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Abstract. In this article we consider the stochastic restricted ridge estimation in semi-
parametric linear models when the covariates are measured with additive errors. The
development of penalized corrected likelihood method in such model is the basis for
derivation of ridge estimates. The asymptotic normality of the resulting estimates is
established. Also, necessary and sufficient conditions, for the superiority of the pro-
posed estimator over its counterpart, for selecting the ridge parameter k are obtained.
A Monte Carlo simulation study is also performed to illustrate the finite sample perfor-
mance of the proposed procedures. Finally theoretical results are applied to Egyptian
pottery industry data set.
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1 Introduction

One of the standard assumptions in the linear regression analysis is that all the ex-
planatory variables are linearly independent. When this assumption is violated, the
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problem of multicollinearity enters into the data. Multicollinearity is troublesome and
the effects of its presence on different aspects of linear models are well known, see
Belsley (1991) for more details. When there is multicollinearity in data alternative esti-
mators has been proposed which are generally biased. Among them ridge estimators
have received a great deal of attention in statistical literature since the seminal work
of Horel and Kennard (1970). An alternative method to combat the multicollinearity
problem is to consider parameter estimation in addition to the sample information,
such as some exact or stochastic restrictions on the unknown parameter vector. The
incorporation of prior information available in the form of exact or stochastic restric-
tions provide better estimators than the ordinary estimator (Rao et al. , 2008). When
the additional information of unknown vector of parameter is of the form of stochastic
linear restrictions some mixed estimators are proposed by, Durbin (1953), Theil (1963),
Ozkale (2009), Liang et al. (1999) and so on. When the additional information is of
the form of exact linear restriction some other mixed ridge estimator are introduced;
see Swamy and Mehta (1978), Grob (2003), Zhong and Yang (2007) and Siray and
Torker (2014) among others. In semiparametric linear regression models there are a
few studies that have looked at overcoming multicollinearity problems. Among them,
Hu (2005) extended the ridge estimator of Horel and Kennard (1970), Roozbeh and
Arashi (2013) and Roozbeh (2015) generalized the method of Zhong and Yang (2007)
in semiparametric regression models. Akdeniz et al. (2012) considered a difference
based ridge regression estimator and a Liu type estimator of the parameters, Akdeniz
and Tabakan (2009) discussed restricted ridge estimation in semiparametric regression
models. For recent developments in this field see Roozbeh (2018), Jibo and Asar (2017),
Aydin et al. (2016) and Yuzbasi and Ejaz (2016). Another fundamental assumption
in all statistical analyses is that all the observations are correctly observed. When this
assumption is violated, the measurement errors creep into the data. Then the usual
statistical tools tend to lose their validity, see Fuller (1987) and Cheng and Van (1999)
for more details. When the problem of multicollinearity is present in the measurement
error ridden data, then the main subject is how to obtain the consistent estimators of
regression coefficients. The suggested idea is to use the ridge regression approach
over the measurement error ridden data. In full-parametric linear measurement error
models Rasekh (2001), Saleh (2014) and Ghapani and Babadi (2016) have considered
collinearity in terms of a relationship between the elements of unobservable values and
generalized ridge technique estimation to combat multicollinearity. However, there
does not seem to be a work considering possible effects that collinearity can have on
the different aspects of the estimates of parameters in semiparametric linear measure-
ment error models (SLMeMs), nor to ridge estimation procedure as an alternative in
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the presence of collinearity and ill conditioning. In this paper employing the corrected
score function of Nakamura (1990) and Zhong et al. (2002) we concentrate on SLMeMs
and consider the ridge estimates under a stochastic linear combination of parameters.
In Section (2), the model and penalized corrected likelihood estimation are given, while
the ridge stochastic restricted estimators are driven in Section (3), in continuation the
asymptotic properties of ridge stochastic restricted estimators are summarized in this
section. In Section (4) some comparison results are given. A simulation study with real
data analysis are given in Sections (5) and (6) respectively. The final conclusions are
given in Section (7).

2 The Model Description

Suppose that {(Wi,Xi,Yi), i = 1, . . . , n} is a random sample from the semiparametric
linear measurement error model (SLMeM),{

Y = Xβ + f(t) + ϵ
W = X +U,

(2.1)

where Y = [Y1, . . . ,Yn]⊤ is the n-vector of observations, X = [X1, . . . ,Xn]⊤ is the n × p
matrix of unobserved covariates, which can be observed through the matrix W =
[W1, . . . ,Wn]⊤ with the measurement error U = [U1, . . . ,Un]⊤ where Ui, i = 1, . . . ,n are
p × 1 uncorrelated random vectors from p-variate normal distribution with E(Ui) = 0
and var(Ui) = Σ. Also, f(t) = [f(t1), . . . , f(tn)]⊤ is a vector of evaluations of the unknown
nonparametric function and ϵ is the n-vector of the random errors from N(0, σ2In).
The ti is a scalar a ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ b , and t′i s are not all idential and have
been reordered so that t1 ≤ t2 ≤ . . . ≤ tn. The nonparametric part is to be estimated
assuming only that f is an element of the S2

2[a, b] of functions f that have first order
continuous derivatives and square-integratable second order derivatives f ′′ in [a, b].
We assume that U is independent of (Y,X, t) and Σ is a p × p matrix of known values
with nonnegative diagonal elements (Fuller , 1987) and an unbiased estimate of Σ is
available using replicated observations on the independent variables (Nagelkerke ,
1992, see Section 3.VII for more details). Let the ordered distinct values among t1, . . . , tn
be denoted by s1, . . . , sq. The connection between t1, . . . , tn and s1, . . . , sq is captured by
means of n × q incidence matrix N, with entries Ni j = 1 if ti = s j and 0 otherwise. Let f
be the vector of values ai = f(si). For model (2.1) the penalized log-likelihood function
is defined as

l(Θ; X,Y) = −n
2

log(2πσ2) −
∥Y − Xβ −Nf∥2

2σ2 − λ
2σ2

∫
f′′(t)2dt, (2.2)
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where Θ = (β, f) and λ is a smoothing parameter which is determined by minimizing
the generalized cross-validation criterion GCV. There exists a matrix M depending
only on the knots {s j}, such that the minimized value of

∫
f′′(t)2dt is f⊤Mf (Green and

Silverman (1994), p.66). The equation in (2.2) is therefore of the form

l(Θ; X,Y) = −n
2

log(2πσ2) −
∥Y − Xβ −Ng∥2

2σ2 − λ
2σ2 f⊤Mf. (2.3)

In cases that measurement error is negligible, as shown in (2.1), we replace X by W
in (2.3) so that

U(Θ; W,Y) =
∂
∂Θ

l(Θ; W,Y), (2.4)

which is typically called naive score function. Hence, the expectations of U(Θ; W,Y)
with respect to Y evaluated at the true parameter value Θ0, typically, are not equal to
zero. Furthermore, in general, estimators obtained using naive score functions are not
consistent. To correct this using approach of Nakamura (1990) the corrected likelihood
l∗(Θ; W,Y) is

l∗(Θ; W,Y) = − 1
2σ2

{
σ2nlog(2πσ2) + ∥Y −Wβ −Nf∥2 − nβ⊤Σβ + λf′Mf

}
. (2.5)

Since
E∗(W⊤W) = X⊤X + nΣ,

l∗(Θ; W,Y) satisfies
E∗{l∗(Θ; W,Y)} = l(Θ; X,Y),

where E∗ denotes the conditional mean with respect to W given X and Y.
Let U∗(Θ,W,Y) = ∂l∗(Θ; W,Y)/∂Θ and J∗(Θ,W,Y) = −∂U∗(Θ,W,Y)/∂Θ be the cor-

rected score function and corrected observed function respectively. Then we have

E∗{U∗(Θ; W,Y)} = U(Θ; X,Y), E∗{J∗(Θ; W,Y)} = J(Θ; X,Y).

The value of Θ̂ satisfying U∗(Θ̂; W,Y) = 0 is called the penalized corrected likelihood
estimate (PCLE) ofΘ. By simple calculus, it follows that (2.5) is maximized when β and
f satisfy the equation:(

W⊤W − nΣ W⊤N
N⊤W N⊤N + λM

) (
β
f

)
=

(
W⊤

N⊤

)
Y.
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This equation gives the PCLEs of β and f as

β̂ = {W⊤(In − S)W − nΣ}−1W⊤(In − S)Y, (2.6)

f̂ = (N⊤N + λM)−1N⊤(Y −Wβ̂), (2.7)

respectively, where S = N(N⊤N + λM)−1N⊤. Using (2.6) and (2.7) the vector of fitted
values is Ŷ =Wβ̂ +Nf̂ and the estimate of σ2is σ̂2 = e⊤e

n−p , where e = Y − Ŷ.
The incorporation of prior information available in the form of restrictions may

provide better estimators than the β̂. Since uncertainty may exist about the prior
information on a particular parameter or a linear combination of parameters, one
suggestion is to make use of stochastic linear restrictions of the following form

r = Rβ + e, (2.8)

where r is a q × 1 observable random vector, R is a q × p known prior information on
the vector of regression coefficients of rank q ≤ p, and e is an error vector, independent
of U and ϵ, with E(e) = 0 and V(e) = σ2V, where V is an q × q known positive definite
(p.d) matrix. If V is unknown, it may sometimes be more realistic to suppose that
E(ee⊤) = V. In this case since we have Ery(r − Rβ̂)(r − Rβ̂)⊤ = V, where Ery is the
expectation with respect to r and Y, then 1

q (r−Rβ̂)(r−Rβ̂)⊤ can be regarded as a rough
estimate of V. Subject to the imposed stochastic linear restriction (2.8), the stochastic
restricted PCLE (SRE, say) are given by

β̂sr = (M0 + R⊤VR)−1{W⊤(In − S)Y + R⊤Vr},

and
f̂sr = (N⊤N + λM)−1N⊤(Y −Wβ̂sr),

respectively, where M0 =W⊤(In − S)W − nΣ.

3 Ridge Stochastic Restricted Estimators

In fact, the coefficient parameter β can be regarded as a vector in p dimensional space.
If there exists multicollinearity in X (or equivalently, X⊤(In − S)X is ill conditioned),
the coefficients which are estimated by PCLE, would be badly apart from the actual
coefficient parameter in some directions of p dimensional space, since the asymptomatic
variance of β̂depends on matrix [X⊤(In−S)X]−1(see Corollary (2)). In order to overcome
the multicollinearity we maximize the penalized corrected likelihood with a spherical
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restriction (β⊤β ≤ ρ2) and stochastic linear restriction (2.8). Therefore, the stochastic
restricted SLMeM is transformed into an optimization problem with two restrictions:

max
Θ

l∗(Θ,W,Y),

subject to β⊤β ≤ ρ2,

r = Rβ + e.

In order to incorporate the above restrictions in the estimation of parameters, we
maximize

l∗(Θ; W,Y) + (r − Rβ)⊤V−1(r − Rβ) + k(β⊤β − ρ2), (3.1)

where k is a Lagrange multiplier. Differentiating (3.1) with respect to Θ = (β, f) and
setting the result to zero, we obtain the ridge SREs (RSREs), as

β̂(k)
sr = (M0 + R⊤V−1R + kIp)−1{W⊤(In − S)Y + R⊤V−1r}, (3.2)

and
f̂(k)

sr = (N⊤N + λM)−1N⊤(Y −Wβ̂(k)
sr ), (3.3)

respectively. It is clear that for k = 0, we get β̂(0)
sr = β̂sr and f̂(0)

sr = f̂sr.

3.1 Asymptotic Characteristics

To investigate the asymptotic behavior of β̂(k)
sr , we assume that the derivatives related

to the likelihood exist. It is also assumed that as n → ∞, the following limits exist:
n−1X⊤(In − S)X, n−1X⊤(In − S)2X, n−1X⊤(In − S)U, n−1tr(In − S) and n−1tr(In − S)2. The
following lemma is useful for the next asymptotic results.

Lemma 3.1. Under the above assumption we have

W⊤(In − S)W = X⊤(In − S)X + tr(In − S)Σ + Op(n
1
2 ). (3.4)

Proof. From (2.1) we can write

n−1[W⊤(In − S)W − X⊤(In − S)X − tr(In − S)Σ] = n−1[X⊤(In − S)U +U⊤(In − S)X +Π],

whereΠ = U⊤(In − S)U − tr(In − S)Σ. Since by assumption as n→∞ , n−1X⊤(In − S)2X
exists we have n−1/2X⊤(In − S)U ∼ N(0, n−1X⊤(In − S)2XΣ). Then n−1/2X⊤(In − S)U =
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Op(n−1/2) and similarly n−1U⊤(In − S)X = Op(n−1/2). Now let the (a, b)th element of Π
be is denoted by Πab. Then

Πab =

n∑
i=1

n∑
j=1

Uia(In − S)i jU jb − tr(In − S)Σab,

where U = (Ui j), In − S = (In − S)i j, Σ = (Σab), i, j = 1, 2, . . . ,n and a, b = 1, 2, . . . , p. It is
easily seen that E(UiaUib) = Σab, so we obtain E(Πab) = 0. Further, we have

E(Π2
ab) =

∑
i, j

∑
k,l

E(UiaU jbUkaUln)(In − S)i j(In − S)kl + tr(In − S)2Σ2
ab

= tr(In − S)2(ΣaaΣbb + Σ
2
ab).

The above result follows considering the moments of the normal distribution. In
this case

• E(U2
iaU2

ib) = (ΣaaΣbb + Σ
2
ab), i = 1, . . . ,n.

• E(U2
iaU2

jb) = ΣaaΣbb, i , j, i, j = 1, . . . , n.

• E(UiaU jbUkaUlb) = Σ2
abi , j, i, j = 1, . . . , n.

• It can be verified that the remaining terms E(UiaU jbUkaUlb) = 0 are all equal to
zero.

By assumption, as n→∞, n−1tr(In−S)2 exist, so we have E(n−1/2Πab)2 = O(1) as n→∞
and then n−1Π = O(n−1/2). Combining all the above results, we get Lemma (3.1). □

Theorem 1. β̂(k)
sr is asymptotically normally distributed. The asymptotic mean and vari-

ance are respectively given as:

E(β̂(k)
sr ) = T−1

k T0β,

avar(β̂(k)
sr ) = T−1

k (D + [X⊤(In − S)2X + R⊤V−1R]σ2)T−1
k ,

where T0 = X⊤(In − S)X + R⊤V−1R, Tk = T0 + kIp and D = {(Xβ + Nf)⊤(In − S)2(Xβ +
Nf) + tr(In − S)σ2}Σ.
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Proof. Let η = n
−1
2 {W⊤(In − S)Y + R⊤V−1r} = n

−1
2 {W⊤(In − S)Y + R⊤V−1Rβ + R⊤V−1e}.

It is enough to obtain the asymptotic properties of η, for this let (In − S) = ΓPΓ⊤ and
V
−1
2 = ΥΨΥ⊤ be the spectral decompositions of (In−S) and V

−1
2 , respectively, ΓΓ⊤ = In,

ΥΥ⊤ = Iq, P = diag(γ1, . . . , γn),Ψ = diag(λ1, . . . , λq), γi and λi are eigenvalues of In − S
and V

−1
2 , respectively.

Let α = R⊤V−1Rβ, then η can be rewritten as

η = n
−1
2 [α +W∗⊤PY∗ + R∗⊤Ψe∗], (3.5)

where W∗ = Γ⊤W ∼ N(Γ⊤W,Σ), Y∗ = Γ⊤Y ∼ N(Γ⊤Xβ + Γ⊤Nf, σ2In), R∗ = Υ⊤R and
e∗ = Υ⊤e ∼ N(0, σ2Iq). The sth element of η is given by

ηs =
1√
n

[αi +

n∑
i=1

(W∗
isγiY∗i + R∗isλie∗i )] =

αi√
n
+

1√
n

n∑
i=1

ςi.

Since ςi’s are independent and since follow var(ςk) exists as n → ∞, by the central
limit theorem, ςk is asymptotically normal. It follows from E(W⊤(In −S)Y+R⊤V−1e) =
[X⊤(In − S)X + R⊤V−1R]β + X⊤(In − S)Nf, that

E(η) =
1√
n

T0β + On(1/
√

n). (3.6)

Let E+ and var+ denote the expectation and variance with respect to the random vector
(Y, r)⊤, respectively. The variance of η can be obtained by

var(η) = E+{var∗(η)} + var+{E∗(η)}
= n−1E+{Y⊤(In − S)2YΣ} + n−1var+{X⊤(In − S)Y + R⊤V−1r}
= n−1{(Xβ +Nf)⊤(In − S)2(Xβ +Nf) + tr(In − S)σ2}Σ + n−1{X⊤(In − S)2X

+ R⊤V−1R}σ2

= n−1{D + [X⊤(In − S)2X + R⊤V−1R]σ2}. (3.7)

Now from Lemma (3.1) we have
√

nβ̂(k)
sr = {n−1[X⊤(In − S)X + R⊤V−1R + kIp] + Op(1/n)}−1n

−1
2 {X⊤(In − S)Y + R⊤V−1r}

= {Ip + Op(1/n)}−1{n−1[X⊤(In − S)X + R⊤V−1R + kIp]}−1n
−1
2 {X⊤(In − S)Y + R⊤V−1r}

= {Ip + Op(1/n)}{n−1[X⊤(In − S)X + R⊤V−1R + kIp]}−1n
−1
2 {X⊤(In − S)Y + R⊤V−1r}. (3.8)
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Using (3.6) we can write

√
n(β̂(k)

sr − T−1
k T0β) = T−1

k {η − E(η)} + Op(1/
√

n). (3.9)

By (3.7)-(3.9) we have avar(
√

nβ̂(k)
sr ) = T−1

k var(η)T−1
k . Thus, avar(β̂(k)

sr ) = T−1
k (D + [X⊤(In −

S)2X + R⊤V−1R]σ2)T−1
k . □

From theorem (1) we have the following results:

Corollary 1. β̂sr is asymptotically normally distributed. The asymptotic mean and
variance are respectively given as

E(β̂sr) = β.

avar(β̂sr) = T−1
0 ΛT−1

0 ,

where Λ = (D + [X⊤(In − S)2X + R⊤V−1R]σ2).

Corollary 2. β̂ is asymptotically normally distributed. The asymptotic mean and vari-
ance are respectively given as

E(β̂) = β.

avar(β̂) = [X⊤(In − S)X]−1Λ0[X⊤(In − S)X]−1,

where Λ0 = (D + [X⊤(In − S)2X]σ2).

Now, we provide expressions for the asymptotic distributional bias (ADB) and
the asymptotic distributional risk ADR of aforementioned estimator. To do so, let us
consider the following weighted quadratic loss function

L(β̂, β) = n(β̂ − β)⊤Q(β̂ − β),

where Q is a symmetric positive definite matrix. Assume that we have F(x) =
lim
n→∞

P(
√

n(β̂ − β) ≤ x). Now we define the asymptotic distributional bias (ADB) and
asymptotic distributional risk (ADR) by

ADB(β̂n) = lim
n→∞

√
n(β̂n − β).

ADRQ(β̂n) = tr[Q
∫
Rp

(x − µx)(x − µx)τdF(x)] = tr(QVx).
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where Vx is the dispersion matrix for the distribution F(x). Thus we get

ADB(β̂(k)
sr ) = lim

n→∞
E
(√

n(β̂(k)
sr − β)

)
= (TkT0 − Ip)β = −kT−1

k β,

ADRQ(β̂(k)
sr ) = tr

(
Q

1
2 T−1

k ΛT−1
k Q

1
2
)
.

Using the above definitions theAMSE function of β̂(k)
sr is

AMSEQ(β̂(k)
sr ) = ADB(β̂(k)

sr )⊤ADB(β̂(k)
sr ) +ADRQ(β̂(k)

sr )

= k2β⊤T−2
k β + tr

(
Q

1
2 T−1

k ΛT−1
k Q

1
2
)
, (3.10)

and theAMSE function of β̂sr is

AMSEQ(β̂sr) = tr
(
Q

1
2 T−1

0 ΛT−1
0 Q

1
2
)
. (3.11)

4 Superiority Conditions

In this section, we provide necessary and sufficient conditions for the AMSE supe-
riority of the β̂(k)

sr over β̂sr. From (3.10) and (3.11), the difference δ = AMSE(β̂sr) −
AMSE(β̂(k)

sr ) is given by

δ = tr
(
Q

1
2 [T−1

0 ΛT−1
0 +Q

1
2 T−1

k ΛT−1
k ]Q

1
2
)
− k2β⊤T−2

k β. (4.1)

Let ADRQ(β̂(k)
sr ) = Q

1
2 T−1

k ΛT−1
k Q

1
2 be the matrix form of ADRQ(β̂(k)

sr ) then we have
the following lemma.

Lemma 4.1. ADRQ(β̂(k)
sr ) is consistently smaller thanADRQ(β̂sr) therefore, the following

inequality always holds for arbitrary k > 0

∆ = ADRQ(β̂sr) −ADRQ(β̂(k)
sr ) > 0.

Proof. Let Q = Ip, from Tk − T0 = kIp > 0, we have T−1
0 > T−1

k , since Λ > 0 then
T−1

0 ΛT−1
0 > T−1

k ΛT−1
k and this completes the proof. □

Theorem 2. Given β̂(k)
sr under stochastic linear combination in (2.8), theAMSEdifference

δ is non negative if only if

0 ≤ k ≤ 1√
β⊤T−1

k ∆
−T−1

k β
.
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Proof. Here we prove the necessary and sufficient conditions for theAMSEQ difference
∆∗. Using Lemma (4.1) and Lemmas (7.1)-(7.2) in Appendix we can write

∆∗ = AMSEQ(β̂sr) −AMSEQ(β̂(k)
sr ) > 0

⇔ADRQ(β̂sr) −ADRQ(β̂(k)
sr ) − k2β⊤T−1

k T−1
k β > 0

⇔ ∆ − k2β⊤T−1
k T−1

k β > 0

⇔ k2β⊤T−1
k ∆

+T−1
k β < 1,

which completes the proof. □

4.1 Finding k

Now we need to find a k which can make β̂(k)
sr superior to the β̂sr in the sense ofAMSE.

Based on Ozkale (2009), we suggest k such that∆ > 0. After some algebraic calculations
we can write ∆ as

∆ = Q
1
2 T−1

k {k
2T−1

0 DT−1
0 + k2σ2[X⊤(In − S)2X + R⊤V−1R] + k(T−1

0 D +DT−1
0 )

+ 2kσ2[X⊤(In − S)2X + R⊤V−1R]T−1
0 − k2β⊤β}T−1

k Q
1
2 .

We note that the matrices T−1
0 DT−1

0 , [X⊤(In − S)2X + R⊤V−1R], (T−1
0 D +DT−1

0 ) and
[X⊤(In − S)2X + R⊤V−1R]T−1

0 are positive definite (p.d). Therefore, using Farebrother
(1976) we have that ∆ is positive definite if 2kσ2[X⊤(In − S)2X +R⊤V−1R]T−1

0 − k2β⊤β is
positive semi definite. Thus a sufficient condition for β̂(k)

sr to be superior over β̂sr is

0 < k < 2σ2
(
β⊤T0[X⊤(In − S)2X + R⊤V−1R]−1β

)−1
. (4.2)

To facilitate the computation, we suggest to select the median of the range (4.2). We
need only to substitute the separate estimates for the unknowns and obtain the estimate
of k. Let y∗ = (In −S)y, X∗ = (In −S)X and W∗ = (In −S)W then using methods of Fuller
(1987) an estimate of X∗ can be derived as X̂∗ =W∗+ σ̂2∗e∗β̂⊤Σ and hence X̂ = (In−S)−X∗,
where e∗ = Y∗ − X∗β̂ and σ̂2∗ = σ̂2 + β̂⊤Σβ̂. Now, replacing σ2, β and X respectively, with
their estimates σ̂2, β̂ and X̂, a practical solution for k can be suggested as

k̂ =
σ̂2

β̂⊤T̂0[X̂⊤(In − S)X̂ + R⊤V−1R]−1β̂
. (4.3)

where T̂0 = X̂⊤(In − S)X̂ + R⊤V−1R.
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4.2 Estimating Smoothing Parameter λ

The cross-validation or the generalized cross-validation, which might be used to es-
timate the tuning parameter λ can be adapted here. The GCV has been applied for
obtaining the optimal bandwidth of the kernel smoother in smoothing spline (Craven
and Wahba (1979)) as well as partial linear models and also for obtaining the optimal
ridge parameter in a ridge regression model (Golub et al. (1979)). For this let β̂(k)

sr(i) and

f̂(k)
sr(i) be the RSREs at k = k̂ in (4.3), with ith point Yi omitted. The argument be that if λ

is a good choice then the ith component [Wβ̂(k)
sr(i) +Nf̂(k)

sr(i)]i of Wβ̂(k)
sr(i) +Nf̂(k)

sr(i) should be
a good predictor of Yi. Therefore the estimate of λ is the minimizer of

GCV(λ) = n−1
n∑

i=1

(
Yi − [Wβ̂(k)

sr(i) +Nf̂(k)
sr(i)]i

)2

k=k̂
.

Recently Roozbeh (2018) and Amini and Roozbeh (2015) have used the GCV
criterion for selecting the optimal values of both ridge and bandwith parameters (k and
λ) simultaneously, in the presence of multicollinearity for the semiparametric regression
models. We can also apply the GCV method to select the optimal bandwidth λ and k
simultaneously, which minimizes the following GCV function

GCV(λ, k) = n−1
n∑

i=1

(
Yi − [Wβ̂(k)

sr(i) +Nf̂(k)
sr(i)]i

)2
.

5 Simulation

In this section, we carry out a simulation study to demonstrate the finite sample per-
formance of the proposed procedures. Our sampling experiment consists of different
values of k, i.e., k = 0, 4, 8,16, 20. The data are generated from the model (2.1). For this
we assume that β = (1, 2,−2,−5, 4) and X = N5(µ,Σx) with

µτ = [2, 1,−1, 3, 4], Σx =


1.90 1.79 2.25 1.50 1.22
1.79 1.80 1.92 1.25 1.00
2.25 1.92 4.20 2.53 2.12
1.50 1.25 2.53 2.4 1.38
1.22 1.00 2.12 1.38 2.20

 , (5.1)

and f (ti) = sin2πti, where ti ∼ U(0, 1). The random errors ϵ and U are generated
from N(0, 0.5) and N5(0,Σ) receptively. We consider two cases: (I) Σ = diag(0.05,
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Figure 1: (a) The MSEβ∗ of β̂(k)
sr (solid bullet line), and MSE f ∗ of f̂(k)

sr (solid triangular line)
β̂(k)

sr , The MSEβ∗ of β̃(k)
sr (dashed bullet line), and MSE f ∗ of f̃(k)

sr (dashed triangular line) vs
sample size for case (I). (b) Same as part (a) for case (II).

0.05,0.05, 0.05,0.05) and (II) Σ = diag(0.15,0.15,0.15,0.15,0.15). For the linear restriction
and covariance matrix of e, we consider the pre-specified matrix R and covarince matrix
V as

R =


1 5 −3 −1 −1
−2 −1 0 −2 3
1 2 1 3 −2
1 2 1 3 −2
4 −1 2 2 0

 , V = I5.

The generalized cross-validation, GCV(λ), which might be used to estimate the
tuning parameter λ is adapted here. The simulation study was conducted using the R
software. The number of simulated realizations with a sample size of 50 is 5000. First,
we estimate the β̂(k)

sr and naive stochastic restricted ridge estimator which is denoted
by β̃(k)

sr (stochastic restricted ridge estimators are obtained by ignoring measurement
errors in X) with their corresponding estimates of non-parametric terms and next we
compute their respective estimated MSE values which is defined by

MSEβ∗ =
1

5000

5000∑
j=1

5∑
l=1

(β∗jl − β)
2,
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Figure 2: (a) The values of δ for case (I) (solid line) and for case (II) (dashed line) vs k.
(b) The values ofAMSE for case (I) (solid line) and for case (II) (dashed line) vs k.

MSE f ∗ =
1

5000

5000∑
j=1

n∑
i=1

( f ∗(ti) − f (ti)2,

respectively. For a different sample size, the MSEs of β̂(k)
sr and β̃(k)

sr and MSEs of their
corresponding non-parametric component estimates are plotted in Figure (1). It can be
seen that for the two case measurement error model as the sample size increases the
estimated MSE values of the β̂(k)

sr and β̃(k)
sr decrease in general. Moreover, we find out

that for all cases, the β̂(k)
sr has smaller estimated MSE values than the β̃(k)

sr .
In Table (1), we compute the β̂(k)

sr for cases (I) and (II). We numerically estimate the

ADB⊤ADB, ADR, AMSE and MSE f̂ =
1
n

n∑
i=1

[f̂(k)
sr (ti) − f(ti)]2 for different values of k

with 5000 samples of size 50. The ratio of the largest eigenvalue to the smallest eigen-
value of matrix T0 is λ5/λ1 = 228.167 which implies the existence of multicollinearity
in the data set. In Figure (2) panel (a) the δ for case (I) and (II) are plotted with solid
and dashed lines respectively, while panel (b) shows theAMSE of β̂(k)

sr for case (I) and
case (II) versus ridge parameter k. As it can be seen from Table (1) and Figure (2), for
the two cases the δ increases (AMSE decreases) at first and then decreases (increases),
which provides a reason for the assertion in (4.2). Furthermore, the maximum of δ
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Table 1: The finite sample performance of the β̂(k)
sr for cases (I) and (II).The standard

errors are in parentheses.

k 0.00 4 8

Case I II I II I II
β̂1 1.073(0.110) 0.583(0.185) 1.382(0.056) 1.359(0.122) 1.406(0.038) 1.241(0.092)
β̂2 2.948(0.099) 3.359(0.178) 2.502(0.061) 2.805(0.130) 2.297(0.035) 2.260(0.088)
β̂3 -2.088(0.108) -1.851(0.180) -2.120(0.065) -2.027(0.127) -2.074(0.037) -2.034(0.093)
β̂4 -5.029(0.111) -5.578(0.175) -4.655(0.054) -5.138(0.118) -4.359(0.034) -4.799 (0.090)
β̂5 4.044(0.109) 4.283(0.183) 3.831(0.051) 3.921(0.121) 3.649(0.310) 3.631(0.089)

||ADB(β̂(k)
sr )||2 0 0 0.494 0.262 1.182 0.837

ADRQ(β̂(k)
sr ) 3.024 8.634 0.767 3.731 0.364 2.153

AMSE 3.024 8.634 1.261 3.993 1.547 2.991
δ 0 0 1.762 4.641 1.476 5.643

MSE f̂ 0.123 0.831 0.002 0.046 0.032 0.006

k 12 16 20

Case I II I II I II
β̂1 1.377(0.029) 1.217(0.075) 1.334(0.024) 1.173(0.064) 1.287(0.021) 1.124(0.056)
β̂2 2.153(0.031) 2.468(0.079) 2.036(0.026) 2.348(0.061) 1.936(0.019) 2.242(0.051)
β̂3 -2.012(0.028) -2.014(0.080) -1.947(0.023) -1.985(0.065) -1.881(0.021) -1.951(0.058)
β̂4 -4.104(0.029) -4.511(0.070) -3.881(0.025) -4.262(0.066) -3.682(0.024) -4.042(0.055)
β̂5 3.471(0.023) 3.381(0.074) 3.315(0.022) 3.163(0.060) 3.172(0.020) 2.971(0.056)

||ADB(β̂(k)
sr )||2 1.961 1.593 2.816 2.462 3.725 3.401

ADRQ(β̂(k)
sr ) 0.221 1.438 0.152 1.048 0.114 0.807

AMSE 2.183 3.031 2.969 3.510 3.839 4.209
δ 0.840 5.602 0.0548 5.124 -0.815 4.424

MSE f̂ 0.154 0.083 0.351 0.219 0.614 0.359

(minimum of the AMSE ) is obtained when k equals (4.3) which are approximately
equal to 4.174 and 7.924 for case (I) and (II) respectively. For estimating the nonlinear
part, we simulate the response from our model for n = 300 again. In Figure (3), the
nonparametric part of the model for case (I) and (II) are plotted in panels (a) and (b)
using β̂(k)

sr and β̃(k)
sr , respectively. By an increase in the variance of measurement error

the nonparametric estimates of β̃(k)
sr outperform f(t).

6 Real Data

To motivate the problem of stochastic linearly constrained estimation in the semipara-
metric regression model, we consider the Egyptian pottery data set. This data set was
collected from an extensive archaeological survey of pottery production and distribu-
tion in the ancient Egyptian city of Al-Amarna. The data consist of measurements of
chemical contents (mineral elements) made on many samples of pottery using two dif-
ferent techniques, NAA and ICP (see Smith et al. (1988)) for description of techniques).
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Figure 3: (a) For case (I): The estimates of f(.), sin2πt (solid curve), the f̂(k)
sr (dash-dotted

curve) and f̃(k)
sr (dotted curve), with size n = 300, bandwidth λ = 0.041 and k = 4.174.(b)

For case (II): The estimates of f(.) with size n = 300, bandwidth λ = 0.277 and k = 7.924.

The set of pottery was collected from different locations around the city. The group
structure among the objects arises from two main sources, fabric code and location
of pottery. Consequently, according to this group structure, the selected vessels have
been divided into 28 groups. In each group, there are different numbers of vessels from
the same fabric code and provenance, which can essentially be regarded as replicated
observations. Ghapani and Babadi (2016) and Rasekh (2001) analyzed the same data
to find anomalous observations in full parametric linear measurement error models us-
ing the methods of shift outlier model and local influence approach, respectively. They
considered Na measured with NAA as response variable versus mineral elements Na,
Al,K, V, Cr and Mn measured by ICP as predictor variables. Using the same data we
suspected in the type of relation (linear or non linear) between dependent variable
NAA versus explanatory variable Mn. By Yatchew (2003), the test statistic for the null
hypothesis that the regression function has the parametric form, i.e., H0 : f(t) = h(t, β)
for a known function h(.), against the nonparametric alternative is

Z0 =
n1/2(s2

res − s2
di f f )

s2
di f f

D−→ N(0, 1), (6.1)
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Figure 4: (a) NAA versus Mn, linear fit (dashed line) smooth spline fit (solid line).
(b).Plot of GCV vs λ.

where s2
res the usual estimate of the residual variance obtained from linear regression

and s2
di f f =

1
2n

n∑
i=2

(yi − yi−1)2. We consider the average Mn as a nonparametric part

(assuming no measurement error for this variable), because it has the largest value of
nonparametric significance test statistics among those of other independent variables.
Nonparametric significance test of the Mn effect yields the value Z0 = 6.723, which in-
dicates that non linearly relation of the Mn variable to dependent variable is significant
(see Figure (4)(a)). Finally the semiparametric linear measurement error model (2.1)
with y=NAA, W=[Al,K,V,Cr] and f (Mn) is specified. To estimate Σ, since there are the
replicated observations Wi j = Xi + Ui j, j = 1, . . . ,mi, an unbiased method of moments
estimate for Σ can be considered as

Σ̂ =

n∑
i=1

mi∑
j=1

(Wi j − W̄i)(Wi j − W̄i)⊤

n∑
i=1

(mi − 1)
.

To investigate the performance of the proposed stochastic restricted estimators,
from previous studies (see, Ghapani and Babadi (2016)) we consider the parametric
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Figure 5: (a) The values of δ vs k. (b) The values of AMSE vs k for Egyptian pottery
data.

restriction r = Rβ + e, where

R =


1 0 −3 0 0
0 −1 0 8 0
0 0 0 1 6

 .
We test the linear hypothesis H0 : r = Rβ in the framework of our proposed semipara-
metric model. The test statistic for H0, given our observations, is

χ2
[rank(R)] ≃ (Rβ̂ − r)⊤(RΣ̂βR⊤)−1(Rβ̂ − r),

where Σ̂β = (1 + 1/2m)σ̂2(W⊤W). Thus we conclude that the null hypothesis H0 is not
rejected and this can be regarded as a prior information for β. The ratio of the largest
eigenvalue of smallest eigenvalue for new design matrix in model is approximately
λ4/λ1 = 4424.752 and so, there exists a high multicollinearity between the columns
of T0. Now in order to overcome the multicollinearity for better performance of the
estimators, we use the proposed ridge estimators for our model. From Figure (5) we
can select the value of k to be 4 and from Figure (4)(b) the minimum of GCV occurred
at λ = 0.0003. The stochastic restricted ridge estimator for the proposed value of ridge
parameter are given in Table (2). As it can be seen, β̂(k=4)

sr is the best estimator for linear
part of the SLMeM in the sense of risk. Finally, we estimated the non-parametric effect
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Table 2: The restricted ridge estimator (RRE) for Egyptian pottery dataset. The standard
errors are in parentheses.

k 0 2 4 6 8 10
β̂1 -0.399(0.018) -0.085(0.018) 0.042(0.016) 0.108(0.015) 0.147(0.013) 0.172(0.011)
β̂2 -0.014(0.806) -0.048(0.666) -0.055(0.561) -0.052(0.490) -0.047(0.438) -0.041(0.397)
β̂3 1.130(0.063) 1.145(0.061) 1.048(0.057) 0.983(0.050) 0.932(0.047) 0.891(0.045)
β̂4 0.040(0.011) 0.039(0.010) 0.031(0.009) 0.022(0.009) 0.012(0.009) 0.003(0.008)
β̂5 0.001(0.624) 0.001(0.471) -0.002(0.397) -0.003(0.346) -0.005(0.310) -0.008(0.280)

||ADB(β̂(k)
sr )||2 0 0.065 0.200 0.356 0.513 0.662

ADRQ(β̂(k)
sr ) 1.053 0.667 0.477 0.364 0.291 0.239

AMSE 1.053 0.733 0.677 0.721 0.804 0.901
δ 0 0.320 0.375 0.332 0.249 0.152

MSE f̂ 0 0.320 0.081 3.724 13.109 27.964

f (Mn) after estimating the linear part by β̂(k=4)
sr by a smooth spline method in Figure (6),

i.e., we used smooth spline fit to regress fmn= NAA-Wβ̂(k=4)
sr on Mn with λ = 0.092.

7 Conclusion

Ridge estimation of statistical models with measurement errors seems to be overlooked
in the literature. In this paper, we derive the RSRE based penalized corrected likelihood
for the vector of parameters in a SLMeM, when additional stochastic linear restrictions
on the parameter vector are assumed to hold. We constructed RSRE for the paramet-
ric, nonparametric cases by taking the measurement errors into account, and showed
that they were consistent and asymptotically normal. The performance of RSRE over
SRE based on ridge parameter k was proved. Applying kernel smoothing and cross-
validation methods, we estimated the nonlinear functions of the proposed model. We
see that the δ increases ( AMSE decreases) at first and then decreases (increases),
which provides a reason for the assertion in (4.2). Furthermore, the maximum of δ
(minimum of the AMSE) is obtained when k equals the median range of (4.2) i.e.,
k̂ = σ̂2

β̂⊤T̂0[X̂⊤(In−S)X̂+R⊤V−1R]−1β̂
which is approximately equal to 4.147, 7.947 and 3.985 re-

spectively for case I, case II (in simulation data) and real data. As a final point, there
was a clear difference between the MSEs of the naive RSREs and those of the proposed
estimators. We believe that this difference is caused by the measurement errors.
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Figure 6: Estimation of the nonparametric part by smooth spline method with (λ =
0.092).

Appendix

Lemma 7.1. If β̂2 is superior to β̂1 with respect toAMSE, then it is superior to β̂1 with
respect to MSE and vice versa (Farebrother , 1976).

Lemma 7.2. Let A be a symmetric positive definite n× n matrix, α an n× 1 vector. Then
A − αα⊤ is nonnegative definite if and only if α⊤A−α ≤ 1 is satisfied, where A− is the
generalized inverse of A (Rao et al. , 2008).
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