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Saunders distributions.
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1 Introduction

The well-known Birnbaum-Saunders (BS) distribution, introduced by Birnbaum and
Saunders (1969a,b), has recently considered as a popular model in the area of reliability
and life distributions. An important motivation of considering BS distribution is that it
can be used to model the lifetime of materials exposed to a cyclic stress pattern where
ultimate failure is due to the growth of a dominant crack. The main assumptions of
deriving BS distribution are based on the cumulative damage process, see Owen (2006)
for more details. However, these assumptions do not always hold and nobody can
guarantee that. In this situation, robust estimation methods for computing parameter
estimates and quantiles Dupuis and Mills (1998) or model selection or goodness-of-fit
tests may be used. Even though the parameter estimation for the BS distribution was
considered by researchers (Xu and Tang, 2009; Cysneiros et al., 2008; Lemonte et al., 2007;
Leiva et al., 2008; Sanhueza et al., 2008), goodness-of-fit testing for this distribution has
been done only in Meintanis (2010).

Here, some tests of fit for the two-parameter BS distribution and for its generaliza-
tions with extra shape parameters have been considered. We concentrate consistent
procedures for any arbitrary deviations from the BS distribution. To make a good com-
parison with a more recent test based on the Kullback-Leibler information function of
the data, we use a test based on the empirical characteristic function of the data and the
classical test statistics which is computed via the empirical distribution function. The
proposed tests can also test the normality of transformed data. This transformation
was originally suggested by Chen and Balakrishnan (1995) and was used by Meintanis
(2009) to perform well.

The rest of the paper is organized as follows. Section 2 reviews the BS distribution
and some of its properties. Section 3 is devoted to the extension of the methods to cer-
tain generalized BS distribution. This section also reviews the goodness-of-fit test for
BS distribution. In Section 5, we propose a new statistics test for BS distribution based
on normality test. The proposed procedures are compared via Monte Carlo techniques
and real-data examples in Section 6 and Section 7, respectively. Some concluding re-
marks are finally given in Section 8.
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2 The Birnbaum-Saunders Distribution

Obtained on the basis of the standard normal distribution, a random variable (r.v.) X
has the BS distribution with shape parameter γ > 0 and scale parameter β > 0 if it
admits the following stochastic representation

X d
=
β

4

[
γZ1 +

√
(γZ1)2 + 4

]2
, (2.1)

where d
=means equal in distribution, Z1 ∼ N(0, 1). Hereafter, we will write X ∼ BS(γ, β).

In this distribution, the parameter β is the median. It can be easily shown that

Z1
d
=

1
γ


√

X
β
−

√
β

X

 . (2.2)

The probability density function (PDF) and the cumulative distribution function (CDF)
of X is

f0(x;γ, β) = ϕ
(
a(x;γ, β)

)
A(x;γ, β) x > 0, γ > 0, β > 0,

and

F0(x;γ, β) = Φ
(
a(x;γ, β)

)
, (2.3)

respectively, where ϕ(.) is the standard normal density, Φ(.) standard normal CDF,

a(x;γ, β) =
1
γ

√x
β
−

√
β

x

 , and A(x;γ, β) =
∂a(x;γ, β)
∂x

=
x + β

2γ
√
βx3
.

3 Generalized Birnbaum-Saunders Distributions

Instead of stochastic relation (2.2), Owen (2006) derived a generalized form of BS
distribution (GBS) which is obtained by solving the equation

√
βZXκ − X + β = 0,

where Z ∼ N(0, γ2). This new relation is used to generate a random number from GBS
distribution. Owen showed that the CDF of GBS can be written as

F(x;γ, β, κ) = Φ

 1
γ

x1−κ√
β
−

√
β

xκ

 , (3.1)
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γ, β > 0 and 0 < κ < 1. As an especial case, κ = 1/2 corresponds to the original two-
parameter BS distribution. It can be easily seen that although the maximum likelihood

estimator (MLE) of the parameter γ has a closed form γ̂ =
√

(nβ)−1
∑n

j=1ω
2
j , the MLEs

of (β, κ) are found numerically (Owen, 2006) from the equations

n∑
j=1

(β − X j)ν j −
n∑

j=1

log X j +
n
∑n

j=1ω
2
j X
−1
j log X j∑n

j=1ω
2
j

= 0,

κ
n∑

j=1

ν j +
n
∑n

j=1ω jX−1
j∑n

j=1ω
2
j

= 0,

where ω j = (X j − β)/Xκj and ν j = ((1 − κ)X j + βκ)−1.

As an alternative way of extending BS distribution to the three-parameter families,
we consider the generalized BS distribution with CDF

F(x;γ, β, κ) = Φ
[

1
γ

{(
x
β

)κ
−

(
β

x

)κ}]
. (3.2)

Again, the two-parameter BS distribution is an especial case of (3.2) with κ = 1/2.

Moreover, random numbers from this distribution can be easily obtained as X d
=

β(1 + 2Z2 + 2Z
√

1 + Z2) where Z ∼ N(0, γ2/4). To compute the ML estimates of un-
known parameters involved in (3.2), we construct the log-likelihood function, omitting
additive constants, as

ℓ(γ, β, κ) = n log
(
κ
γ

)
−

n∑
j=1

log X j +

n∑
j=1

ω j −
1

2γ2

n∑
j=1

(ω2
j − 4), (3.3)

where ω j = (X j/β)κ + (β/X j)κ. Maximizing (3.3) over γ leads to the estimator

γ̂ =

√√√
1
n

n∑
j=1

(ω2
j − 4). (3.4)

Now, by substituting (3.4) in (3.3), we obtain average profile likelihood as

ℓ̄(γ, β, κ) = log
(
κ
γ

)
+

1
n

n∑
j=1

ω j.



Goodness–of–Fit Test for Birnbaum–Saunders Distribution 5

So, the MLEs of β andκ are found by solving the following equations which are obtained
by computing the derivatives of ℓ̄ with respect to β and κ, respectively,

n∑
j=1

(
ω j −

γ̂2
n

ω j

)
ν j = 0, and κ

n∑
j=1

(
ω j −

γ̂2
n

ω j

)
log

(
X j

β

)
= nγ̂2

n, (3.5)

where ν j = (X j/β)κ − (β/X j)κ. However, the equations in Eq. (3.5) always have a solu-
tion when κ→ 0. It means that there is a critical problem to obtain the estimate of the
parameter via maximizing of the profile likelihood. i.e, we are unable to compute (γ, β)
estimation from the profile likelihood for any κ.

4 Classical and Characteristic Function Statistics Test for Birnbaum-
Saunders Distribution

Let X1,X2, . . . ,Xn be a random sample from a continuous density function, f (x), with
positive support. Our hypothesis of interest is

H0 : f (x) = f0(x) vs H1 : f (x) , f0(x).

Denote the order statistics of the random sample by X(1) ≤ X(2) ≤ · · · ≤ X(n). The
classical test statistic is defined as some measure of CDF distance Fn(x)−F0(x, γ̂, β̂) where
Fn(x) = n−1 ∑n

i=1 {#Xi ≤ t} represents the empirical CDF, F0(., γ̂, β̂) is the CDF fitted to
the data in which (γ̂, β̂) denotes an efficient estimator of (γ, β) (the MLEs) introduced in
(2.3).

In particular, if we put Ûi = F0(X(i), γ̂, β̂), the popular Kolmogorov-Smirnov (KS)
statistic is defined by

KS =max
{
D+,D−

}
,

where D− = max1≤i≤n

[
i
n − Ûi

]
and D+ = max1≤i≤n

[
Ûi − i−1

n

]
. Also, the Cramer-von

Mises (CM) and Anderson-Darling (AD) test statistics tests can be respectively obtained
as

CM =
1

12n
+

n∑
i=1

(
Ûi −

2i − 1
2n

)2
,

AD = − n − 1
n

n∑
i=1

(
(2i − 1) log Ûi + (2(n − i) + 1 log(1 − Ûi

)
.
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Since the characteristic function (CF), φ(t) = E(eitX), is uniquely corresponded to
the law of the random variable X, an alternative goodness-of-fit statistic can be de-
fined as a functional of φn(t) − φ̂(t), where φn(t) = n−1 ∑n

j=1 eitX j is the empirical CF
and φ̂(t) = φ0(t; γ̂, β̂) is the fitted CF. As a result, Meintanis (2010) introduced a test
statistic via using a parametric transformation which renders the original observations
approximately normally distributed. The Meintanis statistics is

Tη = n
∫ ∞

−∞
|φn(t) − e−t2/2|e−ηt2

dt

=

√
π
η

1
n

n∑
j,k=1

e−(Z j−Zk)2/4η + n
√
π

1 + η
− 2

√
2π

1 + 2η

n∑
j=1

e−Z2
j /(2+4η)

,

with η > 0, where replacing φn(t) by n−1 ∑n
j=1 eitZ j , φ(t) by e−t2/2 and Z j is obtained by

the following steps:

i: Efficiently estimate (γ, β) by (γ̂, β̂).

ii: Compute Û j = F0(X( j); γ̂, β̂).

iii: Compute Y j = Φ
−1(Û j) and then Ȳ = n−1 ∑n

i=1 Yi, and S2 = (n − 1)−1 ∑n
i=1(Yi − Ȳ)2,

and

Z j =
Y j − Ȳ

S
, j = 1, . . . , n.

5 New Test Statistics for Birnbaum-Saunders Distribution

As a measure of the divergence between two PDF f (x) and f0(x), the Kullback-Leibler
(K-L) information function is defined as

I( f , f0) =
∫ ∞

−∞
f (x) log

(
f (x)
f0(x)

)
dx

= −H( f ) −
∫ ∞

−∞
f (x) log

(
f0(x)

)
dx.
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where H( f ) is the entropy of the random variable X, obtained by Shannon (1948),
evaluated by

H( f ) = −
∫ ∞

−∞
f (x) log

(
f (x)

)
dx.

Having the property that I( f , f0) ≥ 0, it can be expressed as a new goodness-of-fit
statistic in the form of a function of ̂I( f , f0) = −Ĥ( f ) −

∫ ∞
−∞ f̂ (x) log

(
f0(x)

)
dx, where

Ĥ( f ) is a non-parametric estimation of H( f ) and
∫ ∞
−∞ f̂ (x) log

(
f0(x)

)
dx is the fitted∫ ∞

−∞ f (x) log
(

f0(x)
)

dx incorporating estimates of the parameters. However, for the clas-
sical, the CF-based and K-L tests alike, the distribution of each test statistic depends
on the distribution being tested, the estimators γ̂ and β̂ employed as well as on the
unknown true value of these parameters. Moreover, the asymptotic null distribution is
highly non-standard and the calculation of large-sample percentage points, if feasible
at all, is by itself an arduous task. In order to remove this drawback, we propose (refer
to Chen and Balakrishnan (1995) and Meintanis (2009)) to efficiently estimate the pa-
rameters of the BSD based on the original data and apply a parametric transformation
which renders the original observations approximately normally distributed. Then, a
goodness-of-fit test for normality is computed based on the transformed observations.
The advantage of reducing the problem of testing the null hypothesis H0 to a normality
test lies in the fact that for normality testing, efficient estimators are readily available,
and that critical points are independent of these estimators and the true parameter
values.

In particular, we can go through the following steps:

1. Estimation: Estimate (γ, β) via (γ̂, β̂), efficiently.

2. Transformation: In this step, the data is transformed to approximately normally

distributed under the null hypothesis H0 by computing Yi =
[√

Ti

/
β̂ −

√
β̂
/
Ti

] /
γ̂.

3. Testing: Finally, compute Zi =
Yi−Ȳ

S for all i = 1, . . . ,n, where Ȳ = n−1 ∑n
i=1 Yi

and S2 = (n − 1)−1 ∑n
i=1(Yi − Ȳ)2. This step will bring us to the classical tests

for normality incorporating the standardized observations Z j, and the standard
normal CDF, Φ(.).

By replacing H( f ) by Ĥ( f ) and f0 by the density function of the standard normal
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distribution, e−x2/2
/√

2π, we can obtain the test statistic as

T = −Ĥ( f ) −
∫ ∞

−∞
f (x) log

(
1√
2π

e−x2/2
)

dx.

Under the null hypothesis, H0, f is the density function of the standard normal distri-
bution, the test statistic is obtained by

T = −Ĥ( f ) + log
√

2πe.

It is obvious that if the sample comes from a non-normal distribution, the value of
T gets large. On the other hand, if we consider the following monotone transformation

KL = exp(−T) = exp(Ĥ( f ) − log
√

2πe) =
exp(Ĥ( f ))
√

2πe
,

the small values of KL represent the non-normal distribution of the sample. As another
test of normality, Vasicek (1975) proposed the following test statistics

KLmn =
exp {HVmn}√

2πe
,

where

HVmn =
1
n

n∑
i=1

log
{ n

2m
(Z(i+m) − Z(i−m))

}
,

is Vasicek entropy estimator such that the window size m is a positive integer smaller
than n/2, Z(i) = Z(1) if i < 1, Z(i) = Z(n) if i > n and Z(1) ≤ Z(2) ≤ · · · ≤ Z(n) are order
statistics obtained from a random sample of size n. For the population entropy H( f ),
Vasicek also showed that HVmn is consistent. For testing normality, Van Es (1992) also
proposed the following test statistics, based on improved or modified versions of the
Vasicek entropy estimator as

TVEmn =
exp {HVEmn}√

2πe
,

where

HVEmn =
1

n −m

n−m∑
i=1

{n + 1
m

(Z(i+m) − Z(i))
}
+

n∑
k=m

1
k
+ log(m) − log(n + 1).
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An alternative test statistic of normality was proposed by Correa (1995). He
considered a sample entropy as

HCmn = −
1
n

n∑
i=1

log


∑i+m

j=i−m

(
Z( j) − Z̄(i)

)
( j − i)

n
∑i+m

j=i−m

(
Z( j) − Z̄(i)

)2

 ,
where

Z̄(i) =
1

2m + 1

i+m∑
j=i−m

Z( j).

Therefore, the test statistic based on HCmn is obtained by

TCmn =
exp {HCmn}√

2πe
.

As an extension of the test statistic based on the sample entropy, Ebrahimi et al.
(1994) proposed a modified sample entropy as

HEmn =
1
n

n∑
i=1

log
{ n

cim
(Z(i+m) − Z(i−m))

}
,

where

ci =


1 + i−1

m if 1 ≤ i ≤ m
2 if m + 1 ≤ i ≤ n −m

1 + n−i
m if n −m + 1 ≤ i ≤ 2

They showed that HEmn
Pr−→ H( f ) as n,m −→ ∞ in such a way that m/n −→ 0. The

following test statistic based on HEmn for testing of normality can be considered

TEmn =
exp {HEmn}√

2πe
.

By considering nh f̂ (Zi) =
∑n

j=1 k
(

Zi−Z j

h

)
, Alizadeh Noughabi (2010) defined an estima-

tor of entropy given by

HAmn = −
1
n

n∑
i=1

log

 ̂f (Z(i+m)) + ̂f (Z(i−m))
2

 ,
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where the kernel function is chosen to be the standard normal density function and the
bandwidth h = 1.06sn1/5, where s is the sample standard deviation. Also X(i) = X(1) if

i < 1, X(i) = X(n) if i > n. He concluded that HAmn
Pr−→ H( f ) as n,m −→ ∞ such that

m/n −→ 0.

Here for testing normality, we propose the following test statistic, based on HAmn
as

TAmn =
exp {HAmn}√

2πe
.

To perform the tests, an efficient estimator of the parameters of the BS distribution is
needed. Let X̄n = n−1 ∑n

j=1 X j, H̄n = (n−1
∑n

j=1 X−1
j )−1 and W(β) =

[
n−1 ∑n

j=1(β + X j)−1
]
.

Then, the efficient estimator of β can be found by solving the equation

β2 − β [2H̄n +W(β)
]
+ H̄n

[
X̄n +W(β)

]
= 0, (5.1)

and the estimator of γ is found as

γ̂n =

√
X̄n

β̂n
+
β̂n

X̄n
− 2.

Due to the existence and uniqueness problems of classical moment estimation, Ng
et al. (2003) proposed the modified moment estimators as

β̂ =
√

X̄nH̄n, γ̂n =

√√√
X̄n

√
X̄n

H̄n
− 1.

By recalling that β is the median of BS(γ, β), we have also tried a mixed quantile-
likelihood estimator where med1≤ j≤nX j (the sample median) and γ̂n is found by replac-
ing β by β̂. Each test statistic was implemented by employing all three methods of
estimation. The results however did not vary considerably among estimation methods
and therefore in the next section results will be reported only for the tests based on the
MLEs.
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6 Simulation Study

In this section, we compare the power of the proposed test with other tests under
several alternative distributions and for sample sizes n = 10 and 20. We show that our
proposed test achieves higher power compared with the tests based on TVmn, TCmn,
TEmn, TVEmn and TAmn statistics.

6.1 Critical Values

Since the distributions of the entropy estimates HVmn, HVEmn, HEmn, HCmn and HAmn
cannot be directly obtained under the null hypothesis, the Monte Carlo method is
conducted to compute critical values TVmn,α, TVEmn,α, TEmn,α, TCmn,α and TAmn,α
of the test statistics TVmn, TVEmn, TEmn, TCmn and TAmn, respectively, for the most
common significance level α = 0.05. More precisely, for each test statistic Tmn ∈
{TVmn,TVEmn,TEmn,TCmn,TAmn}, we calculate its sample values tmn,1, tmn,2, . . . , tmn,10,000
in 10,000 simulated random samples of size n from the Birnbaum-Saunders distribution
with γ = 1 and β = 1. Since α = 0.05 = 500/10, 000, we evaluated the 500th order statis-
tic tmn,(500) and specified the critical value Tmn,0.05 from the equation Tmn,0.05 = tmn,(500).
The critical values obtained in this manner for the statistics TVmn-TAmn and sample
sizes 5 ≤ n ≤ 50 are presented in Tables 1 to 5. All calculations of our study are done
by using a program written in R software which is available from the authors upon
request.

Table 1: Critical values of the TVmn statistic for α = 0.05.

m
n 1 2 3 4 5 6 7 8
5 0.163 0.193
6 0.198 0.236 0.225
7 0.230 0.266 0.258
8 0.265 0.304 0.297 0.281
9 0.294 0.336 0.329 0.314
10 0.315 0.365 0.359 0.343 0.326
15 0.397 0.459 0.461 0.452 0.439 0.422 0.405
20 0.450 0.523 0.533 0.528 0.516 0.503 0.489
25 0.491 0.570 0.582 0.580 0.574 0.564 0.552
30 0.517 0.600 0.617 0.619 0.614 0.604 0.596
40 0.556 0.644 0.668 0.674 0.673 0.669 0.663
50 0.579 0.673 0.700 0.708 0.711 0.709 0.706
75 0.616 0.716 0.747 0.759 0.765 0.767 0.767 0.766
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Table 2: Critical values of the TEmn statistic for α = 0.05.

m
n 1 2 3 4 5 6 7 8
5 0.214 0.281
6 0.256 0.326 0.349
7 0.286 0.360 0.378
8 0.319 0.392 0.412 0.420
9 0.344 0.421 0.440 0.450
10 0.359 0.439 0.463 0.471 0.477
15 0.443 0.528 0.553 0.560 0.566 0.567 0.568
20 0.484 0.574 0.603 0.615 0.621 0.623 0.625 0.627
25 0.518 0.615 0.647 0.660 0.667 0.671 0.673 0.676
30 0.541 0.638 0.669 0.685 0.694 0.698 0.702 0.704
40 0.570 0.671 0.707 0.725 0.736 0.743 0.749 0.753
50 0.598 0.702 0.737 0.755 0.767 0.774 0.780 0.785
75 0.631 0.740 0.777 0.797 0.809 0.818 0.824 0.829

Table 3: Critical values of the TVEmn statistic for α = 0.05.

m
n 1 2 3 4 5 6 7 8
5 0.323 0.356
6 0.364 0.393 0.393
7 0.388 0.411 0.409
8 0.420 0.448 0.445 0.442
9 0.448 0.466 0.457 0.454

10 0.465 0.491 0.481 0.472 0.473
15 0.550 0.570 0.557 0.545 0.537 0.531 0.530
20 0.596 0.616 0.601 0.587 0.574 0.565 0.558 0.555
25 0.637 0.652 0.639 0.625 0.613 0.603 0.594 0.587
30 0.659 0.676 0.667 0.654 0.641 0.629 0.619 0.611
40 0.703 0.714 0.704 0.691 0.679 0.668 0.658 0.649
50 0.734 0.748 0.738 0.726 0.713 0.703 0.692 0.684
75 0.782 0.797 0.787 0.777 0.766 0.754 0.744 0.737
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Table 4: Critical values of the TCmn statistic for α = 0.05.

m
n 1 2 3 4 5 6 7 8
5 0.200 0.245
6 0.237 0.286 0.281
7 0.274 0.335 0.330
8 0.309 0.365 0.366 0.353
9 0.339 0.404 0.408 0.387
10 0.363 0.424 0.424 0.411 0.395
15 0.454 0.536 0.538 0.526 0.514 0.501 0.486
20 0.515 0.606 0.614 0.604 0.594 0.582 0.569 0.556
25 0.556 0.648 0.659 0.655 0.646 0.637 0.626 0.615
30 0.576 0.680 0.695 0.696 0.690 0.682 0.673 0.663
40 0.624 0.725 0.745 0.746 0.742 0.737 0.731 0.725
50 0.647 0.757 0.776 0.779 0.779 0.776 0.771 0.767
75 0.687 0.802 0.826 0.831 0.831 0.830 0.828 0.826

Table 5: Critical values of the TAmn statistic for α = 0.05.

m
n 1 2 3 4 5 6 7 8
5 0.213 0.334
6 0.250 0.368 0.448
7 0.288 0.405 0.477
8 0.313 0.433 0.502 0.567
9 0.332 0.453 0.520 0.576
10 0.358 0.474 0.539 0.589 0.643
15 0.439 0.557 0.614 0.661 0.699 0.738 0.779
20 0.489 0.607 0.659 0.698 0.733 0.765 0.796 0.828
25 0.514 0.631 0.686 0.722 0.754 0.783 0.810 0.837
30 0.538 0.656 0.708 0.742 0.772 0.797 0.823 0.846
40 0.572 0.688 0.739 0.774 0.802 0.824 0.846 0.867
50 0.593 0.713 0.761 0.791 0.816 0.838 0.858 0.876
75 0.629 0.743 0.790 0.819 0.841 0.860 0.876 0.891
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6.2 Power Comparison

For studying the power of the tests defined in Section 5, we also use the Monte-Carlo
simulations. To facilitate comparisons in this study, we select the BS(γ, 1) distribution
which is simply denoted by BS(γ), and seven alternative distribution considered by
Meintanis (2010) listed as:

1. The exponentioal (E(α)) distribution with density α exp{−αx}.

2. The gamma (G(α, 1)) distribution with density xγ−1 exp{−x}
/
Γ(α).

3. The Weibull (W(γ, 1)) distribution with density γxγ−1 exp{−xγ}.

4. The inverse-Gaussian (IG(γ)) distribution with density γ exp{−(x−γ)2

2x }
/√

2πx3.

5. The log-normal (LN(γ)) distribution with density (γx)−1(2π)−1/2 exp{−(log x)2
/
2γ2}.

6. The shifted-Pareto distribution (P(γ)) with density γ
/
(1 + x)1+γ.

7. The half-normal (HN) distribution with density
√

2
/
π exp{− x2

2 }.

8. The skew-normal Birnbaum-Saunders (SN − BS(λ)) introduced by Vilca et al.
(2011) with density ϕ

(
a(x;γ, β)

)
Φ

(
λa(x;γ, β)

)
A(x;γ, β), γ = 1 and β = 1.

We compute the powers of the tests based on TVmn, TVEmn, TEmn, TCmn, TAmn, CF
and CDF statistics by means of a Monte Carlo simulation. Under each alternative, we
generated 5,000 samples of size 25, 50 and 75. We evaluated for each sample and for
several values of the parameter m the statistics (TVmn, TVEmn, TEmn, TCmn, TAmn) and
the power of the corresponding test were estimated by the frequency of "the event the
statistic is smaller than the critical value". The power estimates are given in Tables 10-8.

7 Real Data Analysis

In this section we present two real data sets.
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Table 6: Monte-Carlo power estimates of the tests against α = 0.05 (m) with n = 25.

TVmn TEmn TVEmn TCmn TAmn

E(1) 0.6938(2) 0.6938(2) 0.6136(3) 0.6914(2) 0.6938(2)
E(2) 1.0000(1) 1.0000(1) 1.0000(2) 1.0000(1) 1.0000(1)

G(0.5) 0.9994(2) 0.9994(2) 0.9988(3) 0.9992(2) 0.9994(2)
G(1) 0.6842(2) 0.6842(2) 0.6068(3) 0.6844(2) 0.6842(2)

G(1.5) 0.1082(2) 0.1082(2) 0.0918(2) 0.1102(2) 0.1082(2)
W(1) 0.6910(2) 0.6910(2) 0.6098(3) 0.6870(2) 0.6910(2)
W(2) 1.0000(3) 1.0000(3) 1.0000(3) 1.0000(3) 1.0000(3)
W(3) 1.0000(3) 1.0000(3) 1.0000(3) 1.0000(3) 1.0000(3)

IG(0.25) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
IG(0.5) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
LN(1) 0.1208(2) 0.1208(2) 0.1234(4) 0.1206(1) 0.1208(2)
P(4) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
P(7) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
HN 0.9978(4) 0.9978(4) 0.0128(3) 0.9978(3) 0.9978(4)

SN-BS(-2) 0.9930(1) 0.9927(1) 0.9925(1) 0.9933(1) 0.9951(1)
SN-BS(2) 0.9902(1) 0.9900(1) 0.9895(1) 0.9906(1) 0.9915(1)

7.1 Example 1

The new procedures for these models are applied to sample (iii) of the 101 aluminum
coupon failure data set in Table II of Birnbaum and Saunders (1969b). We examine
whether a generalized BSD provides a better fit than the classical BSD employed by
Birnbaum and Saunders (1969a).

As an indication of goodness-of-fit, we report in Table 9 the value of each test
statistic. (Note that we are using the modified classical test statistics KS∗, CM∗, and
AD∗). The first five lines correspond to the BSD with CDF given by (3.2) fitted by the
data for different values of κ. (This distribution is referred to as GBS2 in Table 9). These
values indicate an improved fit with κ < 1/2. The corresponding MLEs are β̂n = 1342.04
and γ̂n = 0.061. A further improvement in fitting these data is shown in the line of
Table 9 which corresponds to the BSD with CDF given by Eq. (3.1) (referred to as GBS1
in Table 9). The same conclusion is reached by looking at the corresponding p-values,
which are reported in the last line of Table 9. According to p-values we conclude that
test for BSD based on Kullback-Leibler information is better than other tests for BSD.
The MLEs are β̂n = 1391.5, γ̂n = 5.73, and κ̂n = 0.084.
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Table 7: Monte-Carlo power estimates of the tests against α = 0.05 (m) with n = 50.

TVmn TEmn TVEmn TCmn TAmn

E(1) 0.9306(3) 0.9306(3) 0.8716(3) 0.9272(3) 0.9306(3)
E(2) 1.0000(1) 1.0000(1) 1.0000(2) 1.0000(1) 1.0000(1)

G(0.5) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
G(1) 0.9308(3) 0.9308(3) 0.8764(3) 0.9306(3) 0.9308(3)

G(1.5) 0.1590(3) 0.1590(3) 0.1182(3) 0.1574(3) 0.1590(3)
W(1) 0.9328(4) 0.9328(4) 0.8868(3) 0.9308(3) 0.9328(4)
W(2) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
W(3) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)

IG(0.25) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
IG(0.5) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
LN(1) 0.1208(2) 0.1208(2) 0.1234(4) 0.1206(1) 0.1208(2)
P(4) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
P(7) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
HN 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)

SN-BS(-2) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
SN-BS(2) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)

Table 8: Monte-Carlo power estimates of the tests against α = 0.05 (m) with n = 75.

TVmn TEmn TVEmn TCmn TAmn

E(1) 0.9874(4) 0.9874(4) 0.9686(3) 0.9864(4) 0.9874(4)
E(2) 1.0000(1) 1.0000(1) 1.0000(2) 1.0000(1) 1.0000(1)

G(0.5) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
G(1) 0.9858(4) 0.9858(4) 0.9650(4) 0.9856(3) 0.9858(4)

G(1.5) 0.1902(5) 0.1902(5) 0.1452(3) 0.1912(3) 0.1902(5)
W(1) 0.9870(6) 0.9870(6) 0.9674(4) 0.9674(4) 0.9870(6)
W(2) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
W(3) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)

IG(0.25) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
IG(0.5) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)

P(4) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
P(7) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)

LN(1) 0.1520(2) 0.1520(2) 0.1546(4) 0.1450(2) 0.1520(2)
HN 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)

SN-BS(-2) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
SN-BS(2) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)
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Table 9: Values of the test statistics and the corresponding p-values for Sample (iii).

GBS2 TVmn TEmn TVEmn TCmn TAmn AD∗ CM∗ KS∗

κ = 0.60 0.835(6) 0.831(8) 0.812(2) 0.872(4) 0.915(8) 0.705 0.106 0.752
κ = 0.50 0.847(6) 0.842(8) 0.821(2) 0.880(4) 0.921(8) 0.681 0.102 0.752
κ = 0.40 0.853(6) 0.851(8) 0.829(2) 0.886(4) 0.929(8) 0.661 0.100 0.752
κ = 0.25 0.861(6) 0.859(8) 0.836(2) 0.893(4) 0.933(8) 0.642 0.097 0.753
κ = 0.10 0.870(6) 0.865(8) 0.843(2) 0.903(4) 0.941(8) 0.632 0.095 0.752
κ = 0.05 0.878(6) 0.873(8) 0.855(2) 0.915(4) 0.950(8) 0.631 0.095 0.752
GBS1 0.821(5) 0.855(3) 0.845(3) 0.925(4) 0.961(8) 0.158 0.022 0.428
p − value 0.96 0.97 0.97 0.99 0.99 0.97 0.97 0.96

Table 10: Values of the test statistics and the corresponding p-values for the daily ozone data.

GBS2 TVmn TEmn TVEmn TCmn TAmn AD∗ CM∗ KS∗

κ = 0.60 0.916(2) 0.893(5) 0.919(6) 0.942(2) 0.881(3) 0.620 0.126 0.375
κ = 0.50 0.925(2) 0.899(5) 0.922(6) 0.953(2) 0.886(3) 0.615 0.131 0.372
κ = 0.40 0.933(2) 0.905(5) 0.925(6) 0.960(2) 0.890(3) 0.630 0.127 0.372
κ = 0.25 0.950(2) 0.915(5) 0.933(6) 0.967(2) 0.895(3) 0.617 0.126 0.380
κ = 0.10 0.943(2) 0.891(5) 0.927(6) 0.939(2) 0.864(3) 0.624 0.119 0.369
κ = 0.05 0.940(2) 0.830(5) 0.920(6) 0.945(2) 0.860(3) 0.623 0.117 0.368
GBS1 0.956(3) 0.920(2) 0.925(4) 0.960(3) 0.897(5) 0.639 0.118 0.355
p − value 0.98 0.98 0.96 0.99 0.99 0.95 0.96 0.95

7.2 Example 2

To illustrate the model proposed in this paper, we use the daily ozone concentrations
data used by Vilca et al. (2011), provided by the New York State Department of Con-
servation. We assume that the data are uncorrelated and, therefore, a diurnal or cyclic
trend analysis is not necessary. This assumption has been supported by several authors
for different reasons, for example, environmental data are sometimes reported as aver-
ages and so there is no spatial-time dependence. We examine whether a BSD provides
a better fit than the generalized BSD.

The MLEs for generalized BSD are β̂n = 27.316, γ̂n = 0.919, and κ̂n = 0.193. Also, the
MLEs estimator for BSD are β̂n = 28.023 and γ̂n = 0.982. As an indication of goodness-
of-fit, we report in Table 10 the value of each test statistic. According to p-values, we
conclude test for BSD based on Kullback-Leibler information is better than other tests
for BSD.
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8 Conclusions

In this paper, we dealt with the classical and more recent goodness-of-fit tests for the
BS distribution. By considering an accurate transformation incorporating parameter
estimates, all proposed methods reduce to normality testing with estimated parameters.
The results of our study show that the methods perform well with respect to power
even with small sample sizes. Also, we have observed that under each test statistic
converges relatively fast to the same asymptotic distribution regardless of the value of
the shape parameter of the underlying BS distribution under the null hypothesis. An
MC simulation study shows that the Anderson-Darling test and a test based on the
empirical characteristic function are the most powerful for the alternatives considered.
Moreover, The procedures are also extended to three parameter generalizations of
the BS distribution. Finally, two real-data examples reveal that application of the
methods to these extensions may result in an improved fit of certain three-parameter
generalizations, compared to that obtained by the same data and the classical two-
parameter BS distribution.

There are a number of avenues for future research. The BS distributions are lifetime
models, in many applications their censored or truncated versions are of more interest.
An extension for a test based on BS distribution is useful in such situations. Also, a
straightforward extension is to consider bivariate and multivariate Birnbaum-Saunders
distributions introduced by Kundu et al. (2010) and Kundu et al. (2013), respectively.
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