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Abstract. The goal of this study is to introduce an Asymmetric Uniform-Laplace (AUL)
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1 Introduction

The Laplace distribution, one of the oldest distributions in probability theory, is among
the best choices whenever the distribution of the data reveals heavier than Gaussian
tails. Laplace distribution has been advocated for use in many problems. We encour-
age the reader to review the bibliography of Kotz et al. (2001) which is impressive
and contains over 100 references. In addition to the classical Laplace distribution, in
recent years, several extensions have been proposed to adapt it and to improve its per-
formance for different applications. Extensions to a skewed model can be found, for
example, in Balakrishnan and Ambagaspitiya (1996), Yu and Moyeed (2001), Huang
et al. (2003), Yu and Zhang (2005) and Harandi and Alamatsaz (2013). Nevertheless,
the current forms of the Laplace distribution (both classical and generalized forms)
have a sharp peak in the middle, which potentially restricts their usefulness. In the
light of this issue, Mahmoudvand et al. (2015) introduced a modified classical Laplace
distribution (MCL) with the probability density function (pdf)

f (x, θ, σ) =
1

3σ


exp

{
x−θ
σ

}
x < θ

1 θ ≤ x < θ + σ
exp

{
−x−θ−σ

σ

}
θ + σ ≤ x,

(1.1)

whereθ ∈ R andσ > 0. Equation (1.1) indicates that theMCLdistribution is symmetric.
It also shows that the flatness parameter strongly depends on the scale parameter, which
potentially restricts its usefulness. We must mention thatMCL might be considered
as a different parameterization of the Uniform-Laplace distribution, briefly described
by Scott (2010). Our objective in this research is to extend theMCL distribution to a
new modified asymmetric Laplace distribution.

Flat peaked densities have been used in sciences, engineering and economics. For
instance, Arie et al. (1991) showed that the pdf of the fluctuating output intensity of a
two-beam interferometer can be a highly peaked pdf. Another example, provided by
Drop et al. (2007), assumes that a decision maker wishes to estimate his market share
of a new clothing line in the upcoming season. He is convinced that it will most likely
fall between 30% and 50%. Moreover, he believes that it is about twice as likely for this
market share to fall within the range [30%, 50%] as compared to being either less than
30% or more than 50%. Figure 1 depicts a density that is consistent with his degree of
beliefs.

For a broader discussion of the earlier effort in this area, see Drop et al. (2007),
Hamdan (2010), Scott (2010) and Mahmoudvand et al. (2015). In this paper we extend
the distribution proposed by Mahmoudvand et al. (2015) to handle both asymmetry
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Figure 1: Graph of the pdf of the market share example.

and a flat parameter.

The paper is organized as follows. In Section 2, we give a short illustration of
the asymmetric Uniform-Laplace distribution. In Section 3, we provide the maximum
likelihood estimates of the parameters. We compare the fits of two models, symmetric
and asymmetric Uniform-Laplace distributions, to several real data sets in Section 4.
In the last section, we summarize the contents of the paper and present the new ideas
for further research in this direction.

2 Asymmetric Uniform-Laplace distribution

Using the suggestion by Mahmoudvand et al. (2015), a possible form for asymmetric
Uniform-Laplace distribution is provided via the pdf
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f (x;θ, µ, δ, σ) =
1

µ + δ + σ


exp

{
x−θ
δ

}
x < θ

1 θ ≤ x < θ + µ
exp

{
−x−θ−µ

σ

}
θ + µ ≤ x,

(2.1)

where θ ∈ R is the location parameter, µ > 0 is the flatness parameter and δ > 0
and σ > 0 are the left and right tail parameters, respectively. Here we use the nota-
tion AUL(θ, µ, δ, σ) for the asymmetric Uniform-Laplace distribution with the above
probability density function. The probability density function AUL(θ, µ, δ, σ) may
be expressed as a mixture involving three densities f1(.), f2(.) and f3(.) with bounded
support, such that

f (x;θ, µ, δ, σ) =
3∑

i=1

πi fi(x;θ, µ, δ, σ), (2.2)

where

f1(x;θ, µ, δ, σ) = 1
δe

x−θ
δ I(−∞,θ)(x), π1 =

δ
µ+δ+σ ,

f2(x;θ, µ, δ, σ) = 1
µ I(θ,θ+µ)(x), π2 =

µ
µ+δ+σ ,

f3(x;θ, µ, δ, σ) = 1
σe−

x−θ−µ
σ I(θ+µ,∞)(x), π3 =

σ
µ+δ+σ .

We observe that the mixture weight for the first part, π1, decreases as its tail param-
eter δ increases. A similar observation can be made for the second and the third part
with obvious modifications. It is worth noting that Equation (2.1) can be represented
as

1
µ + δ + σ

exp
{
−|x − θ| − (x − θ)

2δ
−
|x − θ − µ| + (x − θ − µ)

2σ

}
. (2.3)

Allowing additional parameters offers the potential to fit more subtle features of
the distribution than it is possible with two parameters, and describes the shape of tails
more accurately. Figure 2 shows that the shape of the density (2.2) takes on various
forms based on different values of θ, µ, δ and σ. Positive skewness is produced when
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δ < σ and negative skewness for δ > σ.
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Figure 2: Graph of the pdf of the asymmetric Uniform-Laplace distribution for selected
parameter values.

The cumulative distribution function (cdf) ofAUL(θ, µ, δ, σ) is given by

1
µ + δ + σ


δ exp

{
x−θ
δ

}
x < θ

x − θ + δ θ ≤ x < θ + µ
µ + δ + σ

(
1 − exp

{
−x−θ−µ

σ

})
θ + µ ≤ x.

(2.4)

Figure 3, shows the plots of the cdf for the fixed values of θ and µ and different
values of the scale parameters δ and σ. Regarding the second piece of cdf, one can
observe that for σ > δ (right-skewed density) the slope of the graph is much steeper
than the cases of σ < δ and σ = δ (symmetric and left-skewed densities). Thus, the area
under the curve of the density in the second interval (θ, θ + µ), for σ > δ, is less than
two other graphs.
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Figure 3: Graph of the cdf of the asymmetric Unifrorm-Laplace distribution for selected
values of the parameters.

The moment generating function ofAUL distribution is given by

M(t) =
exp {θt}
µ + δ + σ

(
δ1 + δt +

exp {µt} − 1
t

+
σ exp {µt}

1 − σt

)
, (2.5)

provided that −1
δ ≤ t ≤ 1

σ .

Proposition 2.1. Let X ∼ AUL(θ, µ, δ, σ). The kth raw moment for X is given by

E(Xk) =
δ

µ + δ + σ

k∑
t=0

(
k
t

)
t!(−1)tθk−tδt

+
1

µ + δ + σ

[
(θ + µ)k+1 − θk+1

k + 1

]
+

σ
µ + δ + σ

k∑
t=0

(
k
t

)
t!σt(θ + µ)k−t.

(2.6)
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Proposition 2.2. Let X ∼ AUL(θ, µ, δ, σ). Then, the positive skewness is produced when
δ < σ and negative skewness for δ > σ.

Proof. Without loss of generality, we can assume that θ = 0. Then, using Proposition 1,
we get

E(X) =
−2δ2 + µ2 + 2µσ + 2σ2

2(µ + σ + δ)
,

E(X2) =
6δ3 + µ3 + 3µ2σ + 6σ2µ + 6σ3

3(µ + σ + δ)
, (2.7)

E(X3) =
−24δ4 + µ4 + 4µ3σ + 12σ2µ2 + 24σ3µ + 24σ4

4(µ + σ + δ)
.

Denoting the third central moment by M3, we get

M3 = E (X − E(X))3 = E(X3) − 3E(X2)E(X) + 2E3(X)

=
(σ − δ)B

4(µ + δ + σ)3 , (2.8)

where B is given as

B = 8σ5 + 32δσ4 + 24µσ4 + 24µ2σ3 + 72δµσ3 + 56σ3δ2 + 8µ3σ2

+ 48µ2δσ2 + 96δ2µσ2 + 56δ3σ2 + 72δ3µσ + 32δ4σ + µ4σ + 12µ3δσ

+ 48µ2δ2σ + 8δ5 + 24δ3µ2 + 8µ3δ2 + 24δ4µ + µ4δ.

Since µ, δ and σ are positive, we have

M3 =


> 0, if σ > δ
= 0, if σ = δ
< 0, if σ < δ,

which completes the proof. □

Proposition 2.3. Let X ∼ AUL(θ, µ, δ, σ). The quantile Qp of X is written as

Qp =


δ ln

( p(µ+δ+σ)
δ

)
+ θ , p < δ

µ+δ+σ

p(µ + δ + σ) + θ − δ , δ
µ+δ+σ ≤ p < µ+δ

µ+δ+σ

−σ ln
( (µ+δ+σ)(1−p)

σ

)
+ θ + µ , p ≥ µ+δ

µ+δ+σ .

(2.9)
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Here we use the inverse transformation method to generate random sample from
AUL(θ, µ, δ, σ). It suffices to generate random samples from a uniform distribution.
Then Equation (2.9) can be used to obtain quantiles.

Proposition 2.4. Rényi entropy (see, Rényi (1961)) of theAUL distributions is given by

Hα(X) =
1

1 − α log
{∫

f α(x)dx
}

=
1

1 − α log
{(

1
µ + δ + σ

)α (
δ
α
+ µ +

σ
α

)}
,

(2.10)

where α > 0.

Remark 1. Shannon’s entropy of the AUL distribution, which is the limiting case of
(2.7) for α→ 1 ( see, Shannon (1948)), is given by

H(X) = E(− log ( f (X))) = log((µ + δ + σ)e
δ+σ
µ+δ+σ ). (2.11)

Shanon’s entropies of the classical and modified classical Laplace distribution
CL(θ, σ) and MCL(θ, σ) are log(2σe) and log(3σe

2
3 ), respectively (Mahmoudvand et

al. , 2015). We can easily conclude that if µ+ δ > 2σ then the entropy ofAUL(θ, µ, δ, σ)
is larger than the entropy of bothMCL(θ, σ) and CL(θ, σ).

3 Parameter Estimation

Equation (2.7) and the general Equation (2.6) show that the method of moments involves
solving large degree polynomials, without any guarantee that the produced solution
will be numerically stable. Hence, we check the maximum likelihood approach. Let
x1, x2, . . . , xn be a random sample from AUL(θ, µ, δ, σ) and x(1) ≤ x(2) ≤ . . . ≤ x(n) be
the corresponding ordered sample. Using Equation (2.3) the log-likelihood function is
given by

l(θ, µ, δ, σ) = −n ln(µ + δ + σ) − 1
2δ

n∑
i=1

{|xi − θ| − (xi − θ)}

− 1
2σ

n∑
i=1

{|xi − θ − µ| + (xi − θ − µ)
}
.
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We consider several cases. For simplicity, we denote by ℓ the log-likelihood function
l(θ, µ, δ, σ) and by ℓ′θ, ℓ

′
µ, ℓ
′
δ and ℓ′σ the partial derivatives d

dθ l(θ, µ, δ, σ), d
dµ l(θ, µ, δ, σ),

d
dδ l(θ, µ, δ, σ) and d

dσ l(θ, µ, δ, σ), respectively.

Case 1: µ, σ and δ are known.

Using notations yi and wi as

yi =


xi − µ, i = 1, . . . ,n,

xi−n, i = n + 1, . . . , 2n.
, wi =


1
σ , i = 1, . . . , n,

1
δ , i = n + 1, . . . , 2n,

we can see that the log-likelihood function is proportional to

−n ln(µ + δ + σ) − 1
2

2n∑
i=1

w(i)|y(i) − θ| +
nθ
2

(1
σ
− 1
δ

)
,

where y(i) are ordered values and w(i) are corresponding coefficients. Then, we get

ℓ′θ =


n
σ , θ < y(1),

n
σ −

m∑
i=1

w(i) y(m) < θ < y(m+1) m = 1, . . . , 2n − 1.

−n
δ θ > y(2n),

Therefore, assuming that p = min{m : n
σ −

m∑
i=1

w(i) < 0}, any statistic of the form

λy(p) + (1 − λ)y(p+1) , λ ∈ [0, 1]. (3.1)

may be taken as an MLE of the parameter θ in this case.

Case 2: θ, σ and δ are known.

In this case, the log-likelihood function is equal to

ℓ ∝ −n ln(µ + σ + δ) − 1
2σ

n∑
i=1

|xi − θ − µ| −
1

2σ

n∑
i=1

(xi − θ) +
nµ
2σ
.

Using this equation, we get

ℓ′µ = −
n

µ + σ + δ
+

n −m
σ

, x(m) − θ < µ < x(m+1) − θ , m = 0, . . . , n,
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where, we set x(0) = −∞ and x(n+1) = ∞. Since µ > 0 and ℓ′µ takes positive values
− n
µ+σ+δ +

n
σ for µ < x(1) − θ and decreases with µ and finally takes negative values on

the interval (x(n,∞), then the MLE for µ exists and equals to

µ̂ =
d

n − d
σ − δ, (3.2)

in which

d = min
{

m : − n
µ + σ + δ

+
n −m
σ
≤ 0

}
.

Case 3: θ and µ are known.

In this case, we have

ℓ′δ = − n
µ + δ + σ

+
1

2δ2

n∑
i=1

{|xi − θ| − (xi − θ)} ,

ℓ′σ = − n
µ + δ + σ

+
1

2σ2

n∑
i=1

{|xi − θ − µ| + (xi − θ − µ)
}
.

It is easy to see that

ℓ′δ =


> 0 , δ <

δ0+
√
δ2

0+4δ0(µ+σ)
2

= 0 , δ =
δ0+
√
δ2

0+4δ0(µ+σ)
2

< 0 , δ >
δ0+
√
δ2

0+4δ0(µ+σ)
2 ,

where δ0 =
∑n

i=1 {|xi − θ| − (xi − θ)} /2n. Similarly, we have

ℓ′σ =


> 0 , σ <

σ0+
√
σ2

0+4σ0(µ+δ)
2

= 0 , σ =
σ0+
√
σ2

0+4σ0(µ+δ)
2

< 0 , σ >
σ0+
√
σ2

0+4σ0(µ+δ)
2 ,

where σ0 =
∑n

i=1
{|xi − θ − µ| + (xi − θ − µ)

}
/2n. The above results show that maximum

likelihood estimates of δ and σ exist and can be obtained via numerical methods. For
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instance, setting ℓ′σ equal to zero, substituting in the MLE δ̂MLE =
δ0+
√
δ2

0+4δ0(µ+σ)
2 for δ

and solving by the numerical method give the MLE for σ. It is worth mentioning that

δ̂MLE ≥ δ0 =

∑n
i=1 {|xi − θ| − (xi − θ)}

2n
,

σ̂MLE ≥ σ0 =

∑n
i=1

{|xi − θ − µ| + (xi − θ − µ)
}

2n
.

Case 4: All parameters are unknown.

In this case, we have:

ℓ′θ =
n
2

(1
σ
− 1
δ

)
+

1
2δ

n∑
i=1

|xi − θ|
xi − θ

+
1

2σ

n∑
i=1

|xi − θ − µ|
xi − θ − µ

,

ℓ′µ = − n
µ + δ + σ

+
1

2σ

n∑
i=1

|xi − θ − µ|
xi − θ − µ

+
n
2σ
,

ℓ′δ = − n
µ + δ + σ

+
1

2δ2

n∑
i=1

{|xi − θ| − (xi − θ)} ,

ℓ′σ = − n
µ + δ + σ

+
1

2σ2

n∑
i=1

{|xi − θ − µ| + (xi − θ − µ)
}
.

Using cases 1 and 2,

ℓ′θ =


positive, θ + µ < x(1),
decreasing, y(2) < θ < y(2n).
negative, θ > x(n).

ℓ′µ =


positive, θ + µ < x(1),

decreasing, x(1) < θ + µ < x(n),

negative, θ + µ > x(n).

Figure 4 shows a sample of the logarithm of the likelihood function for fixed δ and
σ with respect to θ and µ. This figure shows that the function has a maximum. We
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u
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Figure 4: Graph of the function l(θ, µ, δ, σ) for a fixed δ and σ based on a simulated data
set of size n = 200 from AUL(0.4, 1.3, 3, 1.5).

highlighted the maximum point on the surface by a black colour. We can conclude that
θ̂MLE and µ̂MLE exist. In addition, using Case 3 we can find a solution for ℓ′δ = 0 and
ℓ′σ = 0 for each value of θ and µ. Thus, δ̂MLE and σ̂MLE exist and can be obtained via
numerical methods.

Considering the above inequalities, we should use numerical methods to produce
the MLE for the parameters. However, there is no guarantee that the produced solution
will be numerically stable. Therefore, we suggest the following approximation for
obtaining estimators. Since the mode ofAUL(θ, µ, δ, σ) can be any number between θ
and θ + µ, we suggest a bootstrap approach to find an estimator for the parameters θ
and µ.
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3.1 Bootstrap-based Estimators

Using the probability density function of AUL(θ, µ, δ, σ), it is obvious that the mode
is M = {x : θ ≤ x ≤ θ + µ}. Thus, we get

θ = min M, µ = max M −min M. (3.3)

Intuitively speaking, θ andµ could be estimated by substituting M by the sample mode.
We use a Bootstrap-based algorithm to find these estimates. Assume that x1, . . . , xn is
a sample from an underlying cdf F(x), and F̂(x) is the corresponding empirical cdf.
Repeat the following steps for b = 1, . . . ,B:

(i) Generate a copy x(b)
1 , . . . , x

(b)
n from the original observations x1 . . . , xn,

(ii) Compute the sample mode of the bootstrap sample x(b)
1 , . . . , x

(b)
n and denote it by

x̃(b).

Then, we have
θ̂ = min

b=1,...,B

{
x̃(b)

}
, µ̂ = max

b=1,...,B

{
x̃(b)

}
− θ̂. (3.4)

Using these estimations, we get

F̂(θ) = F̂(θ̂), 1 − ̂F(θ + µ) = F̂(θ̂ + µ̂). (3.5)

Now, we are able to estimate δ and σ by the method of maximum likelihood. Note that

ℓ′δ = −n
δ

F(θ) +
1

2δ2

n∑
i=1

{|xi − θ| − (xi − θ)} .

ℓ′σ = −n
σ

(1 − F(θ + µ)) +
1

2σ2

n∑
i=1

{|xi − θ − µ| + (xi − θ − µ)
}
.

Substituting F(θ) and F(θ + µ) by F̂(θ̂) and F̂(θ̂ + µ̂) we get

δ̂ =
1

2nF̂(θ̂)

n∑
i=1

{
|xi − θ̂| − (xi − θ̂)

}
. (3.6)

σ̂ =
1

2n(1 − F̂(θ̂ + µ̂))

n∑
i=1

{
|xi − θ̂ − µ̂| + (xi − θ̂ − µ̂)

}
. (3.7)
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It is worth mentioning that there are several different ways to calculate the sample
mode, but none is superior to others. The simplest mode estimator is the midpoint
of the estimated modal interval, the interval of some fixed width w that includes the
maximum number of data points of a sample (Chernoff , 1964). This estimator is called
Chernoff or Navie estimator. Wegman (1971) proved that this simple estimator of the
mode has a strong consistency. More complicated estimators have been proposed by
Venter (1967) and Lientz (1970). In the Venter method, the modal interval, i.e. the
shortest interval among intervals containing k+1 observations, is first computed. Then,
the median of the modal interval is returned as the mode. The Lientz mode estimator is
the value minimizing the Lientz function estimate. The Lientz function is the smallest
non-negative quantity S(x, β), such that

F(x + S(x, β)) − F(x − S(x, β)) ≥ β,

where β is equal to the the bandwidth.
Two other relatively new estimators are the Half-Sample Mode and Half-Range

Mode. Although there are some comparisons between these methods in the literature,
these are not systematic or extensive, see for example Bickel (2002), Blair Hedges and
Shah (2003) and Bickel and Fruehwirth (2006).

The R package package modeest provides different estimators of the mode of uni-
variate distributions, see Poncet (2012).

We perform a simulation study in order to see the efficiency of the bootstrap-based
method for AUL distribution. We generate 1000 samples of size n = 50, 100 and 200
from AUL(θ, µ, δ, σ) with θ = 5, µ = 3, δ = 1 and σ = 0.5. We have reported the
results for three methods of the mode estimation: Naive, Lientz and Venter. The results
are presented in Table 1. Of the three methods tested, the Naive estimator is preferred
for large n because it performed better than the Lientz and Venter estimators in terms
of lowering bias. However, the Lientz estimator is preferred for small n in terms of
lowering bias. The results show that the Venter estimator produced minimum MSE in
7 out of 12 cases versus 4 with Lientz and 2 with Naive.

3.2 Asymptotic Normality

Let us start with the derivation of the Fisher information matrix, I(θ, µ, δ, σ), corre-
sponding to an AUL(θ, µ, δ, σ) distribution. We may note that the AUL(θ, µ, δ, σ)
does not completely satisfy the standard differentiability assumptions required for the
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Table 1: Bootstrap-based estimates of the parameters of the AUL(θ, µ, δ, σ) distribution for
simulated data when θ = 5, µ = 3, δ = 1 and σ = 0.5 and for n = 50, 100 and 200.

Method
Naive Lientz Venter

Parameter n Estimate MSE Estimate MSE Estimate MSE

50 4.42 0.61 4.67 0.31 4.66 0.29
θ 100 4.69 0.23 4.93 0.13 4.95 0.11

200 4.88 0.10 5.18 0.09 5.21 0.11
50 3.69 0.90 3.22 0.09 3.24 0.31

µ 100 3.32 0.33 2.75 0.22 2.73 0.24
200 3.01 0.15 2.31 0.56 2.28 0.60
50 0.89 0.18 0.96 0.14 0.94 0.13

δ 100 0.97 0.07 0.98 0.06 0.98 0.05
200 0.99 0.03 1.00 0.02 1.02 0.02
50 0.48 0.06 0.53 0.05 0.52 0.04

σ 100 0.49 0.03 0.58 0.03 0.57 0.02
200 0.50 0.01 0.62 0.03 0.63 0.03

computation of the Fisher information matrix, since its density is not differentiable with
respect to θ and µ at some points. However, the following relation is valid under a
weaker assumption that the density is absolutely continuous, which is the case for the
AUL(θ, µ, δ, σ), i.e.,

I(θ, µ, δ, σ) = nE(DDT),

where DT =
[

d
dθ log f , d

dµ log f , d
dδ log f , d

dσ log f
]

is the vector of the partial derivative of
density f with respect to the parameters θ, µ, δ and σ. One can see easily that

E
( |X − θ|

X − θ

)
=
−δ + µ + σ
δ + µ + σ

,

E
( |X − θ − µ|

X − θ − µ

)
=
−δ − µ + σ
δ + µ + σ

,

E
(
|X − θ|
X − θ ×

|X − θ − µ|
X − θ − µ

)
=
δ − µ + σ
δ + µ + σ

.
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Using the above equations after routine calculations we obtain

I(θ, µ, δ, σ) =



n(σ+δ)
σδ(µ+δ+σ)

n
σ(µ+δ+σ) − n

δ(µ+δ+σ) + n
σ(µ+δ+σ)

n
σ(µ+δ+σ)

n(µ+δ)
σ(µ+δ+σ)2 − n

(µ+δ+σ)2
n
σ

µ+δ
(µ+δ+σ)2

− n
δ(µ+δ+σ) − n

(µ+δ+σ)2
nδ+2nµ+2nσ
δ(µ+δ+σ)2 − n

(µ+δ+σ)2

n
σ(µ+δ+σ)

n
σ

µ+δ
(µ+δ+σ)2 − n

(µ+δ+σ)2
nσ+2nµ+2nδ
σ(µ+δ+σ)2


. (3.8)

Denoting the asymptotic covariance matrix of (θ̂, µ̂, δ̂, σ̂) byΣ and taking the inverse
of the above Fisher information matrix, we get

Σ =

(
µ + σ + δ

n

)


δ(δ+2µ)
µ − δ(σ+δ+2µ)

µ δ 0

− δ(σ+δ+2µ)
µ

(σ+δ)(σ+δ+2µ)
µ −δ −σ

δ −δ δ 0

0 −σ 0 σ


.

We conduct a simulation study in order to calculate the coverage probabilities and
confidence lengths of the confidence intervals obtained via the asymptotic normal dis-
tribution assumed for the estimation of parameters according to the sample size. The
simulation size was 1000 and the Naive method was used to obtain the estimates for
the parameters.

Table 2 shows the results. This Table indicates that the coverage probability increases
with sample size and approaches to 0.95 for all estimates. It shows also that the
confidence length decreases with the sample size in all cases.
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Table 2: Coverage probability (C.P) and Confidence length (C.L) of the confidence
interval 95% for the parameters of the AUL(θ, µ, δ, σ) distribution using simulated
data when θ = 5, µ = 3, δ = 1 and σ = 0.5 and for n = 50, 100 and 200.

Parameter
θ µ δ σ

n C.P C.L C.P C.L C.P C.L C.P C.L

50 0.845 1.72 0.934 2.22 0.824 1.13 0.942 0.82
100 0.907 1.22 0.941 1.59 0.884 0.70 0.948 0.59
200 0.928 0.87 0.943 1.14 0.911 0.57 0.951 0.42

4 Real data

In this section we discuss a comparison of the asymmetric Uniform-Laplace distribution
with other distributions via real data sets. Kolmogorov-Smirnov (K-S) test has been
employed to evaluate the efficiency of the new proposal.

Daily Working Time

The OECD Jobs Strategy recommends that the governments take measures aimed at
increasing working-time flexibility (see, OECD (2004)). A common work pattern in
Iranian offices is to begin between 7:30 or 8:00 AM and end at 3:30 PM. We consider
daily working time (in hours) for 374 samples in Bu-Ali Sina University, Iran. The
MLE and associated MSEs of the parameters for AUL are given in Table 3. Since the
estimated δ is less than σ, we decided to fit and compare the other skew models to
this data set. We considered Skew-Normal (Azzalini and Capitanio (2014)), Skew-t
(Azzalini and Capitanio (2014)) and Asymmetric Laplace distributions (Yu and Zhang
(2005)). Computations for these alternatives were done by R packages sn and ald. For
this data set, the K-S statistic and its P-value are presented in Table 4. This table shows
a considerable improvement in terms of the K-S test. We have also checked graphical
fitting of the AUL distribution to this data set. Figure 5 indicates that the AUL
distribution fits to this data set very well.
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Table 3: MLE of the parameters of theAUL(θ, µ, δ, σ) distribution for the daily working
time data.

θ µ δ σ

Estimate MSE Estimate MSE Estimate MSE Estimate MSE

7.50123 0.0205 0.85231 0.014 0.23022 0.0011 0.33124 0.0063

Table 4: K-S test for fitting distributions to daily wage.

AUL Skew-Normal Skew-t Asymmetric Laplace
K-S 0.0602 0.2127 0.0752 0.1252

P-value 0.1276 1.1e-15 0.0276 1.4e-05
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Figure 5: Graphical fitting ofAUL to Daily working time data set.
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Pontius Data Set

The Pontius data set is from the National Institute of Standards and Technology. We
chose Pontius data set because Hamdan (2010) investigated the possibility of fitting a
flat density (FD) to this data set. He used the density

f (x;θ, σ) =
1√

2πσ + 2θ


e−

(x+θ)2

2σ2 x < θ
1 |x| ≤ θ

e−
(x−θ)2

2σ2 x > θ.

(4.1)

Since the data seem to be symmetric, we fitted a special case of theAULdistribution
with σ = δ. In addition, we compared fitting with the FD given by Equation (4.1). For
this density we used the estimate that Hamdan (2010) produced. The Kolmogorov-
Smirnov statistic for AUL is 0.04 with a P-value equal to 0.999. Hamdan (2010)
reported the Kolmogorov-Smirnov statistic with FD as 0.12 with a P-value equal to
0.541. Therefore, we find an improvement byAUL when it is compared with FD, in
terms of the Kolmogorov-Smirnov statistic. Additionally, the graphical comparison is
provided by Figure 6. As it is pointed out,AUL fits quite well.
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Figure 6: Graphical comparison ofAUL and FD to Pontius data set.
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5 Conclusion

This study is an attempt aimed at investigating a new form of the modified Laplace
distribution which is asymmetric and flat in the middle. We have derived the ana-
lytical forms of moments, the moment generating function, quantiles and Shanon’s
entropy for this distribution. Additionally, the condition in which the new proposed
distribution is more informative than the modified symmetric and classical Laplace
distributions has been provided.
We have presented statistical comparisons of asymmetric Uniform-Laplace distribu-
tions via two real data sets namely daily working time in Iran and Pontius data set.
Application of the new distribution has proved that it can be used quite effectively to
provide a better fit than other distributions when there is a flatness in the middle. It
might be interesting to extend the results of this paper to other distributions.
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