1) and strong (ρ = 0.3) dependence cases.

• If the sample size n is increased, the MSE of the empirical estimator is close to
that of kernel estimator for all two dependence cases.

• If ρ is increased, the MSE of the kernel estimator is better than the empirical
estimator for all hn.

• If hn is increased, the MSE of the kernel estimator is better than the empirical
estimator for all two dependence cases.

• For all n and hn if ρ is increased, the MSE of the kernel estimator is better than the
empirical estimator.
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Figure 1: EMSE(F̂n(x))/EMSE(Fn(x)) for ρ = 0.1, 0.3 and n = 20, 50, 100, 200 in all 1000 genera-
tions.
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5 Application on Hydrology Data

As a real example, we consider the annual total rainfall depth for the Paraopeba River
catchment (Brazil) for water-years 1950-51 to 1998-99. This historical time series has
been described in Naghettini (2017). The time series plot is shown in Figure 2(a). Fig-
ure 2(b-c) shows the data is not stationary, so for the best modeling, we must transform
it.

Figure 2: (a) Annual total rainfall depth for the Paraopeba River catchment from 1950-51
through to 1998-99, (b) sample autocorrelation function, (c) sample partial autocorrelation
function.

The results of first order difference yt = xt − xt−1 is displayed in Figure 3. The trend
of yt in Figure 3(a) and its ACF and PACF in Figure 3(b-c) show the stationarity of the
time series.
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Figure 3: (a) Differences (yt) of annual total rainfall depth series, (b) sample autocorrelation
function, (c) sample partial autocorrelation function.

Then we consider the moving average process Xt = Zt + θ1Zt−1 + θ2Zt−2 + · · ·+ θqZt−q
for q ≥ 1 using a white noise process Zt arising from a closer investigation of yt. Due
to the Akaike information criterion (AIC), we expect that the moving average model
of order 2 (MA(2)) is suitable for yt. Finally, MA(2) with θ̂1 = −0.6575, θ̂2 = −0.3425,
µ̂z = 0 and σ̂2z = 4.838 is the best model according to Akaike information criterion
(AIC) with AIC = 223.33. Testing the normality of the errors is done by Jarque-Bera
test (Jarque and Bera , 1980) and the corresponding p-value is equal to 0.2331. The next
option is the examination of the existing autocorrelation in residuals. The usual test
used in this approach is the Portmanteau test (Ljung and Box , 1978). The results are
summarized in Table 1. The null hypothesis of no autocorrelation is not rejected since
the p-values are not less than the significance level 0.05.
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Table 1: Portmanteau test for lags 5(5)30.

Lags Statistic p-value
5 3.415 0.489

10 5.453 0.632
15 7.542 0.720
20 9.436 0.756
25 11.127 0.779
30 13.390 0.753

So, due to the fact that the distributions of linear transformations or linear combina-
tion of multivariate normal variables are again multivariate normal (Meng et al. , 2017)
and according to the above conditions, differences of the real data has a multivariate
normal distribution with zero mean vector and covariance matrix Σ = [σi j] such that
for all i, j = 1, 2, · · · ,n,

σii = (1 + θ2
1 + θ

2
2)σ2

z ,

and

σi j =


θ1(1 + θ2) ; | j − i| = 1
θ1 ; | j − i| = 2
0 ; | j − i| > 2

Noting that the multivariate normal distribution is NSD if the off-diagonal elements of
its covariance matrix are nonpositive, then for θ̂1 = −0.6575 and θ̂2 = −0.3425, we have
NSD property in data.

For bandwidth rates hn = n−1, n−1/3, n−1/5, we have computed the kernel estimator
F̂n using K(·) as the standard normal distribution and have summarized the results in
Figure 4.
In addition, the goodness of fit test statistics for testing normality regarding some well-
know divergence measures based on density is given in Table 2. We denote the test
statistics Hellinger, Jeffreys, total variation and chi-squared distance by TH, TJ, TT and
Tχ, respectively (see Pardo , 2006). It can be seen from Figure 4 and Table 2 that the
bandwidth rate hn = n−1/5 is better than hn = n−1/3 and also bandwidth rate hn = n−1/3

is considerably better than hn = n−1. Note that this does not contradict the optimality
of hn = n−1/3, because this optimality is related to the MSE criterion.
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Figure 4: Normal distribution function with zero mean and variance (1 + θ̂2
1 + θ̂

2
2)σ̂2

z and its
kernel estimator for the differences of annual total rainfall depth series.

Table 2: The test statistics of normality.

hn TH TJ TT Tχ
n−1 0.1653 0.8460 0.7839 0.9378

n−1/3 0.0382 0.3187 0.3909 0.6822
n−1/5 0.0249 0.2070 0.3249 0.4141

6 Conclusion

In this paper, we have discussed the kernel estimation of distribution function under
negative superadditive dependence. We derived some sufficient conditions in order
to prove exponential inequalities for uniform convergence, which generalized and
improved the corresponding ones for NA random variables. Also, we proved that
the convergence rate for the kernel estimator of the distribution function is of order

O(
√

h2
n log n/n). Furthermore, the optimal bandwidth convergence rate is obtained,

which is of order n−1/3. Comparison of the kernel and empirical estimators was dis-
cussed in a simulation study. Moreover, a real data set in hydrology was analyzed
to demonstrate the structure of negative superadditive dependence for data, and as a
result, the kernel distribution function estimator of the data was investigated.
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