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1 Introduction

The multiple regression model (MRM) is arguably the most widely used statistical
tools applied in almost every discipline of the modern era, however, in reality, there
always exists some level of multicollinearity between the columns of design matrix that
makes the estimation problem challenging. In this respect, the shrinkage estimation
methodologies such as the ridge and Liu regressions are used as remedies. Biasedness
of the resulting estimators sacrifices the efficiency. One method of improving the ef-
ficiency is to incorporate some level of prior information in the estimation problem.
In this study, we only concentrate on the stochastic restriction as prior information.
Stochastic restriction occurs in economics, microeconomics and financial studies. By
using stochastic restriction, we can accomplish an examination and analysis of one’s
own thoughts and feelings (prior information via introspection). Also one may have
prior information from a previous sample, which usually leads to obtaining some
relations through stochastic subspace restrictions. Furthermore, combining stochastic
restrictions with Zellner (1962) “Seemingly Unrelated" estimators, we can demonstrate
good performance of the estimators using mean squared error (MSE) criterion compar-
atively. We refer to Ozkale (2009), Yang et al. (2009), Li and Yang (2010), Yang and Xu
(2011), Yang and Wu (2012), Kuran and Ozkale (2016) to mention a few interesting
and important studies in regression analysis with stochastic restriction.

Now, consider the following linear model

y0 = Xβ + e, (1.1)

where y0 = (y1, y2, ..., yn)T is an n× 1 vector of observations on the dependent variable,
X is an n × p fixed matrix of full rank p, β = (β1, β2, ..., βp)T is a p × 1 vector of unknown
parameters and e = (e1, e2, ..., en)T is an n × 1 vector of errors, which is distributed
according to the n-variate t-distribution with E(e) = 0 and E(eeT) = σ2

e V1, where V1 is
an n × n known positive definite symmetric matrix and σ2

e = νσ
2/(ν − 2), σ2 ∈ R+ is

unknown, with ν degree of freedom and probability density function

f (e) =
Γ( n+ν

2 ) | V1 |−
1
2

(πν)
n
2 Γ( ν2 )σn

(
1 +

eTV1e
νσ2

)− n+ν
2

, 0 < ν , σ < ∞.

We designate e ∼ Tn(0, σ2V1, ν).

Among several researchers, Kibria (1996), Khan and Saleh (1997), Kibria and Saleh
(2004) and Tabatabaey et al. (2004) have well motivated to use multivariate t-distribution
in linear regression models.
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It is well known that the generalized least squares (GLS) estimator of β is given by
β̃ = C−1XTV−1

1 y0 with C = XTV−1
1 X. Under the exact restriction r = Rβ, where r is an

q× 1 vector of known elements and R is a q× p known prior information matrix of rank
q ≤ p, the restricted GLS (RGLS) estimator of β is given by

β̂ = β̃ − C−1RT(RC−1RT)−1(Rβ̃ − r).

The RGLSE performs better than the GLSE, when the non-stochastic restriction r = Rβ
holds, but as the parameter, β moves away from the subspace r = Rβ, the RGLSE
becomes biased and inefficient while the performance of the GLSE remains stable. In
order to corporate the information existing in both the GLSE and RGSLE, one may
combine these estimators to achieve a better estimator in the risk sense. This gives rise
to the definition of preliminary test GLS (PTGLS) estimator with form

β̂PT = β̂I(L∗ ≤ Ln,α) + β̃I(L∗ > Ln,α),

where L∗ is a general test statistics for testing the hypothesis H0 : r = Rβ, Ln,α is the α
level critical value of L∗ and I(A) is the indicator function of the set A. The idea of the
PTGLSE was first proposed by Bancroft (1944). Afterward, researchers endeavored to
develop preliminary test estimators in different fields of statistical inference. Among
others, we refer to the studies by Saleh and Sen (1978), Saleh (2006), Roozbeh (2015)
and references therein, and more recently Yuzbasi et al. (2017), Wu and Asar (2017),
and Yuzbasi et al. (2018).

For the ill-conditioned design matrix XTX, under a multicollinear situation, Yang
and Xu (2011) proposed Liu-type of RGLSE and PTGLE in the t-regression model with
stochastic restriction. Indeed, they proposed to use Liu’s estimator (1993) given by

β̃(d) = (C + Ip)−1(XTV−1
1 y0 + dβ̃) = Fdβ̃, Fd = (C + Ip)−1(C + dIp), 0 < d < 1.

to construct Liu-type RGLSE and PTGLSE by premultiplying them using Fd.

The purpose of our study is to follow the work of Yang and Xu (2009) and construct
Liu-type preliminary test estimator. However, we have some other concerns:

1. What is the optimal range for the biasing parameter, in the MSE sense, when one
uses the generalized Liu estimator (GLE) of Akdeniz and Kaciranlar (1995) given
by

β̃(D) = (C + Ip)−1(XTV−1
1 y0 +Dβ̃) = FDβ̃,

where FD = (C + Ip)−1(C + D) and D = diag(d1, d2, ..., dp) is the biasing matrix,
0 < di < 1, i = 1, . . . , p?
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2. Is it possible to have different sources of prior information?

The first question above will be covered in the comparison of MSE functions of the gen-
eralized Liu preliminary test estimators. Our proposal to answer the second question
is to use a series of stochastic restrictions. Very recently Karbalaee et al. (2017), used a
series of stochastic restrictions to obtain preliminary test estimators in ridge regression
(RR) under the normality assumption for the error term. However, a drawback of RR
method is its non-linearity relation with respect to the ridge parameter, which cannot
be estimated in a closed form and hence optimized. Here we use a different approach
to combat this drawback.

We organize our paper as follows. The generalized Liu preliminary test estimators
based on the Wald (W), the likelihood ratio (LR) and Lagrangian multiplier (LM) tests
are proposed in Section 2, while their properties are obtained in Section 3. Section
4 contains the relative performance of the estimators. The estimation of the biasing
matrix D is the content of Section 5. Numerical illustrations are provided in Section 6.
The paper is concluded in Section 7.

2 Series of Stochastic Restrictions

If uncertainty exists about the prior information specifications, one alternative is to
make use of stochastic linear restrictions. Stochastic restriction arises from prior statis-
tical information, usually in the form of previous estimates of parameters, and take the
form of an additional linear model.

Consider a series of stochastic restrictions about β with forms
r1 = R1β + γ1

r2 = R2β + γ2
...

rl = Rlβ + γl,

(2.1)

where ri is a known qi × 1 random vector, Ri is a known qi × p prior information of rank
qi ≤ p and γi is a random vector with γi ∼ Tqi(µi, σ2V(i)

2 , ν), where V(i)
2 is a qi × qi known

positive definite symmetric matrix, with
∑l

j=1 q j = q. We further assume that ei and γi,
i = 1, . . . , l are independent.
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Combining the linear model (1.1) and stochastic restrictions (2.1), we obtain the
following mixed model

Y = Zϕ + ε, (2.2)

with prior information
H0 : Hϕ = µ = 0, (2.3)

where

Y = (y0, r1, . . . , rl)T, Z =
[
Xn×p 0n×q
0q×p Iq

]
, ϕ =

[
β

Rβ + µ

]
,

µ = (µ1, . . . , µl)T, ε = (eT, γT − µT)T, γ = (γ1, . . . , γl)T,

H =
[
−R Iq

]
, R = (RT

1 , . . . ,R
T
l )T.

The distribution of the error term ε isTn+q((0T, µT)T, σ2V, ν), where V = diag(V1,V
(1)
2 , . . . ,V

(l)
2 ).

Then, the GLE and RGLE of ϕ are respectively given by

ϕ̃(D) = FDϕ̃ = (C + Ip+q)−1(ZTV−1Y +Dϕ̃),
ϕ̂(D) = FDϕ̂ = FDϕ̃ − FDC−1HT(HC−1HT)−1Hϕ̃,

where FD = (C + Ip+q)−1(C +D) and C = ZTV−1Z.

To test the null-hypothesis H0 : µ = 0, with t-distributed errors, we may use one of
the three general test statistics W, LR and LM. These are given by

LW =
λ(n)(Hϕ̃)T(HC−1HT)−1Hϕ̃

σ̃2 ,

LLR = (n + q)(Lnσ̂2 − Lnσ̃2),

LLM =
(Hϕ̃)T(HC−1HT)−1Hϕ̃

λ(n)σ̂2 ,

where

σ̃2 =
(Y − Zϕ̃)TV−1(Y − Zϕ̃)

n + q
, and σ̂2 =

(Y − Zϕ̂)TV−1(Y − Zϕ̂)
n + q

.
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are the unrestricted and restricted maximum likelihood estimators of σ2 and

λ(n) =
n + q + ν

n + q + ν + 2
, 0 < λ(n) < 1.

For more details, we refer to Ullah and Walsh (1984). Note that if n is large then λ(n)
is close to 1, then the results in the above equations also hold for the normal regression
model.

We propose the PTGL estimators under stochastic constraints, based on the W, LR
and LM test statistics, respectively as

ϕ̂PTGL
W (D) = ϕ̂(D)I

(
LW ≤ χ2

q(α)
)
+ ϕ̃(D)I

(
LW > χ

2
q(α)

)
,

ϕ̂PTGL
LR (D) = ϕ̂(D)I

(
LLR ≤ χ2

q(α)
)
+ ϕ̃(D)I

(
LLR > χ

2
q(α)

)
,

ϕ̂PTGL
LM (D) = ϕ̂(D)I

(
LLM ≤ χ2

q(α)
)
+ ϕ̃(D)I

(
LLM > χ

2
q(α)

)
,

where χ2
q(α) denotes the upper α critical value of chi-square distribution with q degree

of freedom.

3 Properties

The bias and MSE expressions of the proposed generalized Liu estimators of ϕ are
discussed in this section. The bias and MSE are evaluated by B(θ̂) = E(θ̂) − θ and
MSE(θ̂) = E(θ̂ − θ)T(θ̂ − θ), for any estimator θ̂ of θ.

Theorem 3.1. The bias expressions of the GL, RGL and PTGL estimators are given by

Bias
(
ϕ̃(D)

)
= −(C + I)−1(I −D)ϕ, Bias

(
ϕ̂(D)

)
= −(C + I)−1(I −D)ϕ − FDδ,

Bias
(
ϕ̂PT

W (D)
)
= −(C + I)−1(I −D)ϕ − FDδG

(2)
q+2,m(xW

1 ,∆),

Bias
(
ϕ̂PT

LR(D)
)
= −(C + I)−1(I −D)ϕ − FDδG

(2)
q+2,m(xLR

1 ,∆),
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Bias
(
ϕ̂PT

LM(D)
)
= −(C + I)−1(I −D)ϕ − FDδG

(2)
q+2,m(xLM

1 ,∆),

where δ = C−1HT(HC−1HT)−1Hϕ,

xW
1 =

mχ2
q(α)

λ(n)(n + q)(q + 2)
, xLR

1 =
m

q + 2

e
χ2

q (α)

n+q − 1

 , xLM
1 =

mλ(n)χ2
q(α)

(q + 2)(n + q − λ(n)χ2
q(α))

,

and G(2)
q+2,m(x∗,∆) is defined by the following function

G( j)
q+2i,m(x∗,∆) =

∞∑
r=0

Γ( ν2 + r + j − 2)
Γ(r + 1)Γ( ν2 + j − 2)

( ∆ν−2 )r

(1 + ∆
ν−2 )

ν
2+r+ j−2

Ix∗

{
q + 2i

2
+ r,

m
2

}
, (3.1)

where Ix∗{ ., .} is the incomplete beta function and x∗ denotes any of the quantities, xW
1 , x

LR
1 and

xLM
1 and ∆ =

(Hϕ)T(HC−1HT)−1Hϕ

σ2
e

.

Theorem 3.2. The MSE expressions of the GL, RGL and PTGL estimators are given by

MSE
(
ϕ̃(D)

)
= σ2

e tr
(
FDC−1FT

D

)
+ ϕT(I −D)T(C + I)−2(I −D)ϕ,

MSE
(
ϕ̂(D)

)
= σ2

e tr
(
FDC−1FD

)
− σ2

e tr
[
FDC−1HT(HC−1HT)−1HC−1FT

D

]
+δTFT

DFDδ + 2δTFT
D(I −D)(C + I)−1ϕ + ϕT(I −D)T(C + I)−2(I −D)ϕ,

MSE
(
ϕ̂PTGL

W (D)
)
= σ2

e tr(FDC−1FT
D) − σ2

e tr
[
FDC−1HT(HC−1HT)−1HC−1FT

D

]
G(1)

q+2,m(xW
1 ,∆)

+δTFT
DFDδ

[
2G(2)

q+2,m(xW
1 ,∆) − G(2)

q+4,m(xW
2 ,∆)

]
+2δTFT

D(I −D)(C + I)−1ϕG(2)
q+2,m(xW

1 ,∆) + ϕT(I −D)(C + I)−2(I −D)ϕ,

MSE
(
ϕ̂PTGL

LR (D)
)
= σ2

e tr(FDC−1FT
D) − σ2

e tr
[
FDC−1HT(HC−1HT)−1HC−1FT

D

]
G(1)

q+2,m(xLR
1 ,∆)
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+δTFT
DFDδ

[
2G(2)

q+2,m(xLR
1 ,∆) − G(2)

q+4,m(xLR
2 ,∆)

]
+2δTFT

D(I −D)(C + I)−1ϕG(2)
q+2,m(xLR

1 ,∆) + ϕT(I −D)(C + I)−2(I −D)ϕ,

MSE
(
ϕ̂PTGL

LM (D)
)
= σ2

e tr(FDC−1FT
D) − σ2

e tr
[
FDC−1HT(HC−1HT)−1HC−1FT

D

]
G(1)

q+2,m(xLM
1 ,∆)

+δTFT
DFDδ

[
2G(2)

q+2,m(xLM
1 ,∆) − G(2)

q+4,m(xLM
2 ,∆)

]
+2δTFT

D(I −D)(C + I)−1ϕG(2)
q+2,m(xLM

1 ,∆) + ϕT(I −D)(C + I)−2(I −D)ϕ,

where

xW
2 =

mχ2
q(α)

λ(n)(n + q)(q + 4)
, xLR

2 =
m

q + 4

e
χ2

q (α)

n+q − 1

 , xLM
2 =

mλ(n)χ2
q(α)

(q + 4)(n + q − λ(n)χ2
q(α))

,

and G(1)
q+2,m(.;∆),G(2)

q+4,m(.;∆) is a function according to equation (3.1).

Proofs of the above theorems are similar to the ones in Yang and Xu (2011).

4 Performance Analysis

Comparison of relative performance of the proposed estimators as a function of ∆ and
D is presented in this section.

Using the spectral decomposition of C as C = ΓΛΓT, with Λ = diag(λ1, λ2, ..., λp+q),
such that λ1 ≥ λ2 ≥ ... ≥ λp+q > 0, it is easy to see that eigenvalues of C+ Ip+q and FD are
equal to λi+1 and (λi+di)/(λi+1), respectively. In order to use the results of Theorems
3.1 & 3.2, we consider the following equalities based on the eigenvalues of C:

ϕT(I −D)T(C + I)−2(I −D)ϕ =

p+q∑
i=1

ϕ∗
2

i (1 − di)2

(λi + 1)2 ,

δTFT
D(I −D)(C + I)−1ϕ =

p+q∑
i=1

(λi + di)(1 − di)δ∗iϕ
∗
i

(λi + 1)2 , ϕ∗ = ΓTϕ, δ∗ = ΓTδ,

tr(FT
DC−1FD) =

p+q∑
i=1

(λi + di)2

λi(λi + 1)2 ,
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δTFT
DFDδ =

p+q∑
i=1

δ∗
2

i (λi + di)2

(λi + 1)2 ,

tr(FDAFT
D) =

p+q∑
i=1

a∗ii(λi + di)2

(λi + 1)2 ,

where a∗ii ≥ 0 is the ith diagonal element of the matrix A∗ = ΓTAΓ, A = C−1HT(HC−1HT)−1HC−1.

Note that by Courant Theorem (see Theorem A.2.4 of Anderson (2003)), we have

δTFT
DFDδ

δTδ
≤ γmax(FT

DFD) = γ1,

Hence,
δTFT

DFDδ ≤ γ1δ
Tδ = σ2

e∆γ1.

Similarly, using the smallest eigenvalue we have

σ2
e∆γp+q ≤ δTFT

DFDδ,

where γ1 and γp+q are the largest and smallest eigenvalues of FT
DFD.

In order to have a scalar measurement for the bias, we define the quadratic bias as

QB∗(D, α,∆) = BT
∗ (D, α,∆)B∗(D, α,∆),

where B∗(.) defines for the bias function either of the ϕ̃(D), ϕ̂(D), ϕ̂PTGL
W (D), ϕ̂PTGL

LR (D) and
ϕ̂PTGL

LM (D). The following conclusion can be proved similar to Kibria and Saleh (2004).

Proposition 4.1. For all values of di ∈ (0, 1), α and ∆we have a relation between the quadratic
biases of the PTGL estimators, given by

QBW(D, α,∆) ≤ QBLR(D, α,∆) ≤ QBLM(D, α,∆).

Assuming D and α are known , we compare the MSE of the PTGLEs based on three
tests as a function of ∆ and determine their dominance properties. Consider

Υ1 =MSE
(
ϕ̂PTGL

W (D)
)
−MSE

(
ϕ̂PTGL

LR (D)
)
=

[
σ2

e tr(FDAFT
D) − 2ϕT(C + I)−1(I −D)FDδ

]
H

− δTFT
DFDδ(2H − E),
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where H = G(2)
q+2,m(xLR

1 ,∆)−G(2)
q+2,m(xW

1 ,∆) and E = G(2)
q+4,m(xLR

2 ,∆)−G(2)
q+4,m(xW

2 ,∆).

Since for all n, p, q, λ(n) and α we have xW
1 ≤ xLR

1 ≤ xLM
1 and xW

2 ≤ xLR
2 ≤ xLM

2 , hence H
and E are positive for all di, ∆ and α andΥ1 is non-negative, i.e., ϕ̂PTGL

LR (D) is better than
ϕ̂PTGL

W (D), if and only if

0 < ∆ ≤

[
tr(FDAFT

D) − 2σ−2
e ϕ

T(C + I)−1(I −D)FDδ
]
H

γ1(2H − E)
= ∆1(D, α),

where

∆1(D, α) =
H

γ1(2H − E)

p+q∑
i=1

(λi + di)
(
a∗ii(λi + di) − 2σ−2

e δ
∗
iϕ
∗
i (1 − di)

)
(λi + 1)2 .

Similarly, ϕ̂PTGL
W (D) is better than ϕ̂PTGL

LR (D), whenever

∆ >
H

γp+q(2H − E)

p+q∑
i=1

(λi + di)
(
a∗ii(λi + di) − 2σ−2

e δ
∗
iϕ
∗
i (1 − di)

)
(λi + 1)2 = ∆2(D, α).

Under the null-hypothesis (2.3), ϕ̂PTGL
LR (D) is always better than ϕ̂PTGL

W (D).

Now, for the MSE comparison of ϕ̂PTGL
LR (D) and ϕ̂PTGL

LM (D), consider the MSE differ-
ence

Υ2 =MSE
(
ϕ̂PTGL

LR (D)
)
−MSE

(
ϕ̂PTGL

LM (D)
)
=

[
σ2

e tr(FDAFT
D) − 2ϕT(C + I)−1(I −D)FDδ

]
H ∗

− δTFT
DFDδ(2H ∗ − E∗),

where H ∗ = G(2)
q+2,m(xLM

1 ,∆) − G(2)
q+2,m(xLR

1 ,∆) and E∗ = G(2)
q+4,m(xLM

2 ,∆) − G(2)
q+4,m(xLR

2 ,∆).

Since H ∗ and E∗ are positive for all di, ∆ and α, Υ2 is non-negative, i.e., ϕ̂PTGL
LM (D) is

better than ϕ̂PTGL
LR (D), if and only if

0 ≤ ∆ ≤ H ∗
γ1(2H ∗ − E∗)

p+q∑
i=1

(λi + di)
(
a∗ii(λi + di) − 2σ−2

e δ
∗
iϕ
∗
i (1 − di)

)
(λi + 1)2 = ∆3(D, α).

Also ϕ̂PTGL
LR (D) is better than ϕ̂PTGL

LM (D), whenever

∆ >
H ∗

γp+q(2H ∗ − E∗)

p+q∑
i=1

(λi + di)
(
a∗ii(λi + di) − 2σ−2

e δ
∗
iϕ
∗
i (1 − di)

)
(λi + 1)2 = ∆4(D, α).
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Under the null-hypothesis (2.3), ϕ̂PTGL
LM (D) is always better than ϕ̂PTGL

LR (D). Hence, we
have the following result:

Proposition 4.2. Under the null-hypothesis (2.3), the MSE of the PTGLE based on W, LR and
LM tests satisfies the following dominance relationship

MSE
(
ϕ̂PTGL

LM (D)
)
≤MSE

(
ϕ̂PTGL

LR (D)
)
≤MSE

(
ϕ̂PTGL

W (D)
)
.

Under the alternative hypothesis, we have

MSE
(
ϕ̂PTGL

LM (D)
)
≤MSE

(
ϕ̂PTGL

LR (D)
)
≤MSE

(
ϕ̂PTGL

W (D)
)

i f ∆ ∈ [0,∆13(D, α)] ,

MSE
(
ϕ̂PTGL

W (D)
)
≤MSE

(
ϕ̂PTGL

LR (D)
)
≤MSE

(
ϕ̂PTGL

LM (D)
)

i f ∆ ∈ (∆24(D, α),∞) ,

where ∆13(D, α) = min {∆1(D, α),∆3(D, α)} and ∆24(D, α) = max {∆2(D, α),∆4(D, α)}.

Now, we analyze the MSE of the PTGLEs based on three tests as a function of D
and determine their dominance properties. We have

Υ1 =

p+q∑
i=1

(λi + di)
(λi + 1)2

[
σ2

e a∗iiλiH − 2ϕ∗iδ
∗
iH − δ∗

2

i λi(2H − E) +
(
σ2

e a∗iiH + 2ϕ∗iδ
∗
iH − δ∗

2

i (2H − E)
)

di

]
.

Considering dmin = min1≤i≤p+q{ di} and dmax = max1≤i≤p+q{ di} and

d1(∆, α) =
max1≤i≤p+q

{
(2H − E)δ∗

2

i λi + 2Hϕ∗iδ∗i − σ2
eHa∗iiλi

}
min1≤i≤p+q

{
σ2

eHa∗ii + 2Hϕ∗iδ∗i − (2H − E)δ∗2i

} ,

and

d2(∆, α) =
min1≤i≤p+q

{
(2H − E)δ∗

2

i λi + 2Hϕ∗iδ∗i − σ2
eHa∗iiλi

}
max1≤i≤p+q

{
σ2

eHa∗ii + 2Hϕ∗iδ∗i − (2H − E)δ∗2i

} .
Υ1 is non-negative, i.e., ϕ̂PTGL

LR (D) is better than ϕ̂PTGL
W (D), if and only if d1(∆, α) ≤ dmin < 1

and ϕ̂PTGL
W (D) is better than ϕ̂PTGL

LR (D), if and only if 0 < dmax ≤ d2(∆, α).

Now, for the MSE comparison of ϕ̂PTGL
LR (D) and ϕ̂PTGL

LM (D), we have

Υ2 =

p+q∑
i=1

(λi + di)
(λi + 1)2

[
σ2

e a∗iiλiH ∗ − 2ϕ∗iδ
∗
iH ∗ − δ∗

2

i λi(2H ∗ − E∗) +
(
σ2

e a∗iiH ∗ + 2ϕ∗iδ
∗
iH ∗ − δ∗

2

i (2H ∗ − E∗)
)

di

]
.
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similarly considering

d3(∆, α) =
max1≤i≤p+q

{
(2H ∗ − E∗)δ∗2i λi + 2H ∗ϕ∗iδ∗i − σ2

eH ∗a∗iiλi

}
min1≤i≤p+q

{
σ2

eH ∗a∗ii + 2H ∗ϕ∗iδ∗i − (2H ∗ − E∗)δ∗2i

} ,

and

d4(∆, α) =
min1≤i≤p+q

{
(2H ∗ − E∗)δ∗2i λi + 2H ∗ϕ∗iδ∗i − σ2

eH ∗a∗iiλi

}
max1≤i≤p+q

{
σ2

eH ∗a∗ii + 2H ∗ϕ∗iδ∗i − (2H ∗ − E∗)δ∗2i

} ,
Υ2 is non-negative, i.e., ϕ̂PTGL

LM (D) is better than ϕ̂PTGL
LR (D), if and only if d3(∆, α) ≤ dmin < 1

and ϕ̂PTGL
LR (D) is better than ϕ̂PTGL

LM (D), if and only if 0 < dmax ≤ d4(∆, α).
Hence, we have the following result

Proposition 4.3. The MSE of the PTGLE based on W, LR and LM tests satisfies the following
dominance relationship

MSE
(
ϕ̂PTGL

LM (D)
)
≤MSE

(
ϕ̂PTGL

LR (D)
)
≤MSE

(
ϕ̂PTGL

W (D)
)

i f dmin ∈ [d13(∆, α), 1) ,

MSE
(
ϕ̂PTGL

W (D)
)
≤MSE

(
ϕ̂PTGL

LR (D)
)
≤MSE

(
ϕ̂PTGL

LM (D)
)

i f dmax ∈ (0, d24(∆, α)] ,

where d13(∆, α) = max{ d1(∆, α), d3(∆, α)} and d24(∆, α) = min{ d2(∆, α), d4(∆, α)} .

5 Estimation of D

To find an optimum value for biasing components in D, we consider the MSE function
of ϕ̃(D) that can be expressed as

MSE
(
ϕ̃(D)

)
= σ2

e

p+q∑
i=1

(λi + di)2

λi(λi + 1)2 +

p+q∑
i=1

ϕ∗
2

i (1 − di)2

(λi + 1)2

= δ1(D) + δ2(D). (5.1)
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For the generalized Liu estimator one needs to find values di, i = 1, ..., p + q, so that
the decrease in variance δ1(D) is greater than the increase in the squared bias δ2(D). In
order to show that such values less than 1 exist, so that MSE

(
ϕ̃(D)

)
<MSE(ϕ̃), we will

take the derivative of equation (5.1) with respect to di as

∂MSE
(
ϕ̃(D)

)
∂di

= 2σ2
e

p+q∑
i=1

(λi + di)
λi(λi + 1)2 − 2

p+q∑
i=1

ϕ∗
2

i (1 − di)

(λi + 1)2

≤ 2σ2
e

p+q∑
i=1

(λi + dmax)
λi(λi + 1)2 − 2

p+q∑
i=1

ϕ∗
2

i (1 − dmax)

(λi + 1)2 . (5.2)

For di = 1, i = 1, ..., p + q, in (5.2), we obtain,

∂MSE
(
ϕ̃(D)

)
∂di

= 2σ2
e

p+q∑
i=1

1
λi(λi + 1)

> 0, since λi ≥ 0.

Therefore, there exist values of di(0 < di < 1), such that MSE
(
ϕ̃(D)

)
< MSE(ϕ̃). Now

from (5.2), the MSE of ϕ̃(D) is minimized at

dmax =

∑p+q
i=1

(ϕ∗
2

i −σ
2
e )

(λi+1)2∑p+q
i=1

(σ2
e+λiϕ∗

2
i )

λi(λi+1)2

.

Replacing ϕ∗
2

i and σ2
e by their unbiased estimate ϕ̃∗

2

i −
σ̃2

e
λi

and σ̃2
e , we obtain the optimum

value of dmax as

dopt = 1 − σ̃2
e


∑p+q

i=1
1

λi(λi+1)∑p+q
i=1

ϕ̃∗
2

i
(λi+1)2

 . (5.3)

It should be noted since dopt must rely on (0, 1), as σ̃2
e may become very large, a restriction

must be put in obtaining dopt in numerical evaluations.
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6 Numerical Illustrations

In this section, to verify the theoretical results, first a Monte Carlo simulation is con-
ducted to compare the PTGL estimators based on the W, LR and LM tests. In addition,
performance analysis of the estimators is carried out using the well-known Portland
cement dataset (Woods et al. (1932)).

6.1 Monte Carlo Simulation

The Monte Carlo simulation on the PTGL estimators based on W, LR and LM tests, is
performed by considering different levels of multicollinearity. First, we generate the
explanatory variables according to

xi j = (1 − ρ2)
1
2 zi j + ρzip, , i = 1, ..., n, j = 1, ..., p.

where zi j are independent standard normal pseudo-random numbers and ρ2 is the
correlation between any two explanatory variables. To achieve weekly, strong or
severely collinear cases, ρ is defined by ρ ∈ {0.6, 0.7, 0.9, 0.99}. The response variable is
generated by

yi =

p∑
j=1

β jxi j + ei, i = 1, ..., n,

where ei are independent multivariate student t-distribution with ν = 5 degrees of
freedom and β j are regression coefficients, where β = (1, 2, 1,−1)T. We set p = 4,
n = 100 and considered two stochastic linear restrictions in which r1 = R1β + γ1
and r2 = R2β + γ2, where γ1 and γ2 generated according to multivariate student t-
distributions with ν1 = ν2 = 5 degree of freedom, considering

R1 =
[
0 1 −1 1

]
, R2 =

[
1 0 2 1

]
.

The QB and MSE functions of the PTGL estimators based on W, LR and LM tests were
computed with optimal biasing parameter dopt. The results are tabulated in Tables 1 &
2. It can be realized that by increasing the levels of multicollinearity, the estimated QB
values of the PTGL estimators increase. The PTGL estimator based on W test has the
smallest estimated QB value followed by the LR and the LM tests, which agree with
theoretical results. For different significance levels α, the PTGL estimator based on the
LM test has the smallest estimated MSE value, followed by the LR and the W tests.
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Table 1: Estimated QB values of the PTGL estimators based on W, LR and LM tests using dopt.

test⧹α 0.015 0.02 0.025 0.05 0.1 0.15 0.2

W

ρ = 0.6 0.2827 0.1946 0.1597 0.2309 0.0567 0.0130 0.0162
ρ = 0.7 0.2337 0.1497 0.3019 0.1186 0.0972 0.0519 0.0140
ρ = 0.9 0.3031 0.3066 0.1422 0.1211 0.0833 0.1191 0.0304
ρ = 0.99 0.6020 0.5416 0.6198 0.4812 0.4756 0.3713 0.2415

LR

ρ = 0.6 0.2827 0.2103 0.1654 0.2309 0.0567 0.0130 0.0162
ρ = 0.7 0.2337 0.1630 0.3150 0.1186 0.0973 0.0519 0.0140
ρ = 0.9 0.3031 0.3066 0.1465 0.1284 0.0872 0.1191 0.0304
ρ = 0.99 0.6075 0.5804 0.6461 0.4943 0.4820 0.3713 0.2415

LM

ρ = 0.6 0.2948 0.2331 0.1832 0.2398 0.0605 0.0130 0.0162
ρ = 0.7 0.2819 0.1630 0.3239 0.1225 0.1030 0.0519 0.0140
ρ = 0.9 0.3034 0.3175 0.1518 0.1329 0.0872 0.1191 0.0304
ρ = 0.99 0.6249 0.5948 0.6614 0.5015 0.4827 0.3713 0.2415

6.2 Portland Cement Data

The Portland cement data obtained from an experimental study where it was used to
measure the heat provided by chemical reactions in a type of cement. Typically, cement
is a mixture of four components, where the ratio of each component affects the heat
produced during the hardening stage. Design matrix and vector of responses are given
by

X =



7 26 6 60
1 29 15 52

11 56 8 20
11 31 8 47
7 52 6 33

11 55 9 22
3 71 17 6
1 31 22 44
2 54 18 22

21 47 4 26
1 40 23 34

11 66 9 12
10 68 8 12



, y =



78.5
74.3

104.3
87.6
95.9

109.2
102.7
72.5
93.1

115.9
83.8

113.3
109.4



.
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Table 2: Estimated MSE values of the PTGL estimators based on W, LR and LM tests using dopt.

test⧹α 0.015 0.02 0.025 0.05 0.1 0.15 0.2

W

ρ = 0.6 2.5818 2.5260 2.9051 3.0065 4.3675 4.1738 3.3850
ρ = 0.7 3.3948 2.7998 3.0899 3.3781 4.2935 4.5594 3.4010
ρ = 0.9 3.7536 3.8481 3.4213 3.5717 3.7685 3.7890 5.9117
ρ = 0.99 4.1195 4.4835 4.3354 4.9998 4.7253 5.9850 5.7964

LR

ρ = 0.6 2.4848 2.5260 2.8819 2.9912 4.3675 4.1738 3.3850
ρ = 0.7 3.3948 2.7682 3.0893 3.3648 4.2935 4.5594 3.4010
ρ = 0.9 3.7409 3.8024 3.4050 3.5344 3.7685 3.7783 5.9117
ρ = 0.99 4.1099 4.4197 4.2882 4.9998 4.7253 5.9850 5.7964

LM

ρ = 0.6 2.4327 2.4974 2.8098 3.0065 4.3675 4.1738 3.3863
ρ = 0.7 3.3773 2.7320 3.0234 3.3396 4.2935 4.5594 3.4084
ρ = 0.9 3.6145 3.7781 3.3530 3.5150 3.7685 3.7890 5.9117
ρ = 0.99 4.0838 4.4835 4.3354 4.9931 4.7253 5.9850 5.8025

The ordinary least squares estimator of β and σ2 are obtained as

β̃ = (2.1930, 1.1533, 0.7585, 0.4863)T, σ̃2 = 4.0468.

Arashi et al. (2015) criticized the assumption of normality in this example and suggested
to use heavier tailed alternatives such as Cauchy or t- models. Under a t-model, we
consider the stochastic restriction r = Rβ + γ, where γ is generated from a multivariate
student t-distribution with ν = 5 degrees of freedom, with R =

[
1 −1 1 0

]
. In order

to compare the three PTGL estimators based on W, LR and LM tests, we computed the
root mean squared prediction error (RMPE). The results are provided in Table 3 for
different significance levels and dopt. It can be seen that for small values α, the PTGL
estimator based on the LM test has the smallest RMPE value, followed by the LR and
the W tests, and when α = 0.2, RMPE values of the PTGLEs based on W, LR and LM
tests are the same.

Table 3: Estimated RMPE values of the PTGL estimators based on W, LR and LM tests.

test⧹α 0.015 0.02 0.025 0.05 0.1 0.15 0.2
W 45.1965 57.0744 49.5683 48.2168 59.2755 54.5541 60.7536
LR 45.1659 57.0589 49.5603 48.2138 59.2696 54.5469 60.7536
LM 42.9257 56.6578 49.3937 48.2055 59.2539 54.5468 60.7536
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7 Conclusions

In this paper, we have studied the effect of three large tests, namely, the W, LR and
LM tests on the performance of the PTGL estimator for estimating the regression pa-
rameters, when there are a series of linear stochastic restrictions available about the
regression parameters. For the generalized Liu estimator the optimum biasing matrix
is obtained and extensive numerical studies carried out to evaluate the performance
of PTGL estimator. Through numerical illustrations, we achieved for different signifi-
cance levels α and dopt, the PTGL estimator based on the LM test that has the smallest
MSE value followed by the LR and W tests. Hence, we recommend the practitioner
to use the LM test, dealing with multicollinear situations, for estimating the regression
parameters.
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