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Abstract. The problems of sequential change-point have several important appli-
cations, including quality control, failure detection in industrial, finance and signal
detection. We discuss a Bayesian approach in the context of statistical process control:
at an unknown time τ, the process behavior changes and the distribution of the data
changes from p0 to p1. Two cases are considered: (i) p0 and p1 are fully known, (ii)
p0 and p1 belong to the same family of distributions with some unknown parameters
θ1 , θ2. We present a maximum a posteriori estimate of the change-point which, for
the case (i) can be computed in a sequential manner. In addition, we propose the use
of the Shiryaev’s loss function. Under this assumption, we define a Bayesian stopping
rule. For the Poisson distribution and in the two cases (i) and (ii), we obtain results for
the conjugate prior.
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1 Introduction

The analysis of change-point describes sudden localized changes typically occurring
in economics, medicine, and physical sciences. An example of application of change-
point analysis is the Statistical process control (SPC). The SPC consists of methods
for understanding, monitoring, and improving process performance, for instance, the
performance of a production line of a soft-drink over time.

Suppose that, for a given experiment (or process), a sample of independent se-
quential observations

{
yt, t ≥ 1

}
is available. When the process is under-control, the

distribution of the process measurements equals a specific distribution p0(y). If the
measurement distribution changes after an unknown time point, then the process be-
comes out-of control and the following observations are then derived from a different
distribution p1(y). The major objective of the analysis is to detect such a change as
soon as possible while keeping false alarms of being in out-of control as infrequent as
possible so that the process can be stopped and the causes of the shift can be checked
out in a timely fashion.

When p0(y) and p1(y) are completely specified, the problem is well known and has
been studied under a variety of criteria. Some well-known methods to deal with this
problem are Shewharts control charts, Moving Average control charts, Pages CUSUM
procedure, and the Shiryaev-Roberts procedure (Lorden, 1971). However, in practice,
the assumption of completely known under-control p0(y) and out-of control p1(y) dis-
tributions are not realistic. Then, a more flexible formulation may assume that these
distributions belong to some known families with unknown parameters. Therefore, the
change-point problem detection procedure should deal with estimating these unknown
parameters as well.

In most applications, we are concerned with shifts in the mean parameter from
µ0 to µ1 > µ0 of the measurement distribution. These parameters may be known or
unknown. A standard change-point detection procedure needs to specify a required
rate of false alarms when µt = µ0, to minimize detection delay if µt ≥ µ1 and to estimate
these parameters (Lai, 1995; Lorden, 1971; Pollak, 1987; Siegmund and Venkatraman,
1995). These mean parameters could be a function of some explanatory variables. If
we let µ0 = f0(xxx) and µ1 = f1(xxx), the problem is addressed as the change-point problem
in regression analysis (Gholami, 2010). It is ideal if we could optimize all possible
false alarm rates and all possible detection delays. Unfortunately, due to the lack of an
attractive definition of optimality in the literature for this problem, this cannot be done
(Mei, 2003).

In this paper, we discuss a Bayesian approach in the context of statistical process
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control. We suppose that, at an unknown time τ, the process behavior changes and
the distribution of the data changes from p0 to p1. As we do not assume any prior
information for the change-point location, we use a discrete uniform distribution for τ.
We consider two cases: (i) p0 and p1 are fully known, (ii) p0 and p1 belong to the same
family of distributions with some unknown parameters θ1 , θ2. For the case (i), we
present a maximum a posteriori estimate of the change-point which can be computed
in a sequential manner. Furthermore, we propose the use of the Shiryaev’s loss function
which assumes that we lose c for each observation taken after τ, and lose 1 for a false
alarm. Under this loss function, we define a Bayesian stopping rule. For the Poisson
distribution and, in two cases (i) and (ii), we obtain results for the conjugate prior.

2 Problem Statement

The sampling distribution of the first t observations is given by

pt(y1:t|τ) =



τ∏
i=1

p0(yi)
t∏

i=τ+1

p1(yi) if 1 ≤ τ ≤ t − 1

t∏
i=1

p0(yi) if τ = t ,

(2.1)

where the discrete unknown parameter τ indicates a change-point in the sample. A
related problem is to test sequentially whether the experiment is under control, i.e., for
each t we want to test the null hypothesis of no change,

H0 : pt(y1:t|τ) =
t∏

i=1

p0(yi),

versus the alternative of a change-point,

H1 :
{
pt(y1:t|τ), 1 ≤ τ ≤ t − 1

}
.

As a consequence, we stop the experiment at the first value of t for which H0 is
rejected.
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From a Bayesian point of view, we need to solve a testing problem which is formu-
lated as a model selection problem between

M1 : pt(y1:t) (2.2)

M2 :
{
pt(y1:t|τ), πt(τ)

}
.

3 Maximum a Posteriori Estimation of Change-Point

By considering a discrete uniform distribution at times t for the change-point, i.e.,

πt(τ) =
1
t
,

the posterior distribution will be

πt(τ|y1:t) ∝



πt(τ)
τ∏

i=1

p0(yi)
t∏

i=τ+1

p1(yi) if 1 ≤ τ ≤ t − 1

πt(τ)
t∏

i=1

p0(yi) if τ = t ,

(3.1)

and the sequential relationship

πt+1(τ|y1:t+1) ∝


πt(τ|y1:t)p1(yt+1) if 1 ≤ τ ≤ t

πt(t|y1:t)p0(yt+1) if τ ≥ t + 1 .
(3.2)

holds between the posterior at times t and t + 1.
Note that (3.1) is not in a sequential manner. Then, τ = t means that the change-

point location is the last data (or there is no change-point), while (3.2) is written in a
sequential way and τ ≥ t + 1 means that the change-point will be at time t + 1 or in a
time after that. The maximum a posteriori (MAP) estimator is estimated as

τ̂t+1 =


τ̂t if πt(τ̂t|y1:t)p1(yt+1) ≥ πt(t|y1:t)p0(yt+1)

t + 1 if Otherwise,
(3.3)

when τ̂1 = 1.
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4 Bayesian Stopping Rule

We consider the loss function

Lt(τ̃t, τ) =


0 τ̃t = τ
c(τ̃t − τ) τ̃t > τ
1 τ̃t < τ ,

which is called Shiryaev’s loss function (Lai, 1995), to penalize wrong decisions. This
loss function naturally gives more weight to the situation that we have exceeded the
true change-point. This cost is proportional to the delay in detecting the change-point,
and c > 0 is a tuning parameter which should be chosen before performing the analysis.

At time t, our estimation for change-point is a value that minimizes the Bayes risk,
i.e.,

τ̄t = arg minEπt(.|y1:t)[Lt(τ̃t, .)], (4.1)

when

Eπt(.|y1:t)[Lt(τ̃t, τ)] =
τ̃t−1∑
i=1

c(τ̃t − i)πt(τ = i|y1:t) + Pπt(τ ≥ τ̃t + 1) . (4.2)

The Bayesian stopping rule is defined by

t⋆ = min {t : τ̄t < t} , (4.3)

which solves the model selection problem mentioned in (2.2), i.e., at time t⋆, we select
M2 meaning that a change-point has occurred.

5 The Parametric Change-Point Problem

Suppose that p0(y) and p1(y) are densities belonging to a parametric family which is
denoted by p(y|θ1) and p(y|θ2), respectively, where θ1 and θ2 are unknown points of
the parameter space Θ. Then, the sampling distribution of the first t observation is

pt(y1:t|τ, θ1, θ2) =



τ∏
i=1

p(yi|θ1)
t∏

i=τ+1

p(yi|θ2) if 1 ≤ τ ≤ t − 1

t∏
i=1

p(yi|θ1) if τ = t .

(5.1)
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In this case, for some prior distributions π(θ1) and π(θ2), the derived results in
Section 1 hold with

pt(y1:t|τ) =



∫ τ∏
i=1

p(yi|θ1)
t∏

i=τ+1

p(yi|θ2)π(θ1)π(θ2)dθ1dθ2 if 1 ≤ τ ≤ t − 1

∫ t∏
i=1

p(yi|θ1)π(θ1)dθ1 if τ = t .

(5.2)

At time t, the posterior distribution of θ1 and θ2 is

πt(θ1, θ2|y1:t) =

t∑
τ=1

pt(y1:t|τ, θ1, θ2)πt(τ)π(θ1, θ2)

t∑
τ=1

∫
pt(y1:t|τ, θ1, θ2)πt(τ)π(θ1, θ2)dθ1θ2

=

t∑
τ=1

pt(y1:t|τ, θ1, θ2)π(θ1, θ2)

t∑
τ=1

∫
pt(y1:t|τ, θ1, θ2)π(θ1, θ2)dθ1θ2

. (5.3)

6 Prior Elicitation

For a change-point analysis, choosing the prior distribution on the unknown parame-
ters is a delicate consideration. The classical change-point literature reveals a preference
for uniform priors on τ. Obviously, before seeing the data, every value for τ, apart
from initial conditions and endpoints, is equally plausible. Therefore, at time t, the
change-point prior will be πt(τ) = 1

t I{1,...,t}(τ).
In the context of quality control Dehghan Monfared and Meshkani (2010) used

EWMA1 charts structure to construct an informative prior distribution for the change-
point. In this context, one does not expect that the change happens immediately then
the prior should give less weights to the data when the procedure starts to monitor.
Note that these methods were developed for continuous data and could not be used
for discrete distributions.

1Exponentially Weighted Moving Average
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For the sampling densities parameters θ1 and θ2, either conjugate priors or vague
priors can be used. Note that the conjugate priors need to asses values for the hyper-
parameters. Therefore, some sort of subjective input or empirical Bayes estimation
is necessary. Furthermore, these hyper-parameters can be fixed in accord with the
available information, which is the case in the control theory, for instance. Note that
when we say the procedure is under-control, it implies that there is at least some
information about the range of the parameters. It is possible to consider a hierarchical
model structure where we introduce hyper-priors on the hyper-parameters. This also
enables the data to solidate the choice of the prior. It is possible to choose the hyper-
priors to be improper in many situations.

On the contrary, when the system is out-of control and our aim is to detect this
situation as soon as possible, we do not expect to have enough data to asses the
value of hyper-parameters in the case of conjugate priors. Note that the amount of
available data for estimating θ2 is controlled by the loss function. Using more data
and consequently driving better estimation for θ2 leads to long delays in reporting the
occurrence of the change-point. Therefore, the priors we wish to use are the reference
priors which have minimum effects on the posterior.

Girón et al. (2007) propose the use of intrinsic priors for the unknown parameters.
They are derived from the arithmetic intrinsic Bayes factor (Berger and Pericchi, 1996)
plus an asymptotic argument (Moreno et al., 1998). While these priors do use the avail-
able information about the nature of underling process, they are not easy to compute for
the models and we prefer to use an alternative prior such as hierarchical or conjugate
priors.

7 The Poisson Case

Let us assume that the sampling density is a Poisson distribution. At time t, the
likelihood function is

pt(y1:t|τ, λ1, λ2) =



τ∏
i=1

e−λ1λ
yi
1

yi!

t∏
i=τ+1

e−λ2λ
yi
2

yi!
if 1 ≤ τ ≤ t − 1

t∏
i=1

e−λ1λ
yi
1

yi!
if τ = t .

(7.1)

If we consider a conjugate prior on the parameters

λ1 ∼ G (α1, β1), λ2 ∼ G (α2, β2),
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and a uniform prior on {1, . . . , t} for the change-point, by integrating out the parameters,
the posterior distribution of τwill be

πt(τ|y1:t) ∝
Γ
(
τȳ1 + α1

)(
τ + β1

)τȳ1+α1

Γ
(
(t − τ)ȳ2 + α2

)(
t − τ + β2

)(t−τ)ȳ2+α2
= π∗t(τ|y1:t) (7.2)

=
π∗t(τ|y1:t)
t∑
τ=1

π∗t(τ|y1:t)

,

where ȳ1 =
∑τ

i=1 yi/τ and ȳ2 =
∑t

i=τ+1 yi/(t − τ).
For given τ and t, the posterior distributions will be

π(λ1|y1:τ) = G (λ1; τȳ1 + α1, β1 + τ)

and
π(λ2|yτ+1:t) = G (λ2; (t − τ)ȳ2 + α2, β2 + t − τ);

then,

λ̂1,t =
τȳ1 + α1

β1 + τ
and λ̂2,t =

(t − τ)ȳ2 + α2

β2 + t − τ .

For assessing the performance of the method, we can construct MSE and HPD
intervals. For each t, MSE is defined as

MSEt = E (τ̂t − τ)2 ≈ 1
t

t∑
j=1

( j − τ)2, (7.3)

and a 100(1 − α)% HPD interval for τt is defined by

Ct =
{
τ | πt(τ | y1:t) ≥ k

}
, (7.4)

where k is the largest value such that∑
Ct

πt(τ | y1:t) = 1 − α.

If we consider the Jeffreys prior for the parameters, i.e., π(λ) ∝ λ−1/2, the posterior
of τwill be

πt(τ|y1:t) ∝
Γ
(
τȳ1 + 0.5

)
ττȳ1+0.5

Γ
(
(t − τ)ȳ2 + 0.5

)
(t − τ)(t−τ)ȳ2+0.5

, (7.5)

which is an special case of (7.2) for α1 = α2 = 0.5 and β1 = β2 = 0.



Sequential Change-Point Detection 85

0 50 100 150 200

0
1

2
3

4
5

6

Figure 1: BDAEK. Simulated data from two Poisson distribution with parameters equal
to 1 and 2. The change-point is located at t = 100.

7.1 Examples

7.1.1 Both Distributions Are Entirely Known (BDAEK)

We generate T = 200 observations form two Poisson distributions when λ1 = 1, λ2 = 2
and τ = 100. Figure 2 shows the posterior distribution of change-point at different
times. As it was expected, for t < τ (meaning that no change has occurred), the posterior
mode is located at t ≥ τ. As we are receiving more observations and approaching the
real change-point, the posterior starts to have its mode around the real change-point
value. Furthermore, when the change occurs (t ≥ τ), the posterior mode is still located
around the change-point and does not move, so that, for t ≥ 110, the same posterior is
approximately obtained.

Figure 3 exhibits the MAP estimate at different times. As it is observed, the MAP
estimation is a non-decreasing function of time. The estimator has an increasing trend
till time t = 97 and, after that, it is constant and takes 97 as the estimation of τ. Figure
4 gives the MAP estimates for different values of c, which is a penalization factor, at
different times. As mentioned before, this parameter is a tuning parameter and should
be fixed before the experiment. As expected, for its larger values, we can detect change-
point rapidly which is almost a wrong alarm of detecting. In this figure, the solid line
corresponds to c = 0 which does not penalize the delay in detecting the change-point
and it is an extreme choice. Then, we never detect the change-point even when we
stop the monitoring of the system (here when t = T = 200). Another extreme choice
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Figure 2: BDAEK. Posterior distribution at different times, solid line t = 50, dashed
line t = 97, dotted line t = 100, dot-dashed line t = 110, long-dashed line t = 120 and
two-dashed line t = 150.

is c = 300. For this, value the algorithm reports the presence of a change-point as the
system starts to produce observations. It means that only the first observation belongs
to the assumed distribution. For our data, it seems that 0 < c ≤ 0.2 is a reasonable
choice.

Figure 5 shows the behavior of the stopping time rule for different values of 0 ≤ c ≤
0.2. As shown in the figure, for larger values of c, we detect the change-point earlier.
For the data at hand, it seems that the best value for c is 0.034.

7.1.2 Second Distribution is Not Known (SDNK)

In this case, we assume that there is at least some information about the underlying
procedure when it is out-of control. Furthermore, we assume that this information is
of the form of the process mean λ0

2. Then,

E(Y) = E[E(Y|λ2, α2, β2)] = E(λ2|α2, β2) =
α2

β2
,
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Figure 3: BDAEK. MAP estimation at t = 1, . . . ,T.

indicating that, for a conjugate prior, we have chosen α2 = λ0
2 and β2 = 1.

By letting λ0
2 = ȳτ+1:T, we run the same algorithm. The results are reported in

Figures 7, 8, 9 and 10. By comparing these results with the BDAEK case, we observe
that there is no considerable difference in the results.

The same results hold when the first distribution is not entirely known as well. We
considered the conjugate prior on the parameter and assumed that the same type of
information is available for the first distribution. Figure 11 shows the results in this
case.

To measure the performance of the estimators, we generated m = 100 different
samples from the same Poisson distribution and computed the estimations for these
samples. In the sequel, we averaged the MSEs over them. Furthermore, for the
Bayesian stopping time estimations, we derived the estimation for each sample. Figure
6 shows the results. For t < τ, this figure shows that the MSEs increase and almost after
that start to decrease. This was expectable as, before t < τ, our MAP estimation was
τ̂t = t + 1 which might be far from the real τ = 100. However, when we collect enough
data (t > τ), the estimations should be close to τ and so the MSEs start to decrease. This
figure also shows that the Bayesian stopping rule estimations are scattered around the
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Figure 4: BDAEK. Bayesian estimation τ̄t for different values of c. Solid line c = 0,
dashed line c = 0.001, dotted line c = 0.01, dot-dashed line c = 0.02, long-dashed line
c = 1 and two-dashed line c = 300.

real change-point value.

Table 1: BDNKA: Averaged 0.95% HPD intervals for different values of t

t: 101 105 110 120 130 140 150 200
LB: 86.52 86.60 85.61 85.58 85.55 85.34 85.48 85.47
UB: 109.94 110.00 109.97 109.96 109.92 109.87 109.94 109.88

For our simulated data, the mean and standard deviation are 100.82 and 14.95,
respectively. Table 1 reports the averaged 0.95% HPD intervals for different values of t.
This table shows that, when t > τ (after having enough data), the HPD intervals tend
to be almost constant which is in agreement with the posterior graphs from Figure 11.
We gave these results only for this case because one can consider this case as the most
difficult case to estimate.
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Figure 5: BDAEK. Stopping time for different values of c.

8 Conclusion

In this paper, we studied the single change-point problem. We gave a simple sequen-
tial algorithm to detect the change-point. We showed that, in the presence of some
information about the data producing the system, our method is able to detect the
change-point in a very efficient way.
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Figure 6: BDNK: The Averaged MSEs of MAP (top) and Bayes estimations (mid). The
(bottom) shows the stopping time for different samples along with their average (dashed
line) and the real change-point value (solid line).
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Figure 7: SDNK. Posterior distribution at different times, solid line t = 50, dashed line
t = 97, dotted line t = 100, dot-dashed line t = 110, long-dashed line t = 120 and
two-dashed line t = 150.

0 50 100 150 200

0
20

40
60

80
10

0

Figure 8: SDNK. MAP estimation at t = 1, . . . ,T.
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Figure 9: SDNK. Bayesian estimation τ̄t for different values of c. Solid line c = 0, dashed
line c = 0.001, dotted line c = 0.01, dot-dashed line c = 0.02, long-dashed line c = 1 and
two-dashed line c = 300.
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Figure 10: SDNK. Stopping time for different values of c.
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Figure 11: BDNK: Posterior distribution (top left), MAP estimation (top right), estimation
of change-point for different values of c at different times (bottom left) and stopping time
for different values of c (bottom right).


