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1 Introduction

One of the most interesting problems in regression theory is the nonlinear regression
models (NLM) which are used in many fields such as finance, economics, sociology, en-
gineering and biomedical sciences. These models are used when the response variable
is a nonlinear function of explanatory variables and the unknown parameters. Usually,
the error term in these models is a random variable which has a normal distribution
or, in general, a symmetric distribution. However, when the data under the study do
not possess a symmetric property or have heavy tails, then the normal NLM is not
appropriate. In these cases, the use of the asymmetric and heavy tail distributions for
the error terms in NLM are more appropriate than the normal NLM.

Recently, some researchers have used flexible parametric non-normal distributions
for error term variables in NLM. Some of these asymmetric and heavy tailed distri-
butions are skew normal distribution (Azzalini, 1985, 2005), the skew-t distribution
(Jones and Faddy, 2003), the skew-elliptical distribution (Branco and Dey, 2001; Sahu
et al., 2003) and the Slash-elliptical distribution (Alcantara and Cysneiros, 2017). In the
context of non-normal NLM, Cancho et al. (2010) introduced the skew-normal NLM
(SN-NLM) and used an efficient EM-type algorithm for estimation of its parameters.
Xie et al. (2009a,b) developed score tests for testing homogeneity in the SN-NLM pro-
posed by Cancho et al. (2010). Garay et al. (2011) extend the SN-NLM by assuming
that the model errors follow a mean-zero, scale mixtures of skew-normal distribu-
tion. Alcantara and Cysneiros (2017) used slash-elliptical distribution for error term in
NLM and estimate its parameters by the maximum likelihood method. Such classes of
distributions contain skewed versions of classical distributions such as skew-normal,
skew-t, skew-slash (Gomez and Venegas, 2008) and skew contaminated normal distri-
bution (Basso et al., 2010). Lachos et al. (2011) defined scale mixtures of skew-normal
heteroscedastic NLM and estimate its parameters by applying an EM-type algorithm.

Although the above researchers used asymmetric and heavy tailed distributions
for modeling error terms in NLM, there are some situations in which the data need a
more flexible skewed and heavy tailed distribution for the model errors (see Section
5.2 below). This motivates us to employ a slash skew-elliptical distribution for the
distribution of the model errors in NLM, which was introduced by Farnoosh et al.
(2013). This class of distributions can be more skewed and heavy tailed than the skew-
normal and the skew-t distributions, so it is appropriate for the distribution of random
errors of NLM which have the skewed and heavy tailed properties.

The content of the paper is as follows. Section 2 will provide a brief overview on the
slash-skew elliptical distributions and a special case of it, i.e., slash skew-t distribution.
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The slash skew elliptical NLM and the special case, NLM with slash skew-t distribution,
are introduced in Section 3. In Section 4, in the special case of slash skew-t NLM, an
EM-type algorithm is constructed to estimate the parameters. In addition, the observed
information matrix is calculated analytically and a sensitivity analysis is introduced
for investigating the influence of observations on the ML estimates. Also, the uses of
standardized residuals in these asymmetrical NLM are evaluated in the presence of
outliers. Simulation studies and an application to a real data are illustrated in Section
5 to show the performance of the proposed model. Finally, in Section 6, concluding
remarks are presented.

2 Slash Skew-elliptical Distributions

In this section, we review definitions and the properties of slash skew-elliptical dis-
tribution which is introduced by Farnoosh et al. (2013) . A random variable has slash
skew-elliptical (SLSEL) distribution if it can be written as

Y = µ + σ
X

U
1
q

, (2.1)

where −∞ < µ < ∞ is the location parameter, σ > 0 is the scale parameter and q > 0
is the shape parameter that controls the tails. The random variable X here is a skew
elliptical random variable with location 0, scale 1 and −∞ < λ < ∞ is the skewness
parameter, denoted by X ∼ SEL(0, 1, λ; g) where g(.) is the density generator function
of an elliptical distribution . U is the uniform random variable which is independent
of X. Farnoosh et al. (2013) denoted this distribution by Y ∼ SLSEL(µ, σ, λ, q; g). The
probability density function (p.d.f.) of Y is given by

fY(y) =


qσq

|y−µ|q+1

∫ ( y−µ
σ )2

0 u
q−1

2 g(u)Fg(λ
√

uh(y − µ))du y , µ
q

σ(q+1) g(0) y = µ,
(2.2)

where h(t) = t
|t| . When q → ∞, we have skew elliptical distribution (SEL(µ, σ, λ; g)).

Also, if λ = 0, slash skew-elliptical distribution reduces to slash elliptical distribution
(SLEL(µ, σ, q; g)) defined by Gomez and Venegas (2008). Now, we represent the follow-
ing results of slash skew-elliptical distribution. These results can be used to simulate
slash skew- elliptical random variable and to implement an EM-type algorithm. The
proofs can be found in Farnoosh et al. (2013).
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Theorem 2.1. If X ∼ SLSEL(µ, σ, λ, q; g) and Y = aX + b , a, b ∈ R , then Y ∼ SLSEL(aµ +
b, |a|σ, λh(a), q; g).

Theorem 2.2. If Y|U = u ∼ SEL(0, u−
1
q , λ; g) and U ∼ U(0, 1) , then Y ∼ SLSEL(0, 1, λ, q; g).

Theorem 2.3. If Z ∼ SLSEL(0, 1, λ, q; g) and Y ∼ SLSEL(µ, σ, λ, q; g) , then

µk = E(Zk) =
q

q − k
ak, k = 0, 1, 2, ..., (q > k),

where ak = 2
∫
R

xkg(x2)Fg(λx)dx is the r-th moment of SEL(0, 1, λ; g) distribution and

µ
′
k = E(Yk) =

k∑
i=0

(
k
i

)
σiµk−iµi, k = 0, 1, 2, ..., (q > k).

2.1 A Special Case

In the special case of (2.1), let X have a skew-t distribution with skewness λ and r
degrees of freedom, i.e., X ∼ ST(0, 1, λ, r). Therefore, Y has the p.d.f. given by (2.2)
with the generator function

g(t) =
Γ( 1+r

2 )

Γ( r
2 )
√
πr

(1 +
t
r
)−

1+r
2 , t ∈ R. (2.3)

Farnoosh et al. (2013) have called this distribution slash skew-t distribution (SLST), and
denoted it by Y ∼ SLST(µ, σ, λ, q, r). They illustrated that the SLST distribution can be
more skewed and heavier tailed than the other skew distributions like skew-t and skew
slash.

Further, if Y ∼ SLST(µ, σ, λ, q, r) , from Theorem 2.3 we have,

µ
′
1 = E(Y) = µ + cδσ, q > 1, r > 1,

µ
′
2 = E(Y2) = µ2 + 2µcδσ +

rq
(q − 2)(r − 2)

σ2, q > 2, r > 2, (2.4)

and
Var(Y) =

rq
(q − 2)(r − 2)

σ2 − (cδσ)2, q > 2, r > 2, (2.5)

where δ = λ√
(1+λ2)

and c = q
q−1
Γ( r−1

2 )
Γ( r

2 )

√ r
π .
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We remind that if X ∼ ST(0, 1, λ, r) , Azzalini and Capitanio (2003) showed that X can
be represented by X = Z√

V
where Z ∼ SN(0, 1, λ) and V ∼ 1

rχ
2
r (chi-square distribution

with r degrees of freedom). If Z ∼ SN(0, 1, λ), Henze (1986) showed that a stochastic
representation of Z is given by

Z = δ|T0| + (1 − δ2)
1
2 T1,

where T0 and T1 are independent standard normal random variables and |.| denotes
the absolute value.

Consequently, if Y ∼ SLST(µ, σ, λ, q, r), from equation (2.1) and X ∼ ST(0, 1, λ, r), we
can write the stochastic representation of Y as follows

Y = µ + σδU
−1
q V

−1
2 |T0| + σ(1 + δ2)

1
2 U

−1
q V

−1
2 T1

= µ + ξT + Λ
1
2 U

−1
q V

−1
2 T1, (2.6)

where ξ = σδ, Λ = σ2(1 − δ2) and T = U
−1
q V

−1
2 |T0|. This representation is useful in the

simulation data from SLST distribution and to implement the EM-type algorithm.

3 The Slash Skew-elliptical Nonlinear Regression Model

We denote the nonlinear regression model based on slash skew-elliptical distribution
errors by SLSEL-NLM, and this model is defined as

Yi = ψ(β, xi) + εi, i = 1, . . . , n, (3.1)

where Yi is the response variable, ψ(.) is an injective and twice continuously differ-
entiable function with respect to the parameter vector β = (β1, . . . , βp)T, xi is a vector
of explanatory variable values. The random errors εi ∼ SLSEL(−σa1( q

q−1 ), σ, λ, q; g) for

q > 1, where a1 =
∫
R

xg(x2)Fg(λx)dx and g(.) is the density generator function of elliptical
distribution, which corresponds to the regression model, where the error distribution
has mean zero and consequently the regression parameters are all comparable. Thus,
from the above discussion and Theorems 2.1 and 2.3, we can obtain the following result,

E(Yi) = ψ(β, xi), Var(Yi) = qσ2(
a2

q − 2
− a1q

(q − 1)2 ), q > 2,

where a2 =
∫
R

x2g(x2)Fg(λx)dx and Yi ∼ SLSEL(ψ(β, xi) − σa1( q
q−1 ), σ, λ, q; g), i = 1, . . . ,n.

Hereafter, we focus on a special case of slash skew-elliptical nonlinear regression model,
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which is slash skew-t nonlinear regression model (SLST-NLM) and compare it with
other members of this class of distributions, i.e., a skew normal distribution that has
been used by Garay et al. (2011) and slash skew normal distribution for distributions
of the model errors of nonlinear model.

Remark 1. Alcantara and Cysneiros (2017) used slash-elliptical distribution as error
terms in nonlinear regression model 3.1 to construct slash-elliptical nonlinear regression
model (SLEL-NLM), i.e.,

Yi = µi(β, xi) + εi, εi ∼ SEL(0, ϕ, q; g), i = 1, . . . , n. (3.2)

Note that when λ = 0, the SLSEL-NLM reduces to SLEL-NLM (3.2). Therefore, the
model (3.2) is a special case of the model (3.1). The model (3.2) contains only heavy
tail distributions for error terms, but the model (3.1) contains heavy tail and skew
distributions for error terms.

3.1 The Slash Skew-t Nonlinear Regression Model

In slash skew-t nonlinear regression model (SLST-NLM), the random errors in equation

(3.1) have slash skew-t distribution (εi ∼ SLST(−cσδ, σ, λ, q, r)) where c = q
q−1
Γ( r−1

2 )
Γ( r

2 )

√ r
π .

So the responses variable Yi has slash skew-t distribution, i.e., Yi ∼ SLST(ψ(β, xi) −
cσδ, σ, λ, q, r), i = 1, . . . ,n. Therefore

E(Yi) = ψ(β, xi), Var(Yi) =
q

q − 2
r

r − 2
σ2 − (cδσ)2, q > 2, r > 2.

Pirzadeh et al. (2015) obtained the Bayes estimate of the parameters of SLST-NLM via
a Metropolis-Hastings algorithm.

4 Maximum Likelihood Estimation via an EM-type Algorithm

In this section, we derive the maximum likelihood estimate of the parameters of slash
skew-t nonlinear regression model. We used an EM-type algorithm (Dempster et al.,
1977) which is used similarly by Garay et al. (2011) and Lachos et al. (2011) for the
estimation of the parameters of scale mixtures of skew-normal nonlinear regression.
Let Y = (Y1, . . . ,Yn)T be n independent random variables, where Yi ∼ SLST(ψ(β, xi) −
cσδ, σ, λ, q, r). Since error variance must be finite and when εi ∼ SLST(−cσδ, σ, λ, q, r)
variance of εi is finite if q > 2, r > 2 , so in computation we suppose that q > 2, r > 2.
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On the other hand, Lango et al. (1989) and Berkane et al. (1994), pointed out difficulties
in estimating r and q because of the problems of unbounded and local maximum in the
likelihood function. Thus, at first, we determine the values of the parameters r and q
based on the behavior of the tail of distribution or likelihood function and then estimate
other parameters of SLST-NLM model (see Sections 5.1 and 5.2 for more details).

Stochastic representation (2.6) is useful for hierarchical representation for Yi, in the
EM-algorithm. Accordingly, (U1,V1), . . . , (Un,Vn) are considered as missing data in
equation (2.6) and Yi is considered as observed data. Let (Yi,Ui,Vi), i = 1, . . . ,n be the
complete data and θ = (βT, σ, λ)T where β = (β1, . . . , βp)T. From (2.6), for i = 1, . . . ,n,
we have,

Yi|Ui = ui,Vi = vi,Ti = ti ∼ N(ψ(β, xi) + ξti, u
−2
q

i v−1
i Λ),

Ti|Ui = ui,Vi = vi ∼ TN(−c, u
−2
q

i v−1
i )I(−c,∞),

Ui ∼ U(0, 1),

Vi ∼
1
r
χ2

r = gamma(
r
2
,

r
2

),

where TN(a, b2)I(r, s) denotes the truncated normal distribution N(a, b2) on (r, s). A
useful result is that the conditional distribution of Ti given yi, ui and vi is

Ti|Yi = yi,Ui = ui,Vi = vi ∼ TN(µTi − c, u
−2
q

i v−1
i M2

Ti
)I(−c,∞),

where µTi =
ξ
Λ+ξ2 (yi − ψ(β, xi) + ξc) and M2

Ti
= Λ
Λ+ξ2 . Since we have, f (yi, ui, vi, ti) =

f (yi|ui, vi, ti) f (ti|ui, vi) f (ui) f (vi), so,

f (yi,ui, vi, ti) =
u
−1
q v

−1
2

√
2πΛ

exp(
−u

2
q v

2Λ
(yi − ψ(β, xi) − ξti)2)

×
u
−1
q v
−1
2√

2π
exp(−u

2
q v(ti+c)2

2 )∫ ∞
−c

u
−1
q v
−1
2√

2π
exp(−u

2
q v(ti+c)2

2 )dti

×
( r

2 )
r
2

Γ( r
2 )

v
r
2−1e

−rv
2 .

The log-likelihood function for the complete data is given by

ℓc(θ|y, t,u, v) = k − n
2

logΛ − 1
2Λ

n∑
i=1

u
2
q v(yi − ψ(β, xi) − ξti)2,
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where k is a constant that is independent of θ. Now, the conditional expectation of
lc(θ|y, t,u, v) given observed data yi and current estimates of the parameters θ̂, is given
by

Q(θ|θ̂) = E(lc(θ)|yi, θ̂) = k − n
2

logΛ

− 1
2Λ

n∑
i=1

[
E(U

2
q

i Vi|yi, θ̂)(yi − ψ(β, xi))2 + ξ2E(U
2
q

i ViT2
i |yi, θ̂)

− 2ξ(yi − ψ(β, xi))E(U
2
q

i ViTi|yi, θ̂)
]
. (4.1)

Let

k̂i = E
[
U

2
q

i Vi|θ̂, yi

]
, Ŝi = E

U 2
q

i ViWΦ(
µTiU

1
q

i V
1
2
i

MTi

)|θ̂, yi

 ,
Ŝ2i = E

[
U

2
q

i ViTi|θ̂, yi

]
, Ŝ3i = E

[
U

2
q

i ViT2
i |θ̂, yi

]
, (4.2)

where WΦ(x) = ϕ(x)
Φ(x) and ϕ(.) and Φ(.) denote the standard normal pdf and cumulative

distribution function (c.d.f.), respectively. Since Yi|ui, vi ∼ SN(ψ(β, xi) − cξ,u
−q
2 u

−1
2 σ, λ)

and using known properties of conditional expectation we have,

k̂i =
2

σ̂r
√

r f (yi)

∫ 1

0

∫ ∞

0
u

3
q

i w
3
2
i p(wi)ϕ(u

1
q

i w
1
2
i (

y − ψ(β̂, xi) + cξ

σ̂
√

r
))

× Φ(u
1
q

i w
1
2
i λ̂(

y − ψ(β̂, xi) + cξ

σ̂
√

r
))dwidui, (4.3)

Ŝi =
2

σ̂r f (yi)

∫ 1

0

∫ ∞

0
u

2
q

i wip(wi)ϕ(u
1
q

i w
1
2
i (

y − ψ(β̂, xi) + cξ

σ̂
√

r
))

× Φ(u
1
q

i w
1
2
i λ̂(

y − ψ(β̂, xi) + cξ

σ̂
√

r
))dwidui, (4.4)

where f (yi) is the pdf of SLST(ψ(β̂, xi) − cξ, σ̂, q, r) (given by (2.2) with generator (2.3))
and p(wi) is the pdf of χ2

r . Likewise, from properties of conditional expectation we
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have,

Ŝ2i = Eui,vi|yi

[
U

2
q

i ViE
[
Ti|θ̂, yi,ui, vi

]]
, (4.5)

Ŝ3i = Eui,vi|yi

[
U

2
q

i ViE
[
T2

i |θ̂, yi, ui, vi

]]
. (4.6)

Since Ti|Yi = yi,Ui = ui,Vi = vi ∼ TN(µTi − c,u
−2
q

i v−1
i M2

Ti
)I(−c,∞) , we have

E
[
Ti|θ̂, yi, ui, vi

]
= µ̂Ti − c +U

−1
q

i V
−1
2

i M̂TiWΦ(
µ̂TiU

1
q

i V
1
2
i

M̂Ti

),

E
[
T2

i |θ̂, yi, ui, vi

]
= (µ̂Ti − c)2 +U

−2
q

i V−1
i M̂2

Ti

+ U
−1
q

i V
−1
2

i M̂2
Ti

(µ̂Ti − 2c)WΦ(
µ̂TiU

1
q

i V
1
2
i

M̂Ti

).

Now, by replacing the above expressions in (4.5) and (4.6), we have

Ŝ2i = k̂i(µ̂Ti − c) + M̂TŜi, (4.7)
Ŝ3i = k̂i(µ̂Ti − c)2 + M̂2

T + M̂T(µ̂Ti − c)Ŝi. (4.8)

The above expressions are being implemented for maximizing the expected complete
data function over θ, or the Q-function which is used in the M-step of the algorithm.
From (4.1), (4.2), (4.7) and (4.8), the Q-function is given by

Q(θ|θ̂(k)) = E(lc(θ)|yi, θ̂
(k)) = k − n

2
logΛ

− 1
2Λ

n∑
i=1

[
k̂(k)

i (yi − ψ(β, xi))2 + ξ2Ŝ(k)
2i − 2ξ(yi − ψ(β, xi))Ŝ

(k)
3i

]
, (4.9)

where θ̂(k) is an updated value of θ̂ in k-th iteration of the EM-algorithm. In the E-step
of the algorithm, given the observation yi and current estimates θ̂, the conditional
expectations Ŝi, k̂i, Ŝ2i and Ŝ3i must be computed. For computing k̂i and Ŝi Monte
Carlo integration can be employed, which yields the so-called MC-EM algorithm. For
the M-step of the algorithm, there is a need to maximize the Q-function over θ. The
M-step turns out to be analytically intractable. But it is possible to be replaced by a
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sequence of conditional maximization (CM) steps. The resulting method is known as
ECM algorithm (Meng and Rubin, 1993). Similar to Garay et al. (2011), we use ECM
algorithm as follows.

E-step: Given a current estimate θ̂(k) = (β̂
(k)
, σ̂(k), λ̂(k)) and observation y = (y1, . . . , yn),

compute k̂(k)
i and Ŝ(k)

i , i = 1, . . . ,n from (4.3) and (4.4) by Monte Carlo integration and

then compute Ŝ(k)
2i and Ŝ(k)

3i from (4.7) and (4.8).
CM-step: Derive θ̂(k+1) by maximizing Q(θ|θ̂(k)) over θ, which are given by the

following expressions

β̂ = arg min
β

(z(k) − ψ(β, x))TK̂(k)(z(k) − ψ(β, x)),

ξ̂(k+1) =

∑n
i=1 Ŝ2i(yi − ψ(β̂

(k+1)
, xi))∑n

i=1 Ŝ3i
,

Λ̂(k+1) =
1
n

n∑
i=1

(
k̂(k)

i (yi − ψ(β̂
(k+1)

, xi))2 + (ξ2)(k+1)Ŝ(k)
2i − 2ξ(k+1)(yi − ψ(β̂

(k+1)
, xiŜ

(k)
3i ))

)
,

where K̂(k) = diag(k̂(k)
1 , . . . , k̂

(k)
n ) and zk is the corrected observed response given by

zk = y − ξ̂(k)Ŝ(k), with Ŝ(k) = (Ŝ(k)
1 , . . . , Ŝ

(k)
n ) and ψ(β, x) = (ψ(β, x1), . . . , ψ(β, xn))T. Note

that estimating β in M-step of algorithm is equivalent to estimating β in the weighted
nonlinear least squares in the NLM, Z = ψ(β, x)+ ε, where we used NLM package in R
software for estimating β.

By using the fact that λ = ξ/
√
Λ and σ2 = ξ2 +Λ , the values of σ̂2(k+1) and λ̂(k+1) can

be found as

λ̂(k+1) =
ξ̂(k+1)√
Λ̂(k+1)

, σ̂2(k+1) = (ξ̂(k+1))2 + Λ̂(k+1).

This process is iterated until a suitable convergence rule is satisfied, e.g. if ∥θ̂(k+1)−θ̂(k)∥ <
0.0001.

4.1 The Observed Information Matrix

In this section, we obtain the observed information matrix of the nonlinear regression
model based on SLST distribution, which is defined by

J0(Θ|y) = −∂
2ℓ(Θ|y)
∂Θ∂ΘT ,
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where ℓ(Θ|y) is the incomplete likelihood function based on observation y. Under some
regularity conditions, the covariance matrix of the maximum likelihood estimates Θ̂
can be approximated by the inverse of J0(Θ|y). The observed information matrix can
be evaluated as follows,

J0(Θ̂|y) =
n∑

i=1

t̂it̂T
i , (4.10)

where

t̂i =
∂(log f (yi;θ j))

∂θ j
, j = 1, . . . , p, p + 1, p + 2,

and p is the number of model parameters (see, Basford et al. (1997) and Lin et al.
(2007)). Now, partition t̂i into components corresponding to all the parameters in Θ,
i.e., t̂i = (t̂i,β, t̂i,σ2 , t̂i,λ)T where

t̂i,θ j =
∂(log f (yi;θ j))

∂θ j
, j = 1, . . . , p, p + 1, p + 2.

Now, we define

IF1
i1 (v1, v2) =

∫ 1

0
u

v1
q (1 +

u
2
q (yi − ψ(β, xi) + cξ)2

rσ2 )
−(r+v2)

2

× F1(λ

√
1 + r

r
((rσ2 + u

2
q (yi − ψ(β, xi) + cξ)2)

−1
2 u

1
q (yi − ψ(β, xi) + cξ); r + 1)du,

I f1
i1 (v1, v2, v3) =

∫ 1

0
u

v1
q (1 +

u
2
q (yi − ψ(β, xi) + cξ)2

rσ2 )
−(r+v2)

2

× ((rσ2 + u
2
q (yi − ψ(β, xi) + cξ)2)

−v3
2

× f1(λ

√
1 + r

r
((rσ2 + u

2
q (yi − ψ(β, xi) + cξ)2)

−1
2 u

1
q (yi − ψ(β, xi) + cξ); r + 1)du,

where f1(x; r+ 1) and F1(x; r+ 1) are p.d.f. and c.d.f. of Student-t distribution with r+ 1
degrees of freedom.
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After some algebraic calculations, we obtain

∂

∂β j
( f (yi;Θ)) =

∂(ψ(β, xi))
∂β j

× ∂( f (yi;Θ))
∂(ψ(β, xi))

=
∂(ψ(β, xi))

∂β j
×

2Γ( r+1
2 )

σΓ( r
2 )
√

rπ

[
(r + 1)(yi − ψ(β, xi) + cξ)2

rσ2 IF1
i1 (3, 3)

+ λ

√
1 + r

r
(yi − ψ(β, xi) + cξ)2I f1

i1 (4, 1, 3) − I f1
i1 (2, 1, 1)

 , j = 1, . . . , p,

∂

∂σ
( f (yi;Θ)) =

2Γ( r+1
2 )

σΓ( r
2 )
√

rπ

[
−1
σ

IF1
i1 (1, 1) −

(r + 1)(yi − ψ(β, xi) + cξ)(ψ(β, xi) − yi)
rσ3 IF1

i1 (3, 3)

− rσ(yi − ψ(β, xi) + cξ)I f1
i1 (2, 1, 3) − cδ(yi − ψ(β, xi) + cξ)2I f1

i1 (4, 1, 3)

+ cδI f1
i1 (2, 1, 1)

]
,

∂

∂λ
( f (yi;Θ)) =

2Γ( r+1
2 )

σΓ( r
2 )
√

rπ

√
1 + r

r
(yi − ψ(β, xi) + cξ)I f1

i1 (2, 1, 1)

+
cΓ( r+1

2 )

Γ( r
2 )
√

rπ
((1 + λ2)−

1
2 − λ2(1 + λ2)−

3
2 )

[−(r + 1)(yi − ψ(β, xi) + cξ)2

rσ2 IF1
i1 (3, 3)

− λ

√
1 + r

r
(yi − ψ(β, xi) + cξ)2I f1

i1 (4, 1, 3) + λ

√
1 + r

r
I f1
i1 (2, 1, 1)

 .
The information-based approximation (4.10) is asymptotically applicable. However, it
may not be reliable unless the sample size is large.

In the next section, we use the techniques that have been used to estimate the
parameters.

4.2 Residuals

The aim of residual analysis is to identify atypical observations and model misspec-
ification when residuals are measures of agreement between the data and the fitted
model. Most residuals are based on the differences between the observed responses
and the fitted conditional mean. We use the following standardized ordinary residual
(Pearson residual) that has been used by Garay et al. (2011),

r =
yi − µ̂i√
Var(yi)

, i = 1, . . . , n,
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where Var(yi) =
q

q−2
r

r−2 σ̂
2 − (cδ̂σ̂)2. Here µ̂i = ψ(β̂, xi) and β̂, σ̂2, δ̂ denote the maximum

likelihood estimators ofβ, σ2 and δ, respectively. As the distribution of the standardized
residual is not known, we follow the suggestion given by Atkinson (1981) to construct
the simulated envelope. The simulated envelope can be used as a helpful diagnostic tool
to detect incorrect specification of the error distribution and the systematic component
ψ(β, xi), as well as the presence of outlying observations. An oft-voiced complaint of
this method is that it may be very slow in some situations, once we need to generate
and fit the model for a number k ≥ 100 of simulated samples (see, Garay et al., 2011).

4.3 Sensitivity Analysis

To detect the influence of observations on the ML estimators, we perform sensitivity
analysis with scale-deletion method in this section and Section 5.2.1 to recognize ob-
servations that under small perturbation of the model exert great influence on the ML
estimates. This method has been used in some papers, such as Cook (1977), Lin et al.
(2009) and Rahnamaei et al. (2012). We use the case-deletion approach to detect the
influence of removing the case from the analysis by evaluating the metrics such as the
likelihood distance and Cook‘s distance (see, Cook, 1977).

Let Θ̂i be the ML estimate ofΘwithout the i-th observation in the sample. To assess
the influence of the i-th case on the ML estimate Θ̂, the basic idea is to compare the
difference between Θ̂i and Θ̂. If deletion of a case seriously influences the estimates,
more attention should be paid to that case. Therefore, if Θ̂i is far from Θ̂, then the i-th
case is considered as an influence observation. Hence, generalized Cook distance is
employed to measure the change between Θ̂i and Θ̂, which can be expressed as

GDi(Θ) = (Θ̂i − Θ̂)T[J0(Θ̂|y)](Θ̂i − Θ̂),

where J0(Θ̂|y) is the observed information matrix (inΘ = Θ̂ point) discussed in Section
4.1.

Another measure of the difference between Θ̂ and Θ̂i is the likelihood distance

LDi(Θ) = 2
[
L(Θ̂) − L(Θ̂i)

]
.

In the next section, we employ sensitivity analysis to illustrate the advantage of the
proposed methodology.
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5 Applications

In this section, we present two applications of the SLST-NLM. The first one is based on
two simulation studies and the other is a statistical analysis of the real data sets.

5.1 Simulation Studies

In this section, to show the performance of the proposed model and the given algorithm,
we present two simulation studies. Simulation 1 is conducted to show the need of
using heavy-tailed asymmetric models to deal with the presence of outliers in the
data. Simulation 2 is conducted to show the large sample properties of the ECM-type
algorithms. We generate our data from the following nonlinear growth-curve model,

Yi =
β1

1 + β2exp(−β3xi)
+ εi, i = 1, . . . , 50, (5.1)

where εi ∼ SLST(−cδσ, σ, λ, q, r) are independent and identically distributed variables
with zero mean. The variable xi ranges from 4 to 53 and the values were held fixed
throughout the simulations. The parameter values were set around the estimates as
obtained in Cancho et al. (2010), say, β1 = 37, β2 = 42, β3 = 0.73, σ2 = 2.95, λ = −2.
To have a heavy-tailed distribution, we choose the values of r and q such that they
maximize the value of tail measure P(Y > µ + 3σ) between values of 3 ≤ r ≤ 10 and
3 ≤ q ≤ 10. Thus, we obtain r = 3 and q = 10 for this simulation study.

5.1.1 Simulation 1: Robustness of estimates

In this simulation study, we want to compare the performance of the ML estimates in the
presence of outliers. To do this, we generated 100 data sets of size N = 50, considering

εi ∼ SN(−
√

2
πδσ, σ, λ) in (5.1), i.e., the data are generated from the SN-NLM model.

Following Vanegas and Cysneiros (2010), to guarantee the presence of one outlier, we
constructed Y∗i = Yi − v, where i is the corresponding central value of the sample and
v = 1, 2, 3, 4, 5, 6, 7, 8, 9. In each replication, we obtained the parameter estimates with
and without outliers denoted by θ̂ and θ̂(i), respectively, under the skew normal (SN-
NLM), the slash skew normal (SLSN-NLM) and the slash skew-T (SLST-NLM). Then,

we computed the relative changes
∣∣∣∣∣ θ̂(i)

θ̂
− 1

∣∣∣∣∣ on estimates of β1, β2, β3 and σ2 when the

outlier is removed from the data set.
Figure 1 shows the average values of relative changes on the estimates for 100

replications. We can observe that for all three models, the influence of the outliers
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Figure 1: Simulated data: Average changes on estimates of β1, β2, β3 and σ2 for the
nonlinear growth-curve model.

in the estimates increases as v increases. Note that for the SLST model, this measure
increases less than the SN and the SLSN models when v increases. So we can conclude
that SLST model is more robust than the SN and the SLSN models in the presence of
discrepant observations. These figures reveal the models with heavier tails than the
SN and the SLSN have a better capability of reducing and controlling the influence of
outliers on parameter estimates.

5.1.2 Simulation 2: Consistency properties

In this simulation study, we want to evaluate the bias and mean squared error of the
ECM estimates to study consistency properties. In this simulation, the sample sizes
were fixed as n = 50, 100, 200, 300, 500. For each combination of parameters and sample
size, 100 samples from (5.1) were generated under slash skew-T (SLST-NLM). Using
our proposed ECME algorithm, we compute the Relative Bias and Mean Squared Error
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(MSE) for each parameter over the 100 samples under the SLST-NLM . They are defined
as:

RelativeBias(θ) =
1

100

100∑
i=1

(
θ̂(i) − θ
θ

)
, MSE(θ) =

1
100

100∑
i=1

(
θ̂(i) − θ

)2
,

where θ = (β1, β2, β3, λ, σ2) and θ̂(i) is the ECME estimate of θ for the i-th sample. The
results are shown in Table 1 and Figures 4 and 5. We can see that the Bias and MSE
converge to zero as n increases, which imply that the approximate MLEs derived from
the proposed EM-type algorithm possess good consistency properties.

Table 1: Simulated data: Relative Bias of parameter estimates with different sample
sizes for SLST distribution in the nonlinear growth-curve.

n β1 β2 β3 λ σ2

SLST-NLM
50 -0.0005898 0.9190525 0.0531100 1.5628815 0.1656811

100 0.0007456 0.6346358 -0.0035434 0.5519101 0.0916926
200 0.0004373 0.0625517 0.0068832 0.1481456 0.0387276
300 0.0003897 0.0454593 0.0024557 0.0374658 -0.0167413
500 0.0002683 0.0235612 0.0030808 0.0871107 0.0087041

5.2 Real Data

We use the ultrasonic calibration data described in Lin et al. (2009) and Lachos et al.
(2011) to investigate our method. These data are generated from the National insti-
tutes of Standards and Technology (NIST) study by Dan Chwirut involving ultrasonic
calibration (Chwirut, 1979), where the response variable and the predictor variable is
metal distance. The response variable Y has mean 30.26, variance 560.7326, minimum
3.75, maximum 92.90, skewness 0.9131793 and kurtosis 2.556237. The data consist of
observations, and are available freely in the R package Nlsmsn. The left plot in Figure
2 represents the scatter plot of response and predictor variables and shows that they
have a nonlinear relationship. We consider the following nonlinear model

Yi =
exp(−β1xi)
β2 + β3xi

+ εi, εi ∼ SLST(−cσδ, σ, λ, q, r), i = 1, . . . ,n. (5.2)

We will use the SN, the SLSN and the SLST distributions for comparing the models. To
implement the EM algorithm, the initial values of the parameters (σ2, λ) are derived by
the method of moments, and the model parameters (β1, β2, β3) estimates are derived by
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Figure 2: Ultrasonic calibration data. The left plot is the scatter plot of the data set
and the right plot is the profile log-likelihood of both parameters r and q for fitting a
SLST-NLM.

the least square method. These initial values are given by β1 = 0.148, β2 = 0.005, β3 =
0.12, σ2 = 3.59 andλ = 0.86. Then, we determine the values of r and q by maximizing the
likelihood function which is plotted on the right side of Figure 2. For the SLST model,
we found r = 3 and q = 4 and for the SLSN model, we found q = 3. Table 2 contains the
ML estimates of the parameters of the three models, together with their corresponding
standard errors calculated via the observed information matrix. For comparing the
models, we also computed the Akaike Information Criterion (Akaike, 1974), (AIC =
2p− 2ℓ(Θ̂)), the Bayesian Information Criterion (Schwarz, 1978), (BIC = p ln(n)− 2ℓ(Θ̂))
and the Efficient Determination Criterion (Bai et al., 1989), (EDC = 0.2p

√
n − 2ℓ(Θ̂)),

where p is the number of free parameters, n is the number of observations and ℓ(Θ̂) is
the log likelihood function.

These model selection criterions indicate that the SLST-NLM has a better fit than the
SN-NLM and the SLSN-NLM for this data set. The standard errors of regression model
parameters in the SLST-NLM are smaller than those in the SN-NLM and the SLSN-
NLM. This suggests that the SLST-NLM seems to produce more accurate estimates
than the SN-NLM and the SLSN-NLM . The estimates for the variance components (σ2

and λ) are not comparable since they are on different scales (see Table 2).
In order to detect incorrect specification of the error distribution and systematic

component in (5.2), we present Q-Q plots and simulated envelopes for the Pearson
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Figure 3: Plot of LDi and GDi for case weights perturbation for ultrasonic calibration
data.

residuals (Garay et al., 2011) in Figure 6. This figure clearly indicates that the SLST-
NLM is more suitable for modeling this data than the SN-NLM and SLSN-NLM, since
there are no observations falling outside the envelope. Moreover, there is a clear
evidence of lack of fit for the SN-NLM and SLSN-NLM. Therefore, we proceed with
our analysis using asymmetric models.

5.2.1 Sensitivity Analysis

In this section, we use the real data set to find the observations which are influential
in parameter estimation. Let Θ̂ be the ML estimate of Θ in ultrasonic calibration data
and Θ̂(i) be the ML estimate ofΘwithout the i-th observation. We compute the LDi and
GDi as diagnostics for global influence. The measures LDi and GDi are computed and
presented in Figure 3, respectively. From these figures, we observe that the cases 2, 36,
167 and 187 are influential.
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Figure 4: Relative bias of ECME estimates of β1, β2, β3,λ and σ2 for SLST-NLM following
the nonlinear growth curve model in (5.1).

Figure 5: MSE of ECME estimates of β1, β2, β3, λ and σ2 for SLST-NLM following the
nonlinear regression model.
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Table 2: ML estimation results for fitting the SN-NLM, the SLSN-NLM and the SLST-
NLM models to the ultrasonic calibration data.

parameter SN-NLM SLSN-NLM SLST-NLM
Estimate Standard Error Estimate Standard Error Estimate Standard Error

β1 0.177485 9.327354e−4 0.186675 1.93499e−5 0.192803 8.690266e−7

β2 0.006322 1.087805e−5 0.006343 2.715e−6 0.006357 3.121795e−5

β3 0.010614 9.327354e−4 0.010377 2.40445e−5 0.010220 6.737256e−5

σ2 20.86891 1.974071e−3 13.386 2.191338e−3 2.893346 2.689821e−2

λ 1.780925 3.066238e−5 1.103117 5.33945e−4 0.651245 6.666642e−3

r - - 4 - 4 -
q - - - - 3 -

AIC 1121.3098 - 1094.3464 - 1079.7192 -
BIC 1138.3968 - 1117.9082 - 1103.2810 -
EDC 1125.9385 - 1100.8266 - 1086.1994 -
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Figure 6: Q-Q plots and simulated envelopes for the Pearson residuals in the ultrasonic
calibration data.

6 Conclusions

In this paper, we have proposed the application of a new asymmetric distribution, called
slash skew elliptical distributions (especially slash skew-t distribution) to nonlinear
regression models. We used the EM-type algorithm to obtain the maximum likelihood
estimates, and applied the asymptotic method to compute the observation information
matrix.

Simulation studies indicate that the method based on the SLST-NLM is more ro-
bust against outliers than the SN-NLM and SLSN-NLM. Furthermore, influential ob-
servations and the ML estimates based on the EM-type algorithm have consistency
properties. The application on a data set showed that the SLST-NLM fit on real data
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significantly better than the SN-NLM and SLSN-NLM models.
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