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Abstract. In this study, a new polynomial rank transmutation is proposed with the
help of the idea of quadratic rank transmutation mapping (QRTM). This polynomial
rank transmutation is allowed to extend the range of the transmutation parameter from
[−1, 1] to [−1, k]. At this point, the generated distributions gain more flexibility than a
transmuted distribution constructed by QRTM. The distribution family obtained in this
transmutation is considered to be an alternative to the distribution families obtained
by quadratic rank transmutation. Statistical and reliability properties of this family are
examined. Considering Weibull distribution as the base distribution, the importance
and the flexibility of the proposed families are illustrated by two applications.
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1 Introduction

Numerous studies have been conducted by many authors using the quadratic rank
transformation proposed by Shaw and Buckley (2007). According to QRTM, the c.d.f
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H of the generated distribution corresponding to the baseline distribution having c.d.f
F is given by H = F + λF(1 − F) = (1 + λ)F − λF2, where −1 ≤ λ ≤ 1. However, many
other distributions have been derived with the help of families such as Marshall-Olkin
generated family (MO-G) by Marshall and Olkin (1997), beta generated family by
Eugene et al. (2002), transformed-transformer family by Alzaatreh et al. (2013) and
Weibull-G by Bourguignon et al. (2014). In recent years, studies have focused on the
generalized G-families and the generalized transmuted families. Some of these studies
can be given as follows. Yousof et al. (2015) introduced the transmuted exponentiated
generalized-G family. The beta transmuted-H family was introduced by Afify et al.
(2017). Korkmaz and Genc (2017) considered the standard two-sided power distri-
bution to define classes like the beta-G and the Kumaraswamy-G classes. Cordeiro
et al. (2017) proposed a new class of continuous distributions with two extra shape
parameters named the generalized odd log-logistic family of distributions. Alizadeh
et al. (2017) introduced a new transmuted G-family of distribution. Nofal et al. (2017)
introduced a three-parameter transmuted class.

The overall objective is the success of the generated distributions in real-data mod-
eling. We present a transformation that can be obtained by the convex combination of
the distributions of order statistics, which is similar to the polynomial rank transmu-
tation proposed by Shaw and Buckley (2007). We will discuss it in detail in Section 2.

2 Motivation

We express the idea behind the definition of quadratic rank transmutation, which
is introduced by Shaw and Buckley (2007) in Subsection 4.2, and then move to the
occurrence of numerous studies as follows. Let us consider two-component systems
(series and parallel) that component lifetime is distributed as F. Then distributions of
the lifetimes of series and parallel systems, respectively, are 2F − F2 and F2. Note that
F lies between these two distribution functions, namely, the ordering amongst three
distribution functions is given by

F2 ≤ F ≤ 2F − F2. (2.1)

Accordingly, F can be represented by a convex combination of 2F − F2 and F2 as
δ
(
2F − F2

)
+ (1 − δ) F2, where δ is a convex combination parameter belonging to the
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interval [0, 1]. In particular, F is obtained if delta is taken as 1
2 . In addition, it is possible

to obtain numerous distribution functions. Let us call the distribution function obtained
by this convex transformation as H. Then H can be represented by the following form:

H = 2δF − (2δ − 1) F2.

By re-parameterizing 2δ − 1 = λ, where λ ∈ [−1, 1], H becomes (1 + λ) F − λF2.
Thus, we achieve the quadratic rank transmutation given in equation (48) by Shaw
and Buckley (2007). A similar result was obtained independently by Mirhossaini and
Dolati (2008), where H represents the mixing of the extreme order statistic of a random
sample of size two.

In this paper we propose a new rank transmutation in the light of the idea behind
the works of Shaw and Buckley (2007) and Mirhossaini and Dolati (2008). Let Fr:n be a
distribution of the rth order statistic obtained from a sample of size n from a population
whose distribution is F. Then Fr:n is represented as a tail probability of a binomial
distribution with F as the probability of success and n as the number of trials. Thus,
Fr:n can be written according to the equation (2.2.13) by Arnold et al. (2008) as follows:

Fr:n(x) =
n∑

j=r

(
n
j

)
F j(x)F̄n− j(x), (2.2)

where F̄ denotes the survival function. Hence, inequality (2.1) can be re-written by
this notation as F2:2 ≤ F1:1 ≤ F1:2. By taking into account this ordering properties, it
is obvious that Fk+1:k+1 ≤ Fk:k+1 holds for k = 1, 2, . . . ,n − 1, where Fk+1:k+1 = Fk+1 and
Fk:k+1 = (k + 1) Fk − kFk+1. Furthermore, Fk:k lies between Fk+1:k+1 and Fk:k+1. In other
words, we have

Fk+1:k+1 ≤ Fk:k ≤ Fk:k+1. (2.3)

Then, any distribution that lies between Fk+1:k+1 and Fk:k+1 can be represented by a
convex combination of Fk+1:k+1 and Fk:k+1 as Fk:k. Let H stand for this distribution. Then,
for δ ∈ [0, 1], we have

H = δFk:k+1 + (1 − δ) Fk+1:k+1. (2.4)

Interestingly, another way of obtaining bounds for Fk:k is to multiply both sides of
the equation (2.1) by Fk−1. Hence, we have another ordering as

Fk+1:k+1 ≤ Fk:k ≤ Fk−1
(
2F − F2

)
. (2.5)
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Similarly, if a convex combination of Fk+1:k+1 and Fk−1
(
2F − F2

)
is represented by

H∗, for δ∗ ∈ [0, 1], we have

H∗ = δ∗Fk−1
(
2F − F2

)
+ (1 − δ∗) Fk+1:k+1. (2.6)

Many distributions can be generated by using both equations (2.4) and (2.6). Spe-
cially for δ = 1

k+1 and δ∗ = 1
2 we achieve H = H∗ = Fk:k. Furthermore, for k = 1

we have H = H∗ = F. This leads us to define a new rank transmutation mapping
as in the following section. However, these generate many distributions and, since
Fk−1

(
2F − F2

)
≤ Fk:k+1, H has a wider range than H∗ in terms of the distribution func-

tions generated by that. This leads to the convex combination parameter of H giving
more flexibility than the parameter of H∗. For this reason, H is more attractive to us.

3 Construction of the New Family of Distribution

Let us start with rearranging the equation (2.4). Then we have

H = (k + 1) δFk − (−1 + (k + 1) δ) Fk+1. (3.1)

If (−1 + (k + 1) δ) is reparemetrized as λ, where the range of λ is [−1, k], equation (3.1)
can be represented by

H = (1 + λ) Fk − λFk+1. (3.2)

We observe that, for k = 1, H indicates the well-known quadratic rank transmuted
distribution. For λ = 0, we have the baseline distribution as the distribution of the
maximum of k independent copies of F. For λ = −1, we have the failure distribution of
the lifetime of the parallel system consisting of k+1 independent components. Namely,
H is the distribution of the lifetime of the system defined as T = max {X1, · · · ,Xk+1}.
Here, component lifetimes, namely X j’s, are independent and distributed as F. For
λ = 1, where k ≥ 1, the cdf H indicates that the failure probability of the system lifetime
is defined as T = max {X1, · · · ,Xk−1,min {Xk,Xk+1}}. For λ = k, H indicates a failure
probability of k − out − o f − k + 1 system lifetime. This proposed rank transmutation
mapping allows to extend the range of the transmutation parameter from [−1, 1] to
[−1, k]. At this point, generated distributions gain more flexibility. Similarly, making
some rearrangements on equation (2.6), H∗ is represented by

H∗ = 2δ∗Fk − (−1 + 2δ∗) Fk+1, (3.3)
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and, by taking (−1 + 2δ∗ = λ) for λ ∈ [−1, 1], we have

H∗ = (1 + λ) Fk − λFk+1. (3.4)

Hence, H∗ can be viewed as a special case of H. So, we will only deal with the
distribution family H in the subsequent parts of the study.

4 Representations of cdf, pdf and the Survival Function

Since we are using order statistics while constructing this new distribution, k is always
considered to be a nonnegative integer number. However, the value of k is not limited
to integers, but considering k ≥ 1 is a sufficient assumption for defining a distribution.
We will discuss this in terms of the pdf of the distribution. H(t) can be represented by

H(t) = δFk:k+1(t) + (1 − δ) Fk+1:k+1(t)

= (1 + λ) Fk(t) − λFk+1(t)

= Fk(t)
[
1 + λF̄(t)

]
= (1 + λ) Fk:k(t) − λFk+1:k+1(t),

(4.1)

where δ ∈ [0, 1] and λ ∈ [−1, k]. Specially, note that F indicates the baseline distribution
when k = 1, and λ = 0, otherwise, for k ≥ 1, Fk is considered as a baseline distribution
at λ = 0. The corresponding pdf is given by

h(t) = f (t)Fk−1(t) [(1 + λ) k − λ (k + 1) F(t)]

= f (t)Fk−1(t)
[
λkF̄(t) + k − λF(t)

]
= (1 + λ) fk:k(t) − λ fk+1:k+1(t).

(4.2)

As seen immediately from the second equality in (4.2), h(t), k ≥ 1 provides h(t) ≥ 0.
Hence the transmutation parameter set is defined as {(λ, k) : k ∈ [1,∞) , λ ∈ [−1, k]}. We
can also express the series expansion of h(t) for future discussions by applying the
generalized binomial expansion. Then we have

h(t) = f (t)
[ ∞∑

j=0

(
k − 1

j

)
(−1) jF̄(t) j

] [
λkF̄(t) + k − λF(t)

]
= f (t)

[
λ(1 + k)

∞∑
j=0

(
k − 1

j

)
(−1) jF̄(t) j+1

+ (k − λ)
∞∑
j=0

(
k − 1

j

)
(−1) jF̄(t) j

]
.

(4.3)
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Now, focusing on the polynomial structure given in equation (66) in Shaw and
Buckley (2007), we call the distribution generated by H as fractional polynomial
transmuted distribution, shortly as FPT − D. According to the equation (4.1), the
survival function of the FPT-random variable T is given by

H̄(t) = 1 − Fk(t)
[
1 + λF̄(t)

]
= (1 + λ) F̄k:k(t) − λF̄k+1:k+1(t).

(4.4)

5 Moment generating function and raw moments of FPT-random
variable

In this section, we shall present the moment generating function and sth raw moments
of the FPT-random variable

MT (v) = (1 + λ) MXk:k (v) − λMXk+1:k+1 (v) , (5.1)

and
E [Ts] = (1 + λ) E

[
Xs

k:k

]
− λE

[
Xs

k+1:k+1

]
. (5.2)

Note that, these two expressions are valid for integer k.

6 Hazard Rate and Reversed Hazard Rate Functions of FPT-
Random Variable

From equation (4.3), hazard rate function denoted by r (t) can be defined by

r(t) =
−d log

(
H̄(t)

)
dt

= w1 (t) rFk:k(t) + w2 (t) rFk+1:k+1(t), (6.1)

where w1 (t) = (1+λ)F̄k:k(t)
(1+λ)F̄k:k(t)−λF̄k+1:k+1(t) and w2(t) = 1 − w1(t). Component hazard rates are,

respectively, given by

rFk:k(t) = krF(t)
Fk−1(t)F̄(t)
1 − Fk(t)

, rFk+1:k+1(t) = (k + 1) rF(t)
Fk(t)F̄(t)

1 − Fk+1(t)
.
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The reversed hazard rate function, rv (t), can be obtained by using the third equality
in (4.1) as

rv(t) =
d log (H(t))

dt
= rvF(t)

[
1 + k − 1 + λ

1 + λ − λF(t)

]
. (6.2)

It can be seen that rv (t) increases in t for λ ∈ [−1, 0] if rvF (t) increases in t, and for
λ > 0, rv (t) decreases in t for λ ∈ [−1, 0] if rvF (t) decreases in t. Furthermore, r (t) also
increases in t for λ ∈ [−1, 0], since rv (t)

[
−1 + 1

H̄(t)

]
= r(t).

7 Generating Random Number from FPT-D

The number generation will be done with convex combination notation given in the
first equality of the equation (4.1). At this point, it is possible to describe the FPT − D
as a 2-component mixture distribution, and the number generation will be easier then.

The first algorithm is considered for integer values of k.

• Step 1: Generate k + 1 random numbers from the baseline distribution, namely
X1,X2, ...,Xk+1 ∼ F, and sort them in ascending order.

• Step 2: Generate a random number U from the uniform distribution on (0, 1).

• Step 3: If U ≤
(

1+λ
k+1

)
, a random number T from FPT-D is k-th smallest value of

X1,X2, ...,Xk+1. Namely, T = Xk:k+1. Otherwise, T = F−1(U
1

k+1 ) or T = Xk+1:k+1.

The second algorithm is considered for k ≥ 1.

• Step 1: Generate a random number U from a uniform distribution on (0, 1).

• Step 2: If U ≤
(

1+λ
k+1

)
, a random number T from FPT-D is obtained as the solution of

the equation as vk (k + 1 − kv)−U = 0. Thus, T = F−1(v). Otherwise, T = F−1(U
1

k+1 ).

In the next section, specific distributions chosen for this family will be considered to
show usefulness of the model on a real data application. Note that the mathematical or
statistical characterizations of these specific distributions will not be included because
of the lack of space.
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8 ML Estimations of Ransmutation Parameters

In this section, we discuss only about how to estimate k and λ parameters of the FPT-D.
Here, since the parameter λ functionally depends on k, we will consider the convex
combination expression for h(t) to simplify maximization of the log-likelihood. By
considering (4.1), let f1 and f2 denote the corresponding pdf of Fk:k+1 and Fk+1:k+1. Then
we have

h(t) =δ1 f1(t) + δ2 f2(t) = δ1

(
k(k + 1) f (t)Fk−1(t)F̄(t)

)
+ δ2

(
(k + 1) f (t)Fk(t)

)
=(k + 1) f (t)Fk−1(t)

(
δ1kF̄(t) + δ2F(t)

)
,

(8.1)

where δ1 + δ2 = 1. Let T1,T2, · · · ,Tn be i.i.d random variables of a sample size n from
the FPT-D. Then, according to (8.1), constrained log-likelihood ℓ = LogL(k, λ;Θ, t

∼
) can

be written as

ℓ =nlog(1 + k) + (k − 1)
n∑

j=1

log(F(t j;Θ)) +
n∑

j=1

log( f (t j;Θ))

+

n∑
j=1

log
(
δk + (1 − δ(1 + k))F(t j;Θ)

)
− ϵ(δ1 + δ2 − 1),

where Θ is the parameter set of F. According to partial derivatives with respect to k,
δ1, δ2 and ϵ, likelihood equations are given by

∂ℓ

∂k
=

n
1 + k

+

n∑
j=1

log(F(t j;Θ)) +
n∑

j=1

δF̄(t j;Θ)(
δk + (1 − δ(1 + k))F(t j;Θ)

) = 0,

∂ℓ

∂δ1
=

n∑
j=1

f1(t j;Θ)(
δ1F1(t j;Θ) + δ2F2(t j;Θ)

) − ϵ = 0,

∂ℓ

∂δ2
=

n∑
j=1

f2(t j;Θ)(
δ1F1(t j;Θ) + δ2F2(t j;Θ)

) − ϵ = 0,

and
∂ℓ
∂ϵ
=δ1 + δ2 − 1 = 0.
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From the last three equations, we have an iterative solution for δ as given by

δ(1) =
1
n

n∑
j=1

δ(0)kF̄(t j;Θ)(
δ(0)kF̄(t j;Θ) + (1 − δ(0))F(t j;Θ)

) .
The iterative solution of parameter k is obtained by the first likelihood equation assum-
ing δ as δ(0).

The steps are repeated until the absolute difference of log likelihood is small. Then,
ML estimates of transmutation parameters are obtained. To show that ML equation for
k has at least one solution, it is useful to give the following proposition.

Proposition 8.1. If n
2 ≥ −

∑n
j=1 log(F(t j;Θ)), then the equation ∂ℓ/∂k = 0 has at least one root

in [1,∞), where δ is the true value of the parameter.

Proof. Let ω (k) denote the function on the RHS of the expression ∂ℓ/∂k, then it is clear
that

lim
k→∞
ω (k) =

n∑
j=1

log(F(t j;Θ)) < 0,

and

lim
k→1
ω (k) =

n
2
+

n∑
j=1

log(F(t j;Θ)) +
n∑

j=1

δF(t j;Θ)(
δF̃(t j;Θ) + (1 − δ)F(t j;Θ)

)
≥ n

2
+

n∑
j=1

log(F(t j;Θ)) ≥ 0.

□

In the next section, the Weibull distribution is chosen for this family. We examine
some statistical properties for FPT-Weibull distribution, specifically.

9 Special Case: FPT-Weibull Distribution

The Weibull distribution is widely used in reliability and lifetime data analysis due to
its flexibility. The values of the shape and the scale parameters affect on distributional
characteristics such as the shape of the pdf curve, the reliability and the hazard rate. For
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this reason, the specific base distribution is taken as Weibull. The following notation is
considered to represent Weibull pdf, which is given by

f (t; σ, η) =
η

σ

( t
σ

)η−1
e−(

t
σ )
η

, t > 0, σ > 0, η > 0.

We will investigate the pdf of the FPT-Weibull distribution with some possible
shapes of the parameter set (σ, η, k, λ). Then, we obtain a series expansion representa-
tion of raw moments, mean, variance, skewness and kurtosis measures. Finally, the
simulation results for estimating the parameters are given.

9.1 Pdf of FPT-Weibull distribution

According to (4.2) and (4.3), the pdf of the FPT-Weibull distribution can be represented
by

h(t) =
η

σ

( t
σ

)η−1
e−(

t
σ )
η(

1 − e−(
t
σ )
η)k−1

[
(k − λ) + λ (k + 1)e−(

t
σ )
η
]

=(k − λ)
η

σ

( t
σ

)η−1 ∞∑
j=0

(
k − 1

j

)
(−1) je−(

t
σ )
η
( j+1)

+ λ(k + 1)
η

σ

( t
σ

)η−1 ∞∑
j=0

(
k − 1

j

)
(−1) je−(

t
σ )
η
( j+2).

(9.1)

Figure 1 illustrates some of the possible shapes of the pdf of a FPT-Weibull random
variable for selected values of the parameters η, k and λ for σ = 1.

9.2 Raw moments, mean, variance, skewness and kurtosis of FPT-Weibull
random variables

Firstly, the raw moments of the FPT-Weibull random variable were obtained from
Nadarajah et al. (2012). Inspired by studies on the exponentiated Weibull distribution
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Figure 1: Some possible shapes of pdf of FPT-Weibull random variable for σ = 1.

and taking into account (9.1), the mth raw moments are given by

E[Tm] =(k − λ)σmΓ

(
m
η
+ 1

) ∞∑
j=0

(
k − 1

j

)
(−1) j(1 + j)−

(
m
η +1

)

+ λ(k + 1)σmΓ

(
m
η
+ 1

) ∞∑
j=0

(
k − 1

j

)
(−1) j(2 + j)−

(
m
η +1

)

=σmΓ

(
m
η
+ 1

) ∞∑
j=0

(
k − 1

j

)
(−1) j

( (k − λ)(1 + j)−
(

m
η +1

)
+λ(k + 1)(2 + j)−

(
m
η +1

)).
(9.2)

Hence, Figure 2 indicates how the first moment changes with λ for σ = 1 and k = 3.
By using (9.2), as we have no implicit formula for the variance, the variance of the
FPT-Weibull random variable can be represented as Figure 3.

Based on the first three moments of the FPT-Weibull random variable, the skewness
measure of this random variable can be calculated by

γ1 =
E[T − E(T)]3

Var(T)3/2
.

According to Rousu (1973) and (9.2), the skewness measure of Weibull random
variables is given by

γ1 =
Γ
(

3
η + 1

)
− 3Γ

(
2
η + 1

)
Γ
(

1
η + 1

)
+ 2Γ

(
1
η + 1

)3

[
Γ
(

2
η + 1

)
− Γ

(
1
η + 1

)2
]3/2

.
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Figure 2: Some possible shapes of first moment of FPT-Weibull random variable w.r.t
to λ for σ = 1 and k = 3.

Table 1: Skewness measure of Weibull distribution for some values of η.

η 0.6 0.9 1.2 1.4 2.6 3.9
γ1 4.59 2.35 1.52 1.20 0.32 -0.07

The tabulated values of the skewness measure of Weibull distribution for some
values of η are given in Table 1. Afterwards, shapes of skewness measure for FPT-
Weibull random variable are given in Figure 4.

Based on the first four moments of the FPT-Weibull random variable, the kurtosis
measure of this random variable can be calculated by

γ2 =
E[T − E(T)]4

Var(T)2 .

According to Rousu (1973) and (9.2), the kurtosis measure of Weibull random variable
is given by

γ2 =
Γ
(

4
η + 1

)
− 4Γ

(
3
η + 1

)
Γ
(

1
η + 1

)
+ 6Γ

(
2
η + 1

)
Γ
(

1
η + 1

)2 − 3Γ
(

1
η + 1

)4

[
Γ
(

2
η + 1

)
− Γ

(
1
η + 1

)2
]2 .

Tabulated values of the kurtosis measure of Weibull distribution for some values
of η are given in Table 2. Afterwards, shapes of skewness measure for FPT-Weibull
random variable are given in Figure 5.
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Figure 3: Some possible shapes of variance of FPT-Weibull random variable w.r.t to λ
for σ = 1 and k = 3.

Table 2: Kurtosis measure of Weibull distribution for some values of η.

η 0.6 0.9 1.2 1.4 2.6 3.9
γ2 40.691 12.833 10.313 12.128 71.465 297.362

As the value of η increases, FPT-Weibull distribution is less flattened than the
Weibull distribution.

9.3 Hazard rate function of FPT-Weibull

From equation (6.1), the hazard rate function of the FPT-Weibull is given by

r(t) =
η

σ

( t
σ

)η−1
(
1 − e−(

t
σ )
η)k−1

e−(
t
σ )
η [

k − λ + λ(1 + k)e−(
t
σ )
η]

1 − (1 + λ)
(
1 − e−(

t
σ )
η)k
+ λ

(
1 − e−(

t
σ )
η)k+1

.

Some shapes of the hazard rate function of the FPT-Weibull random variable are
given in Figure 6. The first three graphs, respectively, show the shapes of hazard rate
functions of Weibull, transmuted-Weibull and FPT-Weibull.
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Figure 4: Some possible shapes of skewness measure of FPT-Weibull random variable
w.r.t to λ for σ = 1 and k = 3.

9.4 Simulation study for ML estimates of the transmutation parameters of
FPT-Weibull

We conduct the simulation study to evaluate the performance of MLEs of the k and λ
with respect to the sample size for FPT-Weibull distribution. All results are obtained
from 1000 Monte Carlo replications, and the simulations are carried out using Matlab
software. According to the second algorithm given in Section 7, we generate samples
from the FPT-Weibull distribution for different sizes n = 20, 50, 100 for the fixed choice
of the parameters {k = 1.2, λ = 0.6}, {k = 2, λ = 0.8}, {k = 5, λ = 3.8} and {k = 8, λ = 6},
where σ = 1 and η = 2.4. Table 3 describes the results for different parameter values
with their corresponding root mean squared errors (RMSE).

According to Table 3, the bias of estimates increases while the values of k and λ
increase. Furthermore, the standard errors of λ estimates are higher than in k for each
sample size.

10 Application

In this section, two applications based on two real data sets are presented to demonstrate
the modeling performance of the FPT-Weibull distributions. We compare the FPT-
Weibull with Weibull and transmuted Weibull (Aryal and Tsokos , 2011) distributions.
Throughout the application section, we use the Akaike Information Criterion (AIC)
as a model selection criterion. Besides, Kolmogorov-Smirnov, Anderson-Darling and
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Figure 5: Some possible shapes of kurtosis measure of FPT-Weibull random variable
w.r.t to λ for σ = 1 and k = 3.

Cramér-von Mises statistics are taken into account as measures of goodness-of-fit.

Akaike information criterion:

AIC = −2 log L
(
Θ; x
∼

)
+ 2m,

where m is the size of the parameter vector Θ.

Goodness-of-fit statistics

• Kolmogorov- Smirnov

k-S = sup
x
|H(x) −Hn(x)| ,

where Hn(x) is the empirical distribution function.

• Anderson-Darling

A2 = −n − 1
n

n∑
j=1

{(
2 j − 1

)
log

[
H

(
t( j); Θ̂

)]
+

(
2
(
n − j

)
+ 1

)
log

[
1 −H

(
t( j); Θ̂

)]}
.

(see, Stephens (1979), Anderson (2011) and Pogány et al. (2015)).
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Figure 6: Some possible shapes of hazard rate function of FPT-Weibull random variable
for σ = 1.

• Cramér-von Mises

W2 =
1

12n
+

n∑
j=1

(
H

(
t( j); Θ̂

)
− 2 j − 1

2n

)2

,

where t( j) is the jth ordered sample, t(1) ≤ · · · ≤ t( j−1) ≤ t( j) ≤ · · · ≤ t(n) (see, Pogány
et al. (2015)).

Data set 1: The first data set contains survival times (in days) of Guinea pigs injected
with different doses of tubercle bacilli and is given in Table 4. The data has been
analyzed by Singh et al. (2013).

The Weibull, transmuted Weibull (T-Weibull) and polynomial transmuted Weibull
(FPT-Weibull) distributions are fitted to the data and the MLEs of the parameters are
computed. Values of Kolmogorov-Smirnov statistic (K-S), Akaike information criterion
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Table 3: Monte Carlo simulation results based on MLE and RMSE for the transmutation
parameters of FPT- Weibull distribution.

Parameters Sample Size, n
20 50 100

k = 1.2

λ = 0.6

1.3004 (0.3408)

0.6650 (0.4361)

1.2435 (0.2157)

0.6378 (0.2963)

1.2197 (0.1588)

0.6180 (0.2227)

k = 2

λ = 0.8

2.1429 (0.6918)

0.9223 (0.7748)

2.0339 (0.4707)

0.8334 (0.5899)

2.0292 (0.3380)

0.8136 (0.4231)

k = 5

λ = 3.8

5.1337 (1.2483)

3.7531 (1.4185)

5.0278 (0.8140)

3.7443 (1.0181)

5.0349 (0.5693)

3.8209 (0.6934)

k = 8

λ = 6

6.9977 (1.9909)

4.3259 (3.9380)

7.3819 (1.6185)

4.9708 (3.0979)

7.7499 (1.1865)

5.5620 (2.1492)

(AIC), Anderson-Darling statistic (A2) and Cramér-von Mises statistic (W2) are also
given with these MLEs of the parameters in Table 5. A graphical comparison of the
fitted models is displayed in Figure 7 and Figure 8. Results show that the FPT -Weibull
distribution fits best to the Guinea pigs data, having the smallest goodness of fit statis-
tics among all three candidate distributions. In order to visually show the performance
of this model, the histogram, Q-Q and P-P graphs are also given in Figure 8.

According to P-P plots in Figure 8, we plotted FW(x(i), σ̂, η̂), FT−W(x(i), σ̂, η̂, λ̂) and
FFPT−W(x(i), σ̂, η̂, λ̂, k̂) against i−.375

n+.25 , where x(i)’s are the ordered values of the Guinea
pigs data. We also calculate the coefficient of determination, R2, for each model. These
values, respectively, are 0.9084, 0.9300 and 0.9783. It is again seen that the FPT-Weibull
model fits better than the other two models.

According to Figure 7 and Figure 8, FPT -Weibull distribution shows a reasonably
good fit, especially in the right tail area. Fitting right tail area is particularly important
for many life testing reliability problems.

Data set 2: The second data set is about the remission times (in months) of a random
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Table 4: Survival times (in days) of Guinea pigs injected with different doses of tubercle
bacilli.

0.012 0.015 0.022 0.024 0.032 0.033 0.034 0.038 0.043 0.044 0.048 0.052
0.053 0.054 0.055 0.056 0.057 0.058 0.059 0.060 0.061 0.062 0.063 0.065
0.067 0.068 0.070 0.072 0.073 0.075 0.076 0.081 0.083 0.084 0.085 0.087
0.091 0.095 0.096 0.098 0.099 0.109 0.110 0.121 0.127 0.129 0.131 0.143
0.146 0.175 0.211 0.233 0.258 0.263 0.297 0.341 0.376 0.030 0.036 0.043
0.061 0.060 0.063 0.063 0.063 0.072 0.081 0.153 0.181 0.260 0.347 0.074

sample of 128 bladder cancer patients. This data set, taken from Lee and Wang (2003),
is given in Table 6.

We fit Weibull, T-Weibull, and FPT-Weibull distributions to this data set. the MLEs of
the parameters, the values of Kolmogorov-Smirnov statistic (K-S), Akaike information
criterion (AIC), Anderson-Darling statistic (A2) and Cramér-von Mises statistic (W2)
are given in Table 7. A graphical comparison of the fitted models is displayed in
Figure 9 and Figure 10.

It is clear from Table 7 that based on K-S, AIC, A2 and W2 the proposed FPT-
Weibull model provides a better fit than the other two models to this data set. The
relative histogram and the fitted pdf of the models are plotted in Figure 9. In order
to visually show the performance of the FPT-Weibull model for the bladder patients’
data, the histogram, Q-Q and P-P graphs are also given in Figure 10. The calculated
values of coefficient of determination for each model, respectively, are 0.9836, 0.9912
and 0.9972.

11 Conclusion

In this paper, we proposed and studied a new class of distributions called the Frac-
tional Polynomial Transmuted Family (FPT-D). This polynomial transmutation led the
range of transmutation parameter to extend from [−1, 1] to [−1, k]. We investigate sev-
eral structural properties such as the cumulative distribution function, the probability
density function, moment generating function, raw moments, survival and hazard
functions. Obviously, this extension provides a little flexibility to analyze real life data.
Two examples of real data empirically proved the importance and potentiality of the
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Table 5: MLEs of the model parameters and values of goodness of fit statistics for
models (Guinea pigs data).

Model Parameter Estimates K-S AIC A2 W2

Weibull σ̂ = 0.1118 η̂ = 1.4058 0.1527 -195.68 2.4518 0.4484

T- Weibull σ̂ = 0.1412 η̂ = 1.5376

λ̂ = 0.5992

0.1350 -197.17 2.0330 0.3577

FPT -Weibull
σ̂ = 0.0151 η̂ = 0.5532

λ̂ = 8.0436 k̂ = 13.5710

0.0866 -206.56 0.7099 0.1256

proposed family. The FPT-Weibull provided better fits than Weibull and transmuted
Weibull distributions when applying to real data sets. According to ML estimates of
transmutation parameters in illustrative examples, these are both greater than 1. There-
fore, extended range of the transmutation parameter can be more useful among other
transmuted candidates for modeling.
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Figure 7: The histogram and the pdfs’ of the fitted models for Guinea pigs data.
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Figure 8: Q-Q and P-P plots of Weibull, Transmuted-Weibull and FPT-Weibull for
Guinea pigs data.
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Table 6: The remission times (in months) of bladder cancer patients.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23
0.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09
0.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24
0.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81
0.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32
0.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66
0.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01
0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33
0.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36
0.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85
0.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 2.02
0.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07
0.73 2.07 3.36 6.93 8.65 12.63 22.69 5.49

Table 7: MLEs of the model parameters and values of goodness of fit statistics (bladder
cancer patients’ data).

Model Parameter Estimates K-S AIC A2 W2

Weibull σ̂ = 9.5607 η̂ = 1.0478 0.0700 832.17 0.9577 0.1537

T- Weibull σ̂ = 14.6198 η̂ = 1.1333

λ̂ = 0.7449

0.0588 829.92 0.5600 0.0879

FPT-
Weibull

σ̂ = 8.1605 η̂ = 0.7770

λ̂ = 1.6423 k̂ = 2.1319

0.0421 828.40 0.2033 0.0299
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Figure 9: The histogram and the pdfs’ of the fitted models for bladder cancer patients’
data.
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Figure 10: Q-Q and P-P plots of Weibull, Transmuted-Weibull and FPT-Weibull for
bladder cancer patients’ data


