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Abstract. In point estimation of the value of a parameter, especially when the estimator
under consideration has a probability density function, then the limit that the expected
value of the estimator actually equaled the value of the parameter being estimated
will tend towards zero for the estimator to be asymptotically unbiased. Hence, some
interval about a point estimate needs to be included to accommodate for the region
of an unbiased estimate. But in several occurrences when the random variable is not
normally distributed as is common in practice; then the interval estimated for the
location and scale parameters may be too wide to give the desired assurance. In this
study, we have obtained some results on the confidence procedure for the location and
scale parameters for symmetric and asymmetric exponential power distribution which
is robust in the case of skewness or cases alike: tail heavier; and or thinner than the
normal distribution using pivotal quantities approach, and on the basis of a random
sample of fixed size n. Some simulation studies and applications are also examined.
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1 Introduction

The higher the degree of confidence, the larger the percentage of population values
that the interval is to contain. Thus, if we want a high degree of confidence and a
high confidence level, we are going far out into the tail of some distribution. For
example, if the distribution has heavier tails than a normal distribution or the tails
exhibit some skewness either to the right or the left than the usual normal distribution,
when constructing a 99 percent confidence interval to contain at least 99 percent of
the population, the result obtained, often times could be far less than 99 percent that
we really required. Conversely, if the population distribution has much lighter tails
than a normal distribution, the interval could be much wider than necessary. So in this
paper, using the widely known pivotal quantities approach, we developed a robust
confidence interval for a more generalized univariate family of elliptically contoured
densities. These distributions have exponential power distribution (EPD), skewed
exponential power, normal and Laplace as their family and they are well known for
their tail flexibility due to varying values of the shape parameter for all members
of the family. The resulting robust confidence interval we anticipated will replace
the common one in the literature about the normal distribution, especially when the
observed sample data in an experiment has tail region departing from the usual normal
distribution. The exponential power distribution has been found more to be useful in
applications than the normal distribution; see Lindsey (1999), Achcar and Araujo
(1999) and Olosunde (2013).

1.1 The Exponential Power Distribution

The unidimensional exponential power distribution is defined as

f (x;µ, σ, β) =
1

σΓ
(
1 + 1

2β

)
21+ 1

2β

exp
{
−1

2

∣∣∣∣∣x − µσ
∣∣∣∣∣2β} , (1.1)

where the parameters µ ∈ ℜ and σ ∈ (0,∞) are respectively location and scale param-
eters and β ∈ (0,∞) is the shape parameter which regulates the tails of the distribution
such that when β = 1 the density (1.1) is normal and when β = 1/2 we have Laplace
distribution. The distribution (1.1) was first introduced by Subbotin (1923), it has been
used in robust inference (see Box , 1953) where the parameters of the distribution were
estimated via moments; see Gomez et al. (1998).
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If a random variable X has the pdf (1.1) then its mth moments can be obtained from
the relation

E(Xm) =
∫ ∞

0

([−1m(σ(2z)
1

2β − µ)m] + (σ(2z)
1

2β + µ)m
) z

1
2β−1 exp−z

2Γ( 1
2β )


 dz. (1.2)

In addition, its central moment estimates are

E(X) = µ , E |X − E(X)| =
σ2

1
2β Γ( 1

β )

Γ( 1
2β )

, Var(X) =
σ22

2
2β Γ

(
3

2β

)
Γ
(

1
2β

) ,

E(X − E(X))3 = 0 , E(X − E(X))4 =
σ42

4
2β Γ( 5

2β )

Γ( 1
2β )

, and Kurtosis=
Γ( 5

2β )Γ( 1
2β )

Γ2( 3
2β )

.

The results indicate that the sample mean X is the estimate of the true mean µwhile
the shape parameter can be numerically obtained from the estimate of the kurtosis.
Substituting shape parameter estimate into Var(X) we can estimate the scale parameter
σ; see Mineo and Ruggieri (2005), Agro (1992, 1995) and Daniele (2012).

Also the log-likelihood function for random samples x1, x2, . . . , xn from (1.1) is

LogL(µ, σ, β) = n ln

 1

σΓ(1 + 1
2β )2

1+ 1
2β

 −
i=n∑
i=1

1
2

∣∣∣∣∣xi − µ
σ

∣∣∣∣∣2β . (1.3)

The derivatives of (1.3) with respect to µ, σ, and β are

∂LogL
∂µ

=
β

σ2β

∑
xi≥µ

(xi − µ) −
∑
xi<µ

(xi − µ)

 .
∂LogL
∂σ

= −n
σ
+
β

σ

∣∣∣∣∣x − µσ
∣∣∣∣∣2β .

∂LogL
∂β

=
n

2β2 [Ψ(1 +
1

2β
) + 1] −

i=n∑
i=1

∣∣∣∣∣xi − µ
σ

∣∣∣∣∣2β ln
∣∣∣∣∣xi − µ
σ

∣∣∣∣∣ .
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the expected Fisher information matrix of EPD is:

E(−∂
2LogL
∂µ2 ) =

nβ(2β − 1)21− 1
βΓ(1 − 1

2β )

σ2Γ 1
2β

.

E(−∂
2LogL
∂σ2 ) =

2βn
σ2 .

E(−∂
2LogL
∂σ∂β

) = − 1
σβ

(1 +Ψ(1 +
1

2β
) ln 2).

E(−∂
2LogL
∂β2 ) =

n
β3

1 +Ψ(1 +
1

2β
) +
Ψ
′
(1 + 1

2β )

2β

 + n
(ln 2)2

4β3

(
Ψ2(1 +

1
2β

) +Ψ
′
(1 +

1
2β

)
)
.

Mineo and Ruggieri (2005) and Mineo (2007) developed codes in R programming
environment to estimate these parameters from any given sample from (1.1), this also
includes the parameter βwhich has no explicit solution.

1.2 Asymmetric Exponential Power Distribution (AEPD)

Fernandez and Steel (1998) proposed an extension of the symmetric distribution by
adding the skewness parameter. Their procedure allows the introduction of skewness
in any continuous unimodal and symmetric (about γ) distribution g(y;γ) by changing
the scale at each side of the mode. More specifically,

f (y|γ, α) =
2
α + 1

α

{
g
[
α
(
y − γ) ; 0

]
I−∞,γ(y) + g

[(
y − γ) /α; 0

]
Iγ,∞(y)

}
, (1.4)

is a unimodal density with the same mode as g(y;γ) and the skewness parameter α > 0
such that the ratio of probability masses above and below the mode is

P
(
Y ≥ γ|α)

P
(
Y < γ|α) = α2. (1.5)

From Fernandez and Steel (1998), (1.4) can be introduced to symmetric pdf of (1.1),
which according to Zhu and Zinde-Walsh (2009), becomes the pdf of Asymmetric
exponential power distribution (AEPD) in situation where the shape parameter is the
same for both left and right tail part of the AEPD; this can be described in three cases
as follow
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Case 1

f (x) =
1

2ασΓ
(
1 + 1

2β

)
2
(
1+ 1

2β

) exp
[
−1

2

(µ − x
2ασ

)2β
]
, x ≤ µ. (1.6)

Case 2

f (x) =
1

2(1 − α)σΓ
(
1 + 1

2β

)
2
(
1+ 1

2β

) exp

−1
2

(
x − µ

2(1 − α)σ

)2β , x > µ. (1.7)

Case 3

f (x) =
1

2σΓ
(
1 + 1

2β

)
2
(
1+ 1

2β

)

exp

[
−1

2

( x−µ
2(1−α)σ

)2β
]

1 − α −
exp

[
−1

2

(
µ−x
2ασ

)2β
]

α

, (1.8)

where [µ, σ, α, β] are the location [−∞ < µ < ∞], scale (σ > 0), skewness [α ∈ (0, 1)]
and shape parameters (β > 0). For estimations of the parameters for asymmetric
exponential power distribution; see DiCiccio and Monti (2004).

2 Confidence Interval

Definition 2.1 (Confidence Interval). Let X1,X2, . . . ,Xn be a random sample from the
density f (x|θ). Let a = t1(X1,X2, . . . ,Xn) and b = t2(X1,X2, . . . ,Xn) be two statistics
satisfying the relation a ≤ b for which P {a < Z(X|θ) < b} ≡ γ, where γ does not depend
on θ; the random interval (a, b) is called 100γ percent confidence interval for Z(X|θ); γ
is called the confidence coefficient; a and b are called the lower and upper confidence
limits, respectively for Z(X|θ). A value (t1, t2) of the random interval (a, b) is also called
a 100γ percent confidence interval for Z(X|θ).

2.1 Pivotal Quantity

Definition 2.2 (Pivotal Quantity). A pivotal quantity (Z) for a parameter θ is a random
variable Z(X|θ) whose value depends both on (the data) X and on the value of the
unknown parameter θ but whose distribution is known to be independent of θ.
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In the case of the normal distribution N(µ, σ2), the pivotal quantity Z = X−µ
σ and

Z2 =
(X−µ)2

σ2 has distribution N(0, 1) and χ2
1 that are independent of µ and σ and as

such both are pivotal quantities for µ and σ respectively. We establish some important
results in this section that serves as a foundation for the results obtained.

Proposition 2.1. Let the random variable X have the pdf (1.1), then
∣∣∣∣X−µ
σ

∣∣∣∣β ∼ Γ( 1
2β , 2), where

µ, σ, and β are location, scale and shape parameters respectively. Values for Gamma(.) for
various values of β can be obtained from Abramowitz and Stegun (1964), Stacy (1962) and
Winitzki (2003).

Proof. Let y =
∣∣∣∣X−µ
σ

∣∣∣∣β, by transformation techniques, we have that fY(y) = fX(x)
∣∣∣∣ dx
dy

∣∣∣∣ =
Γ( 1

2β , 2), y > 0; the pdf (1.1) is a three parameter family, θ = (µ, σ, β). □

We can deduce from above Proposition 2.1 that

Corollary 2.1. Let the random variable X have the pdf (1.1) then,

Z =

√
β

n

∣∣∣∣∣x − µσ
∣∣∣∣∣β ∼ EPD(0,

1
n
, β), (2.1)

and
∣∣∣ x−µ
σ

∣∣∣β ∼ Γ( 1
2β , 2) are pivotal quantities, since its distribution is independent of µ

and σ.

Proposition 2.2. Let the random variable X have the pdf (1.1) then the proposed pivotal
quantity (2.1) has the pdf

g(Z) =
( n
β )

1
2β

2
1

2βΓ(
1

2β )
Z

1
β−1 exp(− n

2β
Z2), −∞ < Z < ∞, β > 0. (2.2)

Proof. Substituting (2.1) into (1.1) and using the change of variable techniques; the pdf
(2.2) obtained is independent of µ and σ and thus (2.1) is a pivotal quantity for µ and
σ. □

Remark 1. pdf (2.2) generalizes normal, Laplace and Weibull distributions. By substi-
tuting different values for β in (2.2) and simplifying then the results obtained reflect the
targeted distribution.
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2.1.1 Generalized t1-Distribution

Proposition 2.3. Let Z ∼ EPD(0, 1
n , β) from (2.2) and let V denote a random variable which

is Γ( r
2 , 2); a new random variable t1 defined as

T1 =
Z√

V
r

, (2.3)

has the pdf

fr(t1) =
√

n
βr

Γ(
r
2 +

1
2β )

Γ( r
2 )Γ( 1

2β )


{√

n
βr

t1

} 1
β−1

(1 +
(√

n
βr

t1

)2

−( r

2+
1

2β )

. (2.4)

and is a pivotal quantity.

Proof. Since Z has a symmetric distribution about zero, so does the t1 and its pdf will
satisfy fr(t1) = fr(−t1). Assuming both Z and V to be stochastically independent then
for t1 > 0 we have,

P
[

Z√
V/r
> t1

]
=

1
2

P
[

Z2

V/r
> t2

1

]
=

1
2

P

Z2

2
>

V
2

t2
1

r

 ,
taking the negative derivative w.r.t t1. The marginal distribution f (t1) is the pdf in (2.4)
which we have called it a generalized t1 distribution. □

Remark 2.

1. Equation (2.4) is a generalized version of the usual student t−distribution and
it becomes f (t1), the usual students t-distribution when β = 1 and n = 1, thus
reducing (2.1) to Z1 =

∣∣∣ x−µ
σ

∣∣∣,
fr(t) =

 Γ( r+1
2 )

√
πrΓ(r/2)

 1

(1 + t2/r)(r+1)/2
. (2.5)

2. Since fr(t1) is independent of µ and σ then it is a pivotal quantity.
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3. fr(t1) ∝
{√

n
βr t1

} 1
β−1

{
(1 +

(√
n
βr t1

)2
}−( r

2+
1

2β )

is symmetric and bell-shaped, but falls

off to zero as t→ ±∞ more slowly than the normal and exponential power den-
sities. They have f (.) ≈ e−z2/2 and g(.) ≈ e−|z|

β/2, respectively.

4. To get the cdf of (2.4), the transformation tanθ =
√

n
βr T1 shows that the cdf of

(2.4) is an incomplete beta Fr(t1) = Beta
(√

n
βr T1; 1

2β ,
r
2

)
.

Corollary 2.2 (Generalized t2). Let Z ∼ EPD(0, 1
n , β) from (1.4) and let V denote a random

variable which is Γ( 1
2β , 2), see Proposition 2.1; a new random variable T2 given as

T2 =
Z
V
. (2.6)

has the pdf

f (t2) = n
1

2β
Γ( 1
β )

(Γ( 1
2β )

2)

t
1
β−1

2(
1 + nt2

2

) 1
β

. (2.7)

Using the transformation tanθ =
√

nT2, we find out the cdf has F 1
β
(t2) = Beta

(√
nT2; 1

2β ,
1

2β

)
.

Proof. Substitute r = 1
β into (2.4) and (2.7) follows. □

Having established that (2.3) and (2.6) are pivotal quantities for µ and σ, with their

confidence limits distributed as Fr(t1) = Beta
(√

n
βr T1; 1

2β ,
r
2

)
and F 1

β
(t2)=Beta

(√
nT2; 1

2β ,
1

2β

)
respectively then we proceed to obtain its confidence intervals while restricting our ap-
plication to confidence interval via t2.

2.1.2 Confidence Interval for µ for a Known σ2

Given the t2 distribution, (and its cdf F 1
β
(t2) which has no closed form), for any inde-

pendent and identically distributed random sample (x)={x1, . . . , xn} ∼ EPD(µ, σ2, β); we
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obtain the sufficient statistics xn =
∑

xi
n , σ̂

2
n =

s2
n
n =

(
β
n

) 1
β

n∑
i=1

(
x − µ)2 and for any 0 < γ < 1,

we compute t∗2 such that F 1
β
(t∗2) = (1 + γ)/2 from

γ = P
[
−t∗2 ≤

√
β
n

∣∣∣x−µ
σ

∣∣∣β ≤ t∗2

]
∼ EPD(0, 1

n , β) owing to the fact that F 1
β
(t∗2)=Beta

(
t∗2; 1

2β ,
1

2β

)
.

Proposition 2.4. The confidence interval for the µ of the EPD when σ2 is known can be
obtained as x − s

n

(
n
β

) 1
2β (

t∗2
) 1
β < µ < x +

s
n

(
n
β

) 1
2β (

t∗2
) 1
β

 . (2.8)

Proof. Simplify

P

−t∗2 <

√
β

n

∣∣∣∣∣x − µσ
∣∣∣∣∣β < t∗2

 ≡ γ, (2.9)

for µ.
□

2.1.3 Confidence Interval for σ2 with µ Unknown

Proposition 2.5. Given the interval (−t∗2, t
∗
2), then the confidence interval for the σ2 of the EPD

is given as
s2

(2beta[(F 1
β
(t∗2)), 1

2β ,
1

2β ])
1
β

;
s2

(2beta[1 − (F 1
β
(t∗2)), 1

2β ,
1

2β ])
1
β

, (2.10)

where s2 =

n∑
i=1

(xi−x)2

n−1 .

Proof. Simplify

Pr
{

(−t∗2)2 <
β

n

{x − µ
σ

}2β
< (t∗2)2

}
≡ γ, (2.11)

for σ2 and recall from Proposition 2.1 that 1
2

∣∣∣∣X−µ
σ

∣∣∣∣β ∼ Γ( 1
2β ).

□
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3 Confidence Interval for Asymmetric Exponential Power Dis-
tribution

Proposition 3.1. Let the random variable X have the pdf (1.6) and (1.7). Then the proposed
pivotal quantities

Z1 =

√
β

n

(µ − x
2ασ

)β
, Z2 =

√
β

n

(
x − µ

2(1 − α)σ

)β
. (3.1)

has the same pdf as (2.2).

Proof. Substituting Z1 and Z2 from (3.1) into (1.6) and (1.7) respectively, and using
the change of variable technique we obtain (2.2). Hence both Z1 and Z2 are pivotal
quantities for µ and σ; since (2.2) is independent of µ and σ. □

Note that every result obtained for the EPD distribution is applicable forthwith for
the AEPD Case 1 and Case 2. Hence

Corollary 3.1. The confidence interval for the location and scale parameter of left skewed
AEPD (Case 1) can be obtained as

x −
α

√√ Γ
(

1
2β

)
s2

2
1
β−1
Γ
(

3
2β

)
[((2α)2)]


n

(
n
β

) 1
2β (

t∗2
) 1
β < µ < x +

α

√√ Γ
(

1
2β

)
s2

2
1
β−1
Γ
(

3
2β

)
[((2α)2)]


n

(
n
β

) 1
2β (

t∗2
) 1
β


,

(3.2)
and  Γ

(
1

2β

)
s2

2
1
β−1
Γ
(

3
2β

)
[((2α)2)]


(2 beta[(F 1

β
(t∗2)), 1

2β ,
1

2β ])
1
β

;

 Γ
(

1
2β

)
s2

2
1
β−1
Γ
(

3
2β

)
[((2α)2)]


(2 beta[1 − (F 1

β
(t∗2)), 1

2β ,
1

2β ])
1
β

. (3.3)

Corollary 3.2. The confidence interval for the location and scale parameter of right
skewed AEPD (Case 2) can be obtained asx − (1 − α)G

n

(
n
β

) 1
2β (

t∗2
) 1
β < µ < x +

(1 − α)G
n

(
n
β

) 1
2β (

t∗2
) 1
β

 , (3.4)
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where G =

√√ Γ
(

1
2β

)
s2

2
1
β−1
Γ
(

3
2β

)
[((2(1−α))2)]

, and

 Γ
(

1
2β

)
s2

2
1
β−1
Γ
(

3
2β

)
[((2(1−α))2)]


(2 beta[(F 1

β
(t∗2)), 1

2β ,
1

2β ])
1
β

;

 Γ
(

1
2β

)
s2

2
1
β −1
Γ
(

3
2β

)
[((2(1−α))2)]


(2 beta[1 − (F 1

β
(t∗2)), 1

2β ,
1

2β ])
1
β

. (3.5)

Next we obtain the rth moment of the AEPD along with its confidence interval for
µ and σ from Case 3.

Proposition 3.2. The rth moment of AEPD Case 3 can be obtained as

E|X − µ|r = 2
r

2β−1 [
(2(1 − α)σ)r + ((−1)r(2ασ)r)

] Γ ( r+1
2β

)
Γ( 1

2β )
. (3.6)

Proof. Evaluate E|X − µ|r from Case 3.
□

Proposition 3.3. Given Case 3, the confidence interval for µ and σ can be obtained as

x − (1 − 2α)I
n

(
n
β

) 1
2β (

t∗2
) 1
β < µ < x +

(1 − 2α)I
n

(
n
β

) 1
2β (

t∗2
) 1
β

 , (3.7)

where I =

√√ Γ
(

1
2β

)
s2

2
1
β−1
Γ
(

3
2β

)
[((2(1−α))2)+((2α)2)]

, and

 Γ
(

1
2β

)
s2

2
1
β−1
Γ
(

3
2β

)
[((2(1−α))2)+((2α)2)]


(2 beta[(F 1

β
(t∗2)), 1

2β ,
1

2β ])
1
β

;

 Γ
(

1
2β

)
s2

2
1
β −1
Γ
(

3
2β

)
[((2(1−α))2)+((2α)2)]


(2 beta[1 − (F 1

β
(t∗2)), 1

2β ,
1

2β ])
1
β

. (3.8)
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Proof. Simplify

P

−t∗2 <

√
β

n

(
x − µ

2(1 − α)σ

)β
< t∗2

 ≡ γ and P

−t∗2 <

√
β

n

(µ − x
2ασ

)β
< t∗2

 ≡ γ, (3.9)

and deduce the interval for the expression
( x−µ
σ

)
. □

Case 4

Finally, we present a case similar to Case 3 where the shape parameter is not the same
for the left and right tails. According to Zhu and Zinde-Walsh (2009), the pdf of AEPD
in this case can be described as

f (x) =
k1α + k2(1 − α)

2σ


exp

[
−1

2

( x−µ
2(1−α)σ

k1α+k2(1−α)
k2

)2β2
]

(1 − α)
−

exp
[
−1

2

(
(µ−x

2ασ ) k1α+k2(1−α)
k1

)2β1
]

α

 ,
(3.10)

where k1 = Γ
(
1 + 1

2β1

)
2

(
1+ 1

2β1

)
and k2 = Γ

(
1 + 1

2β2

)
2

(
1+ 1

2β2

)
for −∞ < x < ∞.

Corollary 3.3. Similar to (3.6) the rth moment of Case 4 is given as

E(x − µ)r =

2 r
2β2
−1

(
2k2σ(1 − α)

k1α + k2(1 − α)

)r Γ
(

r+1
2β2

)
Γ
(

1
2β2

)  +
(−1)r2

r
2β1
−1

(
2k1σα

k1α + k2(1 − α)

)r Γ
(

r+1
2β1

)
Γ
(

1
2β1

)  .
(3.11)

Corollary 3.4. Also the confidence interval of µ and σ can be obtained from (3.7) and
(3.8) as

x −

(
k2(1−α)−k1α
k1α+k2(1−α)

)√
s2

H

n

(
n
β1

) 1
2β1 (

t∗2
) 1
β1 < µ < x +

(
k2(1−α)−k1α
k1α+k2(1−α)

)√
s2

H

n

(
n
β2

) 1
2β2 (

t∗2
) 1
β2

 , (3.12)
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and

s2

H

(2 beta[(F 1
β2

(t∗2)), 1
2β1
, 1

2β2
])

1
β2

;
s2

H

(2 beta[1 − (F 1
β1

(t∗2)), 1
2β1
, 1

2β2
])

1
β1

, (3.13)

where

H = 2
1
β2
−1

(
2k2(1 − α)

k1α + k2(1 − α)

)2 Γ(3/(2β2))

Γ(1/(2β2)) + 2
1
β1
−1 (

2k1α
k1α+k2(1−α)

)2 Γ(3/(2β1))
Γ(1/(2β1))

.

Note that in all the four cases discussed s2 remains the same as earlier defined. All
the results obtained from Case 4 reduce to Case 3 whenever k1 = k2.

The results across all the cases of AEPD were discussed. The AEPD reduces to the
EPD when α = 0.5 and subsequently, it shows a skewness to the left or to the right
when α > 0.5 and α < 0.5 respectively.

4 Numerical Illustration

4.1 Evaluating Confidence Limits

Given an interval (−t∗2, t
∗
2), we define the 100γ percent confidence interval for pivot (2.1)

as
Pr

{
−t∗2 < T2 < t∗2

}
≡ γ. (4.1)

Then, we evaluate different values of −t∗2 and t∗2 at various values of γ from Ft∗2(t2) =

Beta
(√

nT2; 1
2β ,

1
2β

)
for known values of β. Using the code, Rbeta.inv(γ, 1

2β ,
1

2β ) written
in the R environment. We thus have Table 1.

5 Data Sets

Examples 5.1. Given the following data set for the body mass index of underweight
patients

15.3, 15.5, 16.18, 16.6, 17.18, 17.4, 17.59, 17.85, 17.97, 18.5, 18.9, 18.91, 20.52

with shape parameter β = 1.155603 and skewness parameter α = 0.1738746; then the
confidence interval for the parameters can be obtained as Table 2.
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Examples 5.2. Suppose that body mass index of underweight and overweight patients
to be distributed with different shape parameters β1 = 1.155603 and β2 = 1.385483 with
skewness α = −0.3070342. Therefore, the confidence interval for the parameters can be
obtained in Table 3.

Table 1: Limits (−t∗2, t
∗
2) for different γ values from Ft∗2 (t2) at various β values.

γ limits Ft∗2 (t2), β = 0.1 Ft∗2 (t2), β = 1
2 Ft∗2 (t2), β = 1 Ft∗2 (t2), β = 1.5 Ft∗2 (t2), β = 2

0.1 −t∗2 0.3009688 0.1 0.0245 0.0055 0.0012
0.9 t∗2 0.6990312 0.9 0.9755 0.99945 0.9988
0.05 −t∗2 0.2513676 0.05 0.0062 0.0007 7.38 × 10−5

0.95 t∗2 0.7486324 0.95 0.9938 0.9993 0.9999
0.025 −t∗2 0.2120085 0.025 0.0015 0.00009 4.616 × 10−6

0.975 t∗2 0.7879915 0.975 0.9985 0.9999 0.99999
0.005 −t∗2 0.1460562 0.005 6.17 × 10−5 9 × 10−7 7.36 × 10−9

0.995 t∗2 0.8539438 0.995 0.9999 1 1

Table 2: Confidence Interval of the location and variance parameter for underweight patients.

γ mean confidence interval variance confidence interval
90% 17.00649 - 17.40315 1.511662 - 9.017129
95% 17.00434 - 17.40530 1.497941 - 15.806757
99% 17.00381 - 17.40583 1.487440 - 61.604863

x = 17.20482, σ2
x = 1.976789.

Table 3: Confidence Interval of the location and variance parameter for body mass index of
patients.

γ mean confidence interval variance confidence interval
90% 22.18316 - 25.03332 43.23671 - 183.40757
95% 22.17885 - 25.04033 42.89771 - 290.62858
99% 22.17812 - 25.04152 42.63828 - 897.60132

x = 23.39239, σ2
x = 35.20038.

Data source: Nutrition and Dietetic Department of Federal Neuropsychiatric Hos-
pital Aro, Nigeria.
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6 Conclusion

From practical experience, it is common to have data with density function that has
heavier or thinner tail than the usual normal distribution. This article presented a
robust parametric method of evaluating confidence interval for the mean and the
variance with known shape parameter and skewness. The results further generalized
what is obtainable in the normal and the Laplace distribution case.
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