
JIRSS (2017)

Vol. 16, No. 2, pp 21-32

DOI:10.22034/jirss.2017.16.02

Some Results on Weighted Cumulative Entropy

Maliheh Mirali 1 and Simindokht Baratpour 2

1Department of Statistics, International Campus, Ferdowsi University of Mashhad, Mashhad,
Iran.
2Department of Statistics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad,
Mashhad, Iran.

Received: 14/09/2016, Revision received: 01/04/2017, Published online: 27/11/2017

Abstract. Considering Rao et al. (2004) and Di Crescenzo and Longobardi (2009) studies,
Misagh et al. (2011) proposed a weighted information which is based on the cumulative
entropy called Weighted Cumulative Entropy (WCE). The above-mentioned model is a Shift-
dependent Uncertainty Measure. In this paper, we examine some of the properties of WCE and
obtain some bounds for that. In order to estimate this information measure, we put forward
empirical WCE. Furthermore, in some theorems, we have some characterization results. We
explore that, if the WCE of the first (last) order statistic are equal for two distributions, then this
two distributions will be equal.
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1 Introduction

Information coding and transmission is a prominent part in description of the behaviour of
biological and engineering systems. Entropy, which was introduced by Shannon (1948) and
Wiener (1948, 2nd Ed. 1961), plays an undeniable essential role in the field of information
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theory. As an example, it can be used in dealing with information in the context of theoretical
neurobiology (see for instance, Johnson and Glantz (2004)) .

Let X be a non-negative random variable with a continuous cumulative distribution function
(cdf) FX(x) and the probability density function (pdf) fX(x). Then, the differential entropy,
commonly known as Shannon entropy, is defined as

H(X) = −E[log fX(X)] = −
∫ ∞

0
fX(x) log fX(x)dx,

where log means natural logarithm. Note that H(X) is a location free shift-independent measure.
Di Crescenzo and Longobardi (2006) have proposed the weighted entropy, which is another

measure of uncertainty as a suitable generalization or modification of the classical entropy,
which is a Length biased shift-dependent information measure, defined as

Hw(X) = −E[X log fX(X)] = −
∫ +∞

0
x fX(x) log fX(x)dx.

Despite the merits and vast application of Shannon’s entropy in many fields of research,
some limitations in measuring the randomness of certain systems lead to proposing a new
measure of uncertainty, called cumulative residual entropy (CRE), by Rao et al. (2004), which
is defined as

E(X) = −
∫ ∞

0
F̄X(x) log F̄X(x)dx,

where F̄X(x) = 1 − FX(x) is the survival function of X.
Navarro et al. (2010) studied several features of the CRE. Asadi and Zohrevand (2007)

also considered a dynamic version of the CRE. Moreover, Psarrakos and Navarro (2013) have
considered a dynamic generalized cumulative residual entropy (GCRE). Another study on this
topic is Kapodistria and Psarrakos (2012) in which some new connections of the CRE and the
residual lifetime were introduced. Also a cumulative version of Renyi’s entropy was studied
in Sunoj and Linu (2012).

Misagh et al. (2011) proposed a weighted information which is based on the cumulative
residual entropy, called weighted cumulative residual entropy (WCRE). This is a Length biased
Shift-dependent information measure that assigns larger weights to larger values of a random
variable. As pointed out by Misagh et al. (2011), in some practical situations of reliability and
neurobiology, a shift-dependent measure of uncertainty is desirable. Also, an important feature
of the human visual system is that it can recognize objects in a scale- and translation-invariant
manner. However, achieving this desirable behavior using biologically realistic network is a
challenge. The notion of weighted entropy addresses this requirement. Mirali et al. (2015)
investigated some properties of WCRE, conditional and empirical WCRE. This measure is
defined as

Ew(X) = −
∫ ∞

0
xF̄X(x) log F̄X(x)dx. (1.1)
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Mirali and Baratpour (2015) proposed a dynamic form of WCRE and studied some prop-
erties of this measure. Also, some characterization results were provided. A new information
measure similar to CRE has been proposed by Di Crescenzo and Longobardi (2009). It is named
cumulative entropy and is defined as

CE(X) = −
∫ +∞

0
FX(x) log FX(x)dx.

They discussed its main properties, including a connection to the reliability theory, and
estimated it based on the empirical cumulative entropy.

In this paper, some characterization results based on order statistics are obtained. Let
X1,X2, · · · ,Xn be iid observations from (cdf) FX(x) and pdf fX(x). The order statistics of this
sample are denoted as X1:n ≤ X2:n ≤ · · · ≤ Xn:n (See Arnold et al. (1992)).

Rest of the paper is organized as follows. In Section 2, the definition of the weighted
cumulative entropy (WCE) and a description of its properties are given in the form of several
theorems. An estimate of this measure together with the central limit theorem are also provided.
In Section 3, we present WCRE and WCE of the first and the last order statistics and conclude
with some characterization results.

2 Weighted Cumulative Entropy

Misagh et al. (2011) introduced weighted cumulative entropy (WCE) which is based on the
cumulative entropy. In this section, we investigate some properties of this measure. The
connection between the cumulative entropy and the reliability theory will be also considered.

Definition 2.1. Let X be a non-negative continuous random variable with cdf FX(x). The WCE
of X is defined by

CEω(X) = −
∫ ∞

0
xFX(x) log FX(x)dx. (2.1)

Note that the WCRE and WCE have some advantages with respect to the weighted entropy.
Weighted entropy is based on the density function which, in general, may or may not exist.
Weighted entropy may be negative, but WCRE and WCE are always non-negative. Despite
WCRE and WCE, the weighted entropy cannot be estimated by the empirical distribution
function.

WCE has some properties similar to the WCRE which have been introduced by Mirali et al.
(2015) Therefore, their proofs are omitted.

• If Y = aX + b, a > 0, b ≥ 0, then

CEω(Y) = a2CEω(X) + abCEω(X).

• If E(X2) < ∞, then CEω(X) < ∞.
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• If H(X) is the Shannon entropy of X, then

CEw(X) ≥ C exp[E
(

log(X)
)
] · exp H(X), (2.2)

where C = exp
∫ 1

0 log(x| log x|)dx = 0.2065.

• CEω(X) = 0, if and only if X is degenerate.

• CEw(X) ≥
∫ ∞

0 xFX(x)F̄X(x)dx.

• If CEw(X) < ∞, then CEw(X) = E[T(X)], where

T(t) =
∫ ∞

t
x
∫ ∞

x
rX(u)dudx,

and rX(t) = fX(t)
FX(t) is the reversed hazard rate function.

• Let X be a continuous random variable with cdf FX(x) that takes values in [0, b] with finite
b. Then, CEω(X) ≤ bCE(X) and CEω(X) ≤ − 1

2

(
b2 − E(X2)

)
log
(
1 − E(X2)

b2

)
.

• Let X be a continuous random variable with cdf FX(x) that takes values in [a,∞) with
finite a>0. Then, CEω(X) ≥ a CE(X).

• Let X and Y be continuous random variables with cdfs FX(x) and GX(x), respectively, that
take values in [a,+∞), a > 0. Then, we have

CEw(X) ≥ a
2

E(X − Y).

• For any continuous, non-negative and independent random variables X and Y, we have

CEω(X + Y) ≥ max
{
CEω(X) + E(X)CE(X),CEω(Y) + E(Y)CE(Y)

}
.

2.1 Connection to the Reliability Theory

In this part, the connection between the cumulative entropy and the reliability theory will be
considered. If X is the lifetime of a system, then the inactivity time of the system is denoted by
[t − X

∣∣∣X ≤ t], t ≥ 0. The inactivity time is thus the duration of the time occurring between an
inspection time t and the failure time X, given that at time t the system has been found to be
down. For all t ≥ 0, such that FX(t) > 0, the mean inactivity time is given by

µ̃(t) = E[t − X
∣∣∣X ≤ t] =

1
FX(t)

∫ t

0
FX(x)dx.

This function has been used in various contexts of the reliability theory involving stochastic
orders and characterization of random lifetime (see for instance, Ahmad and Kayid (2005),
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Ahmad et al. (2005), Kayid and Ahmad (2004), Li and Lu (2003), Misra et al. (2008) and
Nanda et al. (2003)). We indicate that WCE has a direct relation to the second moment of the
inactivity time: for all t ≥ 0 and FX(t) > 0, it is defined as

η2(t) = E
(
(t − X)2

∣∣∣X ≤ t
)
. (2.3)

It can easily be shown that

η2(t) =
2

FX(t)

∫ t

0
(t − x)FX(x)dx

= 2tµ̃(t) − 2
FX(t)

∫ t

0
xFX(x)dx. (2.4)

Theorem 2.1. Let X be a non-negative continuous random variable with mean inactivity time function
µ̃(t) and weighted cumulative entropy CEw(X) < ∞. Then,

CEw(X) = E
(
Xµ̃(X)

)
− 1

2
E
(
η2(X)

)
,

where η2(t) is defined by (2.3).

Proof. By (2.4), we have

1
2

E
(
η2(X)

)
= −
∫ ∞

0

[ ∫ t

0
x

FX(x)
FX(t)

dx
]

fX(t)dt + E
(
Xµ̃(X)

)
= −
∫ ∞

0
xFX(x)

∫ ∞

x
rX(t)dtdx + E

(
Xµ̃(X)

)
=

∫ ∞

0
xFX(x) log FX(x)dx + E

(
Xµ̃(X)

)
= −CEw(X) + E

(
Xµ̃(X)

)
.

and the proof is completed. □

2.2 Empirical Weighted Cumulative Entropy

In this subsection, an estimate of the WCE is constructed by means of the empirical WCE. Let
X1,X2, · · · ,Xn be a non-negative, continuous, independent and identically distributed random
sample from a population having the distribution function FX(x). By using the plug-in method,
we define the empirical weighted cumulative entropy as

CEw
n (X) = −

∫ ∞

0
xFn(x) log Fn(x)dx,
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where Fn(x) is the empirical distribution function. Denoting the order statistics of the random
sample by (0 = X(0)) ≤ X(1) ≤ X(2) ≤ · · · ≤ X(n), we have

CEw
n (X) = −

n−1∑
i=1

1
2

Ui
i
n

log
i
n
, (2.5)

where we use the sample spacings

Ui = [X2
(i+1) − X2

(i)], i = 1, 2, . . . , n − 1,

and recall that
Fn(x) =

i
n
, X(i) ≤ x < X(i+1), i = 1, 2, . . . , n − 1.

Theorem 2.2. Let X1,X2, . . . ,Xn be a random sample from Rayleigh distribution with pdf fλ(x) =
2λxe−λx2

, x > 0, λ > 0. Then,

Zn :=
CEw

n (X) − E[CEw
n (X)]√

var[CEw
n (X)]

converges in distribution to a standard normal variable as n→∞.

Proof. Relation (2.5) can be written as

CEw
n (X) =

n−1∑
i=1

Yi,

where Yi = − 1
2 Ui

i
n log i

n , i = 1, . . . , n − 1. According to the fact that, if X has a Rayleigh
distribution with parameter λ, then Z = X2 has an exponential distribution with parameter λ,
we have

E[Yi] = −
i

2n
(log

i
n

)
1

λ(n − i)
,

var[Yi] =
i2

4n2

(
log

i
n

)2 1
λ2(n − i)2 .

Since E[|Z−E(Z)|3] = 2e−1(6− e)[E(Z)]3 for any exponentially distributed random variable Z, by
setting αi,k = E[|Yi − E(Yi)|k], the approximations

n∑
i=1

αi,2 =
1

4λ2n2

n∑
i=1

( i log i
n

n − i

)2
≈ c2

4λ2n
,

n∑
i=1

αi,3 =
−(6 − e)
4en3λ3

n∑
i=1

( i log i
n

n − i

)
≈ −(6 − e)c3

4en2λ3 ,



Some Results on Weighted Cumulative Entropy 27

hold for large n, where

ck :=
∫ 1

0

( x
1 − x

log x
)k

dx =

0.481640522, k = 2
−0.385766882, k = 3.

Since,
(α1,3 + α2,3 + · · · + αn,3)

1
3

(α1,2 + α2,2 + · · · + αn,2)
1
2

≈ n−
1
6 → 0 as n→∞,

Lyapunov’s condition of the central limit theorem is satisfied (see Gut (2005)). This completes
the proof. □

3 Some Characterization Results Based on Order Statistics

In this section, for some characterization results, the following Lemma is needed.

Lemma 3.1. If η is a continuous function on [0, 1], such that
∫ 1

0 xnη(x)dx = 0, for n ≥ 0, then η(x) = 0,
for all x ∈ [0, 1].

In fact, Lemma 3.1 is a corollary of Stone-Weierstrass Theorem (see Aliprantis and Burkin-
shaw (1981)). In the following, we will achieve the WCRE of the first and the last order statistics.
The WCRE of the first order statistic is

Ew(X(1)) = −
∫ ∞

0
xF̄X(1) (x) log F̄X(1) (x)dx, (3.1)

where F̄X(1) (x) = F̄n
X(x). By changing the variable to u = F̄X(x) in (3.1),

Ew(X(1)) = −n
∫ 1

0
F−1

X (1 − u)un log u

fX
(
F−1

X (1 − u)
)du, (3.2)

where F−1
X (x) is the inverse function of FX(x). Also, it can be shown that

Ew(X(n)) = −
∫ 1

0

F−1
X (u)(1 − un) log(1 − un)

fX
(
F−1

X (u)
) du. (3.3)

Theorem 3.1. Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn be random samples from non-negative continuous
cdfs F(x) and G(x) and pdfs f (x) and g(x), respectively, with common support [0,∞). Then, F(x) = G(x)
if and only if Ew(X(1)) = Ew(Y(1)), for all n.
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Proof. The necessity is trivial. Therefore, it remains to prove the sufficiency part. If Ew(X(1)) =
Ew(Y(1)), then we have∫ 1

0
un log u

[ F−1(1 − u)

f
(
F−1(1 − u)

) − G−1(1 − u)

g
(
G−1(1 − u)

) ]du = 0.

By Lemma 3.1, we conclude that F−1(1−u)

f
(

F−1(1−u)
) = G−1(1−u)

g
(

G−1(1−u)
) , 0 ≤ u ≤ 1. By assuming that v = 1−u, we

have F−1(v) d
dv F−1(v) = G−1(v) d

dv G−1(v), 0 ≤ v ≤ 1. Since d
dv F−1(v) = 1

f
(

F−1(v)
) , it will be concluded

that F−1(v) = G−1(v), 0 ≤ v ≤ 1. Thus, the proof is completed. □

WCE of the last order statistic is

CEω(X(n)) = −n
∫ ∞

0
xFn

X(x) log FX(x)dx, (3.4)

where Fn
X(x) = FX(n) (x). With a change of variable, u = FX(x), we are able to write

CEω(X(n)) = −n
∫ 1

0
F−1

X (u)un log u

fX
(
F−1

X (u)
)du. (3.5)

Also, by using F̄X(1) (x) = 1 − F̄n
X(x), we have

CEω(X(1)) = −
∫ ∞

0
x
(
1 − F̄n

X(x)
)

log
(
1 − F̄n

X(x)
)
dx. (3.6)

With another change of variable, u = F̄n
X(x) in (3.6), we have

CEω(X(1)) = −
∫ 1

0
F−1

X (1 − u
1
n )(1 − u) log(1 − u)

u
1
n−1

n fX
(
F−1

X (1 − u
1
n )
)du.

Theorem 3.2. Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn be random samples from non-negative continuous
cdfs F(x) and G(x) and pdfs f (x) and g(x), respectively, with common support [0,∞). Then F(x) = G(x)
if and only if CEw(X(n)) = CEw(Y(n)), for all n.

Proof. The necessity is trivial. Therefore, it remains to prove the sufficiency part. If CEw(X(n)) =
CEw(Y(n)), for all n, then we have∫ 1

0
un log u

( F−1(u)

f
(
F−1(u)

) − G−1(u)

g
(
G−1(u)

) )du = 0.

By using Lemma 3.1, we have
F−1(u)

f
(
F−1(u)

) = G−1(u)

g
(
G−1(u)

) , (3.7)

for all n. The rest of the proof is similar to the proof of Theorem 3.1. □
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Now, we evaluate the WCRE of X(1) and WCE of X(n) for some distributions.

Examples 3.1. Suppose that X has an exponential distribution with mean 1
λ . Then,

(i) Ew(X) = 2
λ2 , Ew(X(1)) = 2

(nλ)2 , E(X(1)) = 1
nλ and E(X2

(1)) =
2

(nλ)2 . Thus, we have Ew(X(1)) =

E(X2
(1)), Ew(X) = n2E(X2

(1)) = n2Ew(X(1)) and Ew(X(1)) = 2
(
E(X(1))

)2
.

(ii) CEw(X(n)) = n
λ2 [C +

n∑
k=1

Ck
n(−1)k 1

k

[
1
k

n∑
j=1

1
j + dilog(0) +

n∑
j=1

1
j2

]
,

where C =
∫ 1

0
log x

x log(1 − x)dx = 1.202056903 and dilog(0) =
∫ 0

1
log x
1−x dx = π

2

6 .

Examples 3.2. Let X have a Pareto distribution with pdf f (x) = αβα

xα+1 , x ≥ β , β > 0 and α > 0.
Then,

(i) By (1.1) and (3.2), we have

Ew(X) =

 αβ2

(α−2)2 , α > 2
∞, α ≤ 2,

and

Ew(X(1)) =

 nαβ2

(nα−2)2 , α >
2
n

∞, α ≤ 2
n .

For α > 2
n , we derive Ew(X(1)) = CnE2(X2

(1)), where E(X2
(1)) =

2β2

nα−2 and C = α
4β2 .

Let ∆1 = Ew(X) − Ew(X(1)). Then, according to ∆1 ≥ 0 for α > 2 and all n, the uncertainty
of X is more than the uncertainty of X(1), for all n.

(ii) By (3.5), we have

CEw(X(n)) = −
nβ2

α

∫ 1

0
un log u(1 − u)−(1+ 2

α )du.

Using binomial series for (1 − u)−(1+ 2
α ), we conclude that

CEw(X(n)) =
nβ2

α

∞∑
j=0

a j(−1) j 1
(n + j + 1)2 , (3.8)

where a0 = 1 and a j =
[−(1+ 2

α )][−(1+ 2
α )−1]···[−(1+ 2

α )− j+1]
j! .

By taking n = 1 in (3.8), we conclude that CEw(X) = β
2

α

∞∑
j=0

a j(−1) j 1
( j+2)2 .
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Examples 3.3. Suppose X has Rayleigh distribution with density function fλ(x) = 2λxe−λx2
,

x > 0, λ > 0.
Using (1.1) and (3.1), we have

Ew(X) =
1

2λ
, Ew(X(1)) =

1
2nλ
.

Thus, we conclude that nEw(X(1)) = Ew(X).
Let∆2 = Ew(X)−Ew(X(1)), then according to∆2 ≥ 0, for all n, we conclude that the uncertainty

of X is more than the uncertainty of X(1). Also, we can obtain Ew(X(1)) = 1
2 E(X2

(1)).
(ii) By (3.5), we have

CEw(X(n)) =
n

2λ

[
dilog(0) −

n∑
j=1

1
i2
]

=
n

2λ

[π2

6
−

n∑
i=1

1
i2
]
,

where dilog(0) =
∫ 0

1
log x
1−x dx = π

2

6 . Also, CEw(X) = 1
2λ

[
π2

6 − 1
]
.

Let ∆3 = CEw(X(n)) − CEw(X), then according to ∆3 ≥ 0 for all n, we conclude that the
uncertainty of X(n) is more than the uncertainty of X.

Theorem 3.3. Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn be random samples from non-negative continuous
distributions F(x) and G(x), respectively. If F(x0) = G(x0), then F(x) = G(x), for x > x0, if and only if

Ew(X( j)

∣∣∣X( j−1) = x0) = Ew(Y( j)

∣∣∣Y( j−1) = x0).

Proof. If F(x) = G(x) for x > x0, then by assumption F(x0) = G(x0), F(x) and G(x), truncated on
the left at x0, are equal for x > x0, that is,

F(x) − F(x0)
1 − F(x0)

=
G(x) − G(x0)

1 − G(x0)
, x > x0.

By Theorem 2.4.1 of Arnold et al. (1992), the distribution of X( j) given that X( j−1) = x0 is
the same as the distribution of the first order statistic obtained from a sample of size n − j + 1
from a population whose distribution F(x) is truncated on the left at x0. By Theorem 3.1, we
conclude that

Ew(X( j)

∣∣∣X( j−1) = x0) = Ew(Y( j)

∣∣∣Y( j−1) = x0).

Conversely, let Ew(X( j)

∣∣∣X( j−1) = x0) = Ew(Y( j)

∣∣∣Y( j−1) = x0), that is WCRE of the first order
statistic for two distributions F(x) and G(x) truncated on the left at x0 are equal. Thus, by
Theorem 3.1, this two truncated distributions are equal, which leads to F(x) = G(x) for x > x0. □
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Theorem 3.4. Let X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn be random samples from non-negative continuous
distributions F(x) and G(x), respectively. If F(x0) = G(x0), then F(x) = G(x), for x < x0, if and only if

CEw(X( j)

∣∣∣X( j+1) = x0) = CEw(Y( j)

∣∣∣Y( j+1) = x0).

Proof. Using Theorem 2.4.2 of Arnold et al. (1992) and Theorem 3.2, the proof is similar to the
Theorem 3.3. □

4 Conclusion

In this paper, we considered a weighted entropy, called WCE, which is based on the cdf. The
properties of this measure and its connection with reliability were investigated. An estimate of
the WCE was constructed by means of the empirical cdf. Also, some characterization results
were given, in patrticular, some results on the first and last order statistics.
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