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Abstract. Pricing weather derivatives is becoming increasingly useful, especially in
developing economies. We describe a statistical model based approach for pricing
weather derivatives by modeling and forecasting daily average temperature data which
exhibits long-range dependence. We pre-process the temperature data by filtering for
seasonality and volatility and fit autoregressive fractionally integrated moving average
(ARFIMA) models, employing the preconditioned conjugate gradient (PCG) algorithm
for fast computation of the likelihood function. We illustrate our approach using
daily temperature data from 1970 to 2008 for cities traded on the Chicago Mercantile
Exchange (CME), which we employ for pricing degree days futures contracts. We
compare the statistical approach with traditional burn analysis using a simple additive
risk loading principle for pricing, where the risk premium is estimated by the method
of least squares using data on observed prices and the corresponding estimate of prices
from the best model we fit to the temperature data.
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1 Introduction

Weather conditions have a significant impact on virtually every sector of the economy
in almost every country globally. Estimates from the US Department of Commerce
indicate that about one fifth of the US economy is directly affected by the weather and
that roughly one third of the economy is weather sensitive, every state being impacted.
While the economy of any country can be badly hurt by severe weather events, it can
also be helped by less severe events, for example, a heat wave could increase sales
of air conditioners and tickets for water parks. Weather related catastrophes include
floods, storms (hurricane or typhoon), dry and cold events (droughts, forest fires, heat
wave, heavy frost, snow storms, and ice storms), tornadoes, hailstorms, or snow/mud
avalanches. Between 1998 and 2008, there were 293 catastrophic events, each event
causing $25 million or more of insured property losses and affecting a significant num-
ber of policyholders and insurers, resulting in a total insured property damage sum of
$199 billion (Insurance Services Office, see www.iso.com). Traditionally, insurance has
served as the main tool for protection against unexpected weather conditions. Weather
derivatives, developed from the financial services industry, are gaining popularity as
important alternate weather risk management tools (Berlage , 2013).

Weather derivatives are financial contracts with payouts that depend on weather
variables such as temperature, humidity, rain or snowfall. The first weather derivative
was dealt between Consolidated Edison Co. and Aquila Energy in 1996. Over-the-
counter trading of weather derivatives began in 1997, by energy traders Aquila, Enron,
and Koch Industries. Exchange-traded weather futures contracts and correspond-
ing options were first handled by the Chicago Mercantile Exchange (CME) in 1999.
Currently, CME weather contracts are available in more than 45 cities in the United
States, Europe, Canada, Australia and Asia. They mostly trade in temperatures, and
sometimes in snowfall, rainfall, frost, and hurricanes. According to the Weather Risk
Management Association (WRMA), weather contracts traded by CME reached $8 bil-
lion within a few years of inception, with a record high of $45.2 billion in 2006. The
trading volumes decreased after the demise of the US energy company Enron (which
pioneered weather derivatives) in 2001, but the gap left by energy companies was soon
covered by investment banks and hedge funds. The weather derivatives market, to-
gether with most of the global financial markets, was again hurt during the financial
crisis in 2008. However, it has been growing again since 2010, with increased count
and diversity of end users of weather derivatives and the associated weather risk man-
agement tools. The CME weather derivatives market grew 20% just between 2010 and
2011, with about 730,000 contracts traded worldwide. According to the latest survey
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conducted by the Weather Risk Management Association (WRMA, see www.wrma.org),
the customized weather derivatives market grew approximately 30% between April 1,
2009 and March 31, 2010. According to this source, the total notional value for OTC
traded weather risk contracts rose to $2.4 billion, while the overall market grew to
$11.8 billion. There is considerable interest in emerging market economies as well. For
instance, the Associated Chambers of Commerce and Industry of India (ASSOCHAM)
has been pushing for the introduction of regulation that would allow for the use of
weather derivatives, which will be an enormously successful market given the size
of the Indian agricultural sector. Chokshi (2012) discussed the emergence of weather
derivatives as a hedging tool, and studied the feasibility of weather derivative contracts
in the context of risk management issues in agriculture, also see Below (2008) and Zhou
et al. (2016).

The Black-Scholes model (Black and Scholes (1973)) is the most successful tradi-
tional arbitrage-free approach for pricing derivatives, and is applicable in a market
which operates continuously without friction. However, pricing weather derivatives
are complex mainly because (a) the weather index is itself a meteorological observa-
tion which is not directly traded on the financial market (Dischel (1998), Cao and Wei
(2004), Davis (2001) and Leggio and Lien (2002)), and (b) there is little liquidity in the
weather derivatives market. Traditional arbitrage-free pricing models that are usually
used with financial derivatives are not appropriate for pricing weather derivatives,
and it is not possible to construct a portfolio with perfect duplication in pricing. Cao
and Wei (2004) claimed that the market price of risk is a key factor in the valuation of
a weather derivative payoff, and that any reasonable pricing model must incorporate
accurate modeling of the underlying and the assessment of the market price of risk.
Their main finding is that the market price of risk associated with the temperature
variable is significant. Platen and West (2005) claimed that the risk premium tends to
decrease when the insurance companies are in competition. Geman (1999) suggested
that the meteorological index (say temperature) be replaced by an energy price which
has a high correlation with the meteorological index.

The Historical Burn Analysis is a traditional actuarial approach (Brix et al. (2002),
Jewson (2004), Platen and West (2005) and Hamisultane (2008)) which is attractive
due to its ease of implementation and applicability to any type of weather derivative,
thus avoiding the issues in (a) and (b) discussed earlier. It is based on the law of large
numbers, and has been widely used by the insurance industry for many years. For
example, in pricing the HDD futures in Boston for next January, one simply calculates
the average payoff of the same futures based on the past years. The actuarial approach
can be improved by using a statistical analysis based on historical temperature data,
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yielding a forecast formula to simulate future temperature and thus calculate the av-
erage payoff of the derivatives. Unlike the Historical Burn analysis which is directly
based on the CDD/HDD, this blended statistical approach relies on time series model-
ing of pre-processed daily temperature data followed by a simulation of the CDD/HDD
index with the corresponding payoffs. For earlier work, in this area, see Jewson and
Caballero (2002), Campbell and Diebold (2005), Caporin and Pres (2009), Hamisultane
(2008) and Schiller et al. (2012). Jewson et al. (2005) discussed valuations covering
meteorological, statistical, and financial issues that arise in the pricing and risk man-
agement of weather derivatives. Chincarini (2011) focused on the market efficiency by
examining the accuracy of national weather forecasts, simple weather models, as well
as the actual market prices of weather futures.

All weather contracts are based on actual observations of weather variables at
specific weather stations. There is evidence that the daily average temperature exhibit
evidence of long-range dependence (Caballero et al. (2002)). This paper describes an
approach for pricing weather derivatives based on model fitting and prediction of daily
average temperature using an autoregressive fractionally integrated moving average
ARFIMA(p,d,q) model. The data description is provided in Section 2. In Section 3, we
describe a statistical modeling framework for daily average temperature using the class
of autoregressive fractionally integrated moving average (ARFIMA) models, while in
Section 4, we present an application to pricing temperature derivatives using the data
for Boston as illustration. Analyses for other cities may be done in a similar fashion.

2 Data Description

All weather contracts are based on actual observations of weather variables at specific
weather stations. For our analysis, we use average daily temperature from January
1, 1970 to November 8, 2008 measured at 17 different locations in the US. The data
were provided by MDA EarthSat (www.mdacorporation.com). The underlying index
of a weather derivative defines a measure of weather which governs when and how
payouts on the contract will occur. The most common indices in the market are
Heating Degree Days (HDDs) and Cooling Degree Days (CDDs). Let Tmax and Tmin
respectively denote the maximum and minimum daily temperature, and let the average

daily temperatures be defined as Tave =
Tmax + Tmin

2
. Let X denote the average

temperature for a given day. The daily HDD and CDD values are defined as

HDD = max(0, 65 − X).
CDD = max(0,X − 65).
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The cumulative HDD is cHDD =
∑

t HDDt, and the cumulative CDD is cCDD =∑
t CDDt. To determine a weekly, monthly, or seasonal HDD or CDD index value, we

simply add the daily HDD or CDD values for the appropriate time period. Consider
the following examples:

• HDD seasonal contract from November 1 to March 31 (151 days): cHDD =∑151
t=1 HDDt;

• CDD seasonal contract from May 1 to September 30 (153 days): cCDD =
∑153

t=1 CDDt;

• HDD monthly contracts for October, December, January and March (31 days),
November and April (30 days), February (28 days): cHDD =

∑
t HDDt, where

the summation is over the number of days in the selected month;

• CDD monthly contracts for April, June, and September (30 days), May, July,
August, and October (31 days): cCDD =

∑
t CDDt, where the summation is over

the number of days in the selected month.

That is, suppose we are looking at pricing monthly contracts based on HDD, for
October, November, December, January, February, March and April. If we look at
pricing seasonal contracts, we would look at the period November - March. For CDD,
the corresponding periods are April, May, June, July, August, September, and October
for monthly contracts, and May - September for seasonal contracts.

3 Long Memory Models for Daily Temperatures

Stochastic modeling of daily average temperatures has been discussed in the literature,
for example, see Alaton et al. (2002), Caballero et al. (2002), Campbell and Diebold
(2005), and Pai and Ravishanker (2009). Campbell and Diebold (2005) modeled daily
average temperature using time trend, seasonality, a long autoregression (AR), and
generalized conditional heteroscedastic (GARCH) with time varying seasonal deter-
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ministic regressors:

Tt = Trendt + Seast +

L∑
l=1

ρt−lTt−l + σtεt;

Trendt =

M∑
m=0

βmtm;

Seast =

P∑
p=1

[σc,p cos(2πpd(t)/365) + σs,p sin(2πpd(t)/365)];

σ2
t =

Q∑
q=1

[γc,q cos(2πqd(t)/365) + γs,p sin(2πqd(t)/365)] +
R∑

r=1

αr(σt−rεt−r)2

+

S∑
s=1

βsσ
2
t−s,

where d(t) is a repeating step function which cycles through 1, . . . , 365 (dropping Feb.
29), εt ∼ iid(0, 1), L = 25,M = 1,P = 3,Q = 3,R = 1, and S = 1.

Alaton et al. (2002) adopted a similar model with trend and a sine function to
incorporate the seasonal effect but defined a piecewise constant function on σt, t =
1, . . . , 12. Caballero et al. (2002) assumed that the daily temperature had long-memory,
and fit univariate autoregressive fractionally integrated moving average (ARFIMA)
models to the daily average temperature at each location. They filtered out the long
memory effect at each location using the estimated d for that location, and then fit a
suitable vector autoregressive moving average (VARMA) model to the resulting time
series. Pai and Ravishanker (2009) pre-processed the daily average temperature data
by first filtering for seasonality and volatility, and then modeled the pre-processed data
via vector ARFIMA processes.

In this section, we briefly summarize fitting ARFIMA(p, d, q) models to pre-processed
daily average temperatures. Prior to fitting univariate and vector ARFIMA(p, d, q) mod-
els to the time series data from these stations (see the first row of Figure 1 for Boston,
Dallas, and Houston for 2004-2006), we pre-processed the data for each station sepa-
rately, by filtering for seasonality and volatility, using the entire series. Let zt denote the
raw temperatures, which exhibits seasonal behavior and some time-dependent varia-
tion. We form the 365-day centered moving averages, z̃t =

∑182
i=−182 zt+i/365, yielding 35

years of data from January 1, 1971 to December 31, 2005.
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Figure 1: Raw and Pre-processed Daily Average Temperatures Data for 2004-2006
(Boston, Dallas, and Houston).

Dividing zt by z̃t removes the long-term secular trend and cyclical component, if any;
let st = zt/z̃t. We compute seasonal indices (see the first row of Figure 1) s̄k, k = 1, · · · , 365
as s̃k =

∑35
i=1 sk+(i−1)∗365/35, for k = 1, · · · , 365, and s̄k = s̃k

365∑365
j=1 s̃ j

, for k = 1, · · · , 365. Then,

obtain the seasonal adjusted series as za
1 = z1/s̄1, · · · , za

365 = z365/s̄365, za
366 = z366/s̄1, and

so on; these reveal strong time-dependent heteroscedasticity (see the second row of
Figure 1). To eliminate the heteroscedasticity, we first calculate the sample standard
deviation of {za

t |t = k + (i − 1) ∗ 365, i = 1, · · · , 35}, k = 1, · · · , 365. Let z̄a be the sample

mean of za
t (see the second row of Figure 1), we obtain an adjusted series as zv

t =
za

t−z̄a

σ̄k
+ z̄a

where σ̄k = σk
365∑365
j=1 σ j

, for k = 1, · · · , 365. Note that for k > 365, σ̄k = σ̄k−365. The seasonal

indices for the mean have a one-year cycle that peaks in July while the temperature
volatility bottoms during the summer months (see Figure 2). We fit univariate and
vector (p, d, q) models to the pre-processed data for 1995-2004, for n = 3650, (see the
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Figure 2: Seasonal Indices for Boston, Dallas, and Houston.

third row of Figure 1).
A time series {zt} is generated by an ARFIMA(p, d, q) process with the mean µ if

ϕ(B)(zt − µ) = θ(B)at, (3.1)

where ϕ(B) = 1 − ϕ1B − · · · − ϕpBp and θ(B) = 1 − θ1B − · · · − θqBq are polynomials in B
of degrees p and q respectively, p and q are known integers and B is the backward shift
operator. The series is stationary and invertible if |d| < 1/2, and the roots of ϕ(z) = 0
and θ(z) = 0 lie outside the unit circle. The unobserved series {at} is the fractionally
differenced noise process represented by

(1 − B)dat = ϵt where (1 − B)d =

∞∑
j=0

(
d
j

)
(−B) j, (3.2)
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d is the real fractional degree of differencing and ϵt are independent and identically
distributed as normal random variables with mean 0 and variance σ2

ϵ. When d =0, (1)
reduces to the short memory ARMA process. See also Beran (1994) and Palma (2007)
for details on modeling and prediction.

The exact likelihood function based on n observations Zn = (z1, · · · , zn)T from a
Gaussian ARFIMA process {zt}with mean µ is

f (Zn;Ψ) = (2πσ2)−n/2|Ωn|−1/2 exp
[−(Zn − µ1n)TΩ−1

n (Zn − µ1n)
2σ2

]
, (3.3)

where Ψ = (ΦT,ΘT, d, µ, σ2)T of vector dimension (p + q + 3) for ARFIMA processes
or Ψ = (ΦT,ΘT, µ, σ2)T of vector dimension (p + q + 2) for ARMA processes, Φ =
(ϕ1, · · · , ϕp)T,Θ = (θ1, · · · , θq)T, 1n is the vector of 1’s and σ2Ωn is the covariance matrix
of Zn with elements γz

k, the autocovariances of {zt} of lag k.
Computation of Ωn for ARFIMA(p, d, q) models may be based on the convolution

of ACFs of ARFIMA(0, d, 0) and ARMA(p, q) models (Hosking , 1981)

γz(k) =
∞∑

i=0

∞∑
j=0

ψiγ
a(k + i − j)ψT

j ,

whereψi denotes the ith MA weight of the ARMA(p, q) part of the process andγa(k) is the
lag k covariance of the ARFIMA(0, d, 0) part. The infinite sum may be truncated when
terms become smaller than some chosen small constant. This will give accurate results
if the roots ofϕ(z) = 0 and θ(z) = 0 are not too close to the boundaries of the stationarity
and invertibility region. The double summation involved could lead to high compu-
tation time in some cases. The relation between the ARFIMA(p, d, q) process and the
corresponding ARFIMA(0, d, 0) process may be exploited to provide computationally
feasible closed form expressions for the likelihood. Specifically, we avoid the com-
putation of autocorrelations or partial regression coefficients from the ARFIMA(p, d, q)
process by a transformation which enables the bulk of the computations to be from the
simpler ARFIMA(0, d, 0) process which admits closed form expressions for the required
quantities. Let yt = zt − µ, and ut = D(B)yt; then ϕ(B)ut = θ(B)εt, and (1 − B)dat = εt is
an ARFIMA(0, d, 0) process. Also, ϕ(B)yt = θ(B)at; and

at = (zt − µ) −∑p
i=1 ϕi(zt−i − µ) +

∑q
j=1 θ jat− j.

Let An = (a1, . . . , an)T, Aq = (a−q, . . . , a0)T and Zp = (z−p, . . . , z0)T.
Chen et al. (2006) employed the preconditioned conjugate gradient algorithm for

fast computation of nearly exact MLEs of ARFIMA(p, d, q) model parameters. Using
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Table 1: Parameter estimates of ARFIMA(1,d,1) model for the three cities.
City ϕ d θ µ σ AIC SBC
Boston 0.208 0.194 -0.299 51.501 6.501 17194 17255

(.038) (.021) (.026) (.697) (.055)
Dallas 0.358 0.190 -0.326 67.351 5.430 16107 16138

(.034) (.024) (.018) (.671) (.044)
Houston 0.329 0.202 -0.281 70.241 4.830 15213 15244

(.032) (.022) (.020) (.569) (.040)

the univariate version of the method and code developed in Pai and Ravishanker
(2009), we employ the PCG algorithm to evaluate the quadratic form in the likelihood
of an ARFIMA(0, d, 0) process, and then “adjust” to the ARFIMA(p, d, q) likelihood
by integrating a joint distribution over the marginal distribution of the history L =
(Z−p,A−q). We also use the approximation in Böttcher and Silbermann (1999) to evaluate
the determinant of the ARFIMA(0, d, 0) covariance matrix. Table 1 presents MLEs for
ARFIMA(1, d, 1) model parameters fit to three cities, viz., Boston, Dallas and Houston,
as well as model selection criteria such as the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC). Based on 10 years of daily data up to Dec
2004, we fit a few low order models (p = 0, 1, 2; q = 0, 1, 2) to temperature from each
city, and based on the minimum Bayesian Information Criterion (BIC), we chose the
(1, d, 1) model in each city.

4 Application to Pricing Temperature Derivatives

The price of the temperature call option, put option, and the temperature futures on
the index (CDD or HDD) at time t can be expressed as follows:

C(t,Tt, It) = δe−r(tm−t)(EQ[max(Itm − K, 0)|Ft]),
P(t,Tt, It) = δe−r(tm−t)(EQ[max(K − Itm , 0)|Ft]),
F(t,Tt, It) = δ(EQ[Itm |Ft]),

where Tt is the daily average temperature at time t, It is the corresponding temperature
index at time t, δ is the tick size equal to $20, r is the annualized continuously com-
pounded risk-free interest rate, tm is the maturity date of the corresponding contract, K
is the strike price, EQ[·] represents the risk-neutral expectation given information up to
and including time t.
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Since the underlying variable (temperature) is not tradable, the market for weather
derivatives is an incomplete market. Following Alaton et al. (2002), we include a
constant market price of risk λ to obtain the following pricing process:

zt − µ =
∞∑

i=1

πt(zt−i − µ) + σ(ϵt − λ).

where πt is the π-weights of the ARFIMA model, ϵt is i.i.d. Gaussian with mean zero
and variance 1, and λ is the market price of risk parameter. As shown in Alaton et
al. (2002), after changing of the risk-neutral measure to the real-world measure using
the above pricing process, the prices are estimated by discounting its payoff under the
real-world probability measure adjusted by a constant risk premium.

Therefore, we consider an actuarial approach using a simple additive risk loading
principle. The price of a contract is the expected outcome plus a risk premium which
is the risk parameter (factor) κ times the risk measured by the standard deviation of
the future outcome. The actuarial price of the weather call option, put option, and
the weather futures on the index (CDD or HDD) at time t are respectively denoted as
follows:

CA(t,Tt, It) = δe−r(tm−t)(E[max(Itm − K, 0)|Ft] + κ σc), (4.1)
PA(t,Tt, It) = δe−r(tm−t)(E[max(K − Itm , 0)|Ft] + κ σp), (4.2)

FA(t,Tt, It) = δ(E[Itm |Ft] + κ σI), (4.3)

where Tt is the daily average temperature at time t, K is the strike price, δ is the tick
size equal to $20, tm is the maturity date of the corresponding contract, E(·|Ft) is the
conditional expectation under the true probability, κ is the risk parameter, and σc, σp,
σI are the volatilities of the corresponding payoffs and index. The risk premium (for
example, κ σI for futures) is assumed to be constant under the same contract (even
under different times to maturity).

The following steps describe the use of “best” ARFIMA model for pricing the
temperature derivatives:

• Use the estimates from the best model to do stochastic simulation of future
weather outcomes.

• Estimate the option price using the simulated forecasts.

The parameter estimates for the ARFIMA(1, d, 1) models are based on 10 years of
daily pre-processed temperatures up to Dec 2004. We then price contracts for two
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Figure 3: Histogram of Empirical CDD of Boston Futures Contracts.

cycles each for cHDD and cCDD between 2005 and 2007. We check our estimates
against actual financial data on weather derivative prices, using observations provided
by CME. Details of the stochastic simulation for the contracts are described in sections
4.1 and 4.2.

4.1 Simulating Realizations of cHDD or cCDD

We illustrate the approach on Nov-Mar cHDD contracts. For each city and each contract,
we carry out the following steps to simulate M = 1000 realizations of cHDD or cCDD.

(a) Simulate M realizations of the pre-processed data, zv∗
t as follows. Sample from

the conditional distribution of zv
t given data up to time t − 1 and MLEs for Ψ

obtained via the PCG algorithm. Under the ARFIMA(p, d, q) model fit to the time
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series zv
t , the conditional distribution is given by

ft(zv
t |Zv

t−1,Ψ) ∼ N(µt, v2
t ), where

µt =

t−1∑
j=1

ϕt−1
j zv

t− j

v2
t = γ

y
0/σ

2Πt−1
j=1(1 − (ϕ j

j)
2),

by substituting the MLE Ψ̂ forΨ, and whereϕt−1
j correspond to partial regression

coefficients from the ARFIMA(p, d, q) process.

(b) Use the fitted model and inverse filtering to compute M daily average tempera-
tures:

(i) zv∗
t = y∗t + µ̂;

(ii) za∗
t = (zv∗

t − za)σk + za;

(iii) z∗t = za∗
t sk.

For h = 1, · · · ,M, convert the simulated future daily average temperatures z∗t,h
into HDDt,h = max(0, 65 − z∗t,h) or CDDt,h = max(0, z∗t,h − 65)

(c) For h = 1, · · · ,M, compute cHDDh and cCDDh for seasonal or monthly contracts
as follows:

(i) for HDD seasonal contract of duration November 1 until March 31 (151
days), cHDDh =

∑151
t=1 HDDt,h;

(ii) for CDD seasonal contract of duration May 1 until September 30 (153 days),
cCDDh =

∑153
t=1 CDDt,h;

(iii) for HDD monthly contracts for October, December, January and March
(31 days); November and April(30 days); February (28 days), cHDDh =∑

t HDDt,h where the summation is taken over the number of corresponding
days in that month;

(iv) for CDD monthly contracts for April, June, and September (30 days); May,
July, August, and October (31 days), cCDDh =

∑
t CDDt,h where the summa-

tion is taken over the number of corresponding days in that month.

(d) Obtain the empirical CDF of these M cHDDh or cCDDh values, for h = 1, · · · ,M.
At this stage, we are able to estimate σI in equation (4.3).
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Table 2: Estimated cCDD of Boston May Contract using Historical Burn Analysis.
Month Apr May Jun Jul Aug Sep
Average 3.4 28.8 139.1 275.1 239.8 77.7
Standard Deviation 7.3 20.9 49.3 58.1 44.8 33.1

4.2 Empirical Results

We illustrate our pricing approach using the data from Boston. We first calculate
monthly CDD from (April to September) from 1970 to 2006. The historical averages
and standard deviations of CDD months are shown in Table 2. The histograms of these
empirical distributions relevant to the traditional pricing approach, Burn Analysis, are
shown in Figure 3. While the method is very quick and simple, it does not produce
reliable estimates, primarily because it does not incorporate statistical modeling of
the corresponding weather index. For example, the estimated price based on Burn
Analysis (based on data from 1970-2006) was 28.8 but the cCDD was observed to be
66 in 2007. May 2007 was a warm month in Boston, and our statistical model could
pick up the higher than usual value of CDD right away, after only a few days into the
month.

Suppose that we are at the beginning of a contract month, say May 1 2006, and we
predict the CDD for the remaining days in May 2006 using the approach discussed in
section 4.1. Therefore, we have one set of M = 1000 simulated cCDD values for each
day of May. Figure 4 shows box plots for the last 15 days of May 2006. These provide
M = 1000 simulated future distribution values for each day of each contract month
based on the fitted ARFIMA(1, d, 1) model. As expected, the distributions are heavily
skewed to the right, and the interquartile ranges get tighter as the time approaches
the settlement date. On the last day of May, the cCDD for the May contract actually
follows a mixed distribution with a probability mass of Pr(T31 ≤ 65) at the value of∑30

t=1 CDDt. That is, the cCDD will remain the same if the temperature on May 31 is
below 65. This can also be seen from the Quantile-Quantile plot of the simulated cCDD
on May 15 and May 31, 2006, shown in Figure 5. The two variables seem to follow the
same distribution except for the probability mass mentioned above.

For simplicity, we set δ = 1. Let t denote a day on which an actual price is available.
For i = 1, . . . ,M, let µ̂t = Ê(Itm |Ft) denote the average of the simulated cCDD (or cHDD)
values for day t for the selected city, say Boston. Let Fo

t denote the observed price from
the CME database and let κ0 denote the constant risk premium for all t (κ0 here is
κ σI in (4.3)). In our empirical study, we allow for a non-negative risk premium and



Pricing Weather Derivatives 51

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2
0

4
0

6
0

8
0

1
0

0

Box plots of simulated values − May 2007

c
C

D
D

Figure 4: Box Plots of Predicted cCDD’s for May 16-31, 2006, Boston Futures Contract.

we estimate the constant risk premium κ0 by the method of least squares using all the
observed price data in the given contract:

κ̂0 =

∑
t(Fo

t − µ̂t)+
#obs

, (4.4)

where (x)+ = x, if x ≥ 0, and 0 otherwise. When pricing a monthly contract, we estimate
the risk premium from the current contract and use it to price the next contract. The
estimated risk premiums for 2006 CDD contracts are respectively 2.0, 11.6, 0.6, and 0.1
for May, June, August, and September (there were no transactions in the entire month
of July).

Within the same monthly contract, we estimate the risk premium using the most
recent observed transaction to price derivatives at the current time. In Figure 6, we use
the end of the day observed price on the previous day to estimate the risk premium,
and use it to price the value for the current day. We illustrate the pricing method
by using the May 2007 contract (cCDD) for Boston. The settle price is 66 (again, we
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Figure 5: Quantile-Quantile plot of simulated cCDD’s of May 1 and May 31, 2006,
Boston Futures Contract.

assume δ = 1). The circles indicate the observed price and the dotted line indicates the
prediction from our model. The predictions are close to the observed values except
for May 29, 2007. The reason for the discrepancy on this date is that there are no
transactions between May 25 and May 29, and the observed temperature suddenly
increased during those days.

5 Conclusions

In this paper we describe an approach for pricing weather derivatives based on model
fitting and prediction of daily average temperatures using an autoregressive fraction-
ally integrated moving average ARFIMA(p,d,q) model. We pre-process the tempera-
ture data to capture the seasonality and volatility, and we employ the preconditioned
conjugate gradient (PCG) algorithm for fast computation. We show that the proposed
pricing model produces dynamic estimates following the observed values closely to
the settlement date using 2007 May Boston CDD futures.
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Figure 6: Observed vs Predicted Values for May 2007 Boston CDD Futures Contract.

There may be a few different ways to improve our predictions, and better pricing.
For instance, our pricing approach based on the statistical modeling does not incorpo-
rate information about temperature forecasts from a meteorological system (Chincarini
, 2011). Meteorological forecasts are usually available up to two weeks and informa-
tion is updated frequently. In practice, traders in the weather derivatives market could
combine available information from statistical and meteorological sources in order to
improve pricing valuation in trading weather derivatives. The area of effective weather
derivatives pricing is certainly poised to attract novel research and implementation.
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