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duced by Gui (2013) and by Al-Saiari et al. (2014), are presented. These characteriza-
tions are based on: (i) a simple relationship between two truncated moments; (ii) the
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1 Introduction

Characterizations of distributions are important to many researchers in the applied
fields. An investigator will be vitally interested to know if their model fits the require-
ments of a particular distribution. To this end, one will depend on the characterizations
of this distribution which provide conditions under which the underlying distribution
is indeed that particular distribution. Various characterizations of distributions have
been established in many different directions in the literature. In this short note, sev-
eral characterizations of Marshall-Olkin Power Log-Normal (M-OPLN) distribution,
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introduced by Gui (2013), and Marshall-Olkin Extended Burr Type XII (M-OEBXII)
distribution, introduced by Al-Saiari et al. (2014), are presented in two directions.
These characterizations are based on: (i) a simple relationship between two truncated
moments; (ii) the hazard function. Our characterizations (i) will employ an interest-
ing result due to Glänzel (1987) (Theorem 2.1 of Section 2 below). The advantage
of these type of characterizations is that cumulative distribution function F need not
have a closed form and is given in terms of an integral whose integrand depends on
the solution of a first order differential equation, which can serve as a bridge between
probability and differential equations.

The cd f (cumulative distribution function) F (x) and pd f (probability density func-
tion) f (x) of M-OPLN distribution are given, respectively, by

F (x) = F
(
x;µ, σ, p, α

)
=

1 −
[
Φ

(
µ−ln x
σ

)]p

1 − (1 − α)
[
Φ

(
µ−ln x
σ

)]p , x ≥ 0, (1.1)

and

f (x) = f
(
x;µ, σ, p, α

)
=

pαϕ
(
µ−ln x
σ

) [
Φ

(
µ−ln x
σ

)]p

xσ
(
1 − (1 − α)

[
Φ

(
µ−ln x
σ

)]p)2 , x > 0, (1.2)

where µ ∈ R , σ > 0, p > 0, and α > 0 are parameters and Φ (x) and ϕ (x) are cd f and
pd f of the standard normal distribution. For further properties and the domain of
applicability of M-OPLN distribution, we refer the interested reader to Gui (2013).

The cd f F (x) and pd f f (x) of M-OEBXII distribution are given, respectively, by

F (x) = F (x;α, c, k) =
1 − (1 + xc)−k

1 − (1 − α) (1 + xc)−k
, x ≥ 0, (1.3)

and

f (x) = f (x;α, c, k) =
αckxc−1 (1 + xc)−(k+1)[
1 − (1 − α) (1 + xc)−k

]2 , x > 0, (1.4)

where α , c and k are all positive parameters. For further properties and the domain
of applicability of M-OEBXII distribution, we refer the interested reader to Al-Saiari et
al. (2014).

The presentation of the content of this work is as follows. In Section 2, we present
our characterization results based on truncated moments. Section 3 is devoted to
characterization of M-OEBXII distribution in terms of the hazard function.
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2 Characterizations Based on Truncated Moments

In this section, we present characterizations of M-OPLN and M-OEBXII distributions
in terms of a simple relationship between two truncated moments. As mentioned in
the Introduction, our characterization results presented here will employ an interesting
result due to Glänzel (1987) (Theorem 2.1, below). The advantage of the characteriza-
tions given here is that cd f F need not have a closed form and are given in terms of an
integral whose integrand depends on the solution of a first order differential equation,
which can serve as a bridge between probability and differential equation.

Theorem 2.1. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an interval for
some a < b

(
a = −∞ , b = ∞ might as well be allowed

)
. Let X : Ω → H be a continuous

random variable with the distribution function F and let h and g be two real functions defined
on H such that

E
[
g (X) | X ≥ x

]
E [h (X) | X ≥ x]

= η (x) , x ∈ H, (2.1)

is defined with some real function η. Assume that h, g ∈ C1 (H), η ∈ C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that
the equation ηh = g has no real solution in the interior of H . Then F is uniquely determined by
the functions h, g and η, particularly

F (x) =
∫ x

a
C

∣∣∣∣∣ η′ (u)
η (u) h (u) − g (u)

∣∣∣∣∣ exp (−s (u)) du,

where the function s is a solution of the differential equation s′ = η′h
ηh − g and C is a constant,

chosen to make
∫

H dF = 1.

We would like to mention that this kind of characterization based on the ratio of
truncated moments is stable in the sense of weak convergence, in particular, let us
assume that there is a sequence {Xn} of random variables with distribution functions
{Fn} such that the functions gn, hn and ηn (n ∈N) satisfy the conditions of Theorem 2.1
and let gn → g and hn → h for some continuously differentiable real functions g and
h. Let, finally, X be a random variable with distribution F. Under the condition that
gn (X) and hn (X) are uniformly integrable and the family {Fn} is relatively compact, the
sequence Xn converges to X in distribution if and only if ηn converges to η, where

η (x) =
E
[
g (X) | X ≥ x

]
E [h (X) | X ≥ x]

. (2.2)
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Remark 1. (a) In Theorem 2.1 the interval H need not be closed since the condition
is only on the interior of H. (b) Clearly, Theorem 2.1 can be stated in terms of two
functions g and η by taking h (x) ≡ 1, which will reduce the condition given in Theorem
2.1 to E

[
g (X) | X ≥ x

]
= η (x) . However, adding an extra function will give a lot more

flexibility, as far as its application is concerned.

Proposition 2.1. Let X : Ω → (0,∞) be a continuous random variable and let h (x) =(
1 − (1 − α)

[
Φ

(
µ−ln x
σ

)]p)2
and g (x) = h (x)Φ

(
µ−ln x
σ

)
for x ∈ (0,∞) . Then, pd f of X is (1.2)

if and only if the function η defined in Theorem 2.1 has the form

η (x) =
p

p + 1
Φ

(
µ − ln x
σ

)
, x > 0. (2.3)

Proof. Let X have pd f (1.2), then

(1 − F (x)) E [h (X) | X ≥ x] = α
[
Φ

(
µ − ln x
σ

)]p

, x > 0 ,

and

(1 − F (x)) E
[
g (X) | X ≥ x

]
=
αp

p + 1

[
Φ

(
µ − ln x
σ

)]p+1

, x > 0 ,

and finally,

η (x) h (x) − g (x) = − 1
p + 1

g (x) < 0 f or x > 0.

Conversely, if η (x) is given by (2.1) , then

s′ (x) =
η′ (x) h (x)

η (x) h (x) − g (x)
=

pϕ
(
µ−ln x
σ

)
σxΦ

(
µ−ln x
σ

) ,
from which we obtain

s (x) = − ln
{
Φ

(
µ − ln x
σ

)p}
, x > 0 .

Now, in view of Theorem 2.1, X has cd f (1.1) and pd f (1.2). □
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Corollary 2.1. Let X : Ω→ (0,∞) be a continuous random variable and let h be as in
Proposition 2.1. Then, pd f of X is (1.2) if and only if there exist function g and η
defined in Theorem 2.1 satisfying the differential equation

η′ (x) h (x)
η (x) h (x) − g (x)

=
pϕ

(
µ−ln x
σ

)
σxΦ

(
µ−ln x
σ

) , x > 0. (2.4)

Remark 2. (a) The general solution of the differential equation (2.4) is

η (x) =
[
Φ

(
µ − ln x
σ

)]−p [
−

∫
p
σx
ϕ

(
µ − ln x
σ

)
(h (x))−1 g (x) dx +D

]
,

for x > 0, where D is a constant. One set of function
(
h, g, η

)
satisfying the above

equation is given in Proposition 2.1 for D = 0.
(b) Clearly there are other triple of functions

(
h, g, η

)
satisfying the conditions of

Theorem 2.1. We presented one such pair in Proposition 2.1.

Proposition 2.2. Let X : Ω → (0,∞) be a continuous random variable and let g (x) =[
1 − (1 − α) (1 + xc)−k

]2
and h (x) = g (x) (1 + xc)−1 for x ∈ (0,∞) . Then, pd f of X is (1.4)

if and only if the function η defined in Theorem 2.1 has the form

η (x) =
k + 1

k
(1 + xc) , x > 0.

Proof. It is similar to that of Proposition 2.1. □

A corollary and remarks similar to Corollary 2.1 and Remarks 2 can be stated for
M-OEBXII distribution as well.

3 Characterization Based on Hazard Function

It is obvious that the hazard function, hF, of a twice differentiable distribution function,
F, satisfies the first order differential equation

h′F (x)

hF (x)
− hF (x) = q (x) ,

where q (x) is an appropriate integrable function. Although this differential equation
has an obvious form since

h′F (x)

hF (x)
− hF (x) =

f ′ (x)
f (x)

(3.1)
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for many univariate continuous distributions (3.1) seems to be the only differential
equation in terms of the hazard function. The goal of the characterization based on
hazard function is to establish a differential equation in terms of hazard function, which
has as simple form as possible and is not of the trivial form (3.1) . Here, we present a
characterization of the of M-OEBXII model based on a nontrivial differential equation
in terms of the hazard function.

Proposition 3.1. Let X : Ω→ (0,∞) be a continuous random variable. Then, X has pd f
(1.4) if and only if its hazard function hF for x > 0 satisfies the differential equation

h′F (x) − (c − 1) x−1hF (x) =
−c2kx2(c−1) (1 + xc)−k−2

[
(k − 1) (1 − α) + (1 + xc)k

]
[
1 − (1 − α) (1 + xc)−k

]2 . (3.2)

Proof. If X has pd f (1.4), then clearly (3.2) holds. Now, if (3.2) holds, then after
multiplying both sides of (3.2) by x−(c−1), we arrive at

d
dx

{
x−(c−1)hF (x)

}
= ck

d
dx

{
(1 + xc)−1

1 − (1 − α) (1 + xc)−k

}
,

from which we have

hF (x) =
f (x)

1 − F (x)
=

ckxc−1 (1 + xc)−1

1 − (1 − α) (1 + xc)−k
=

ckxc−1 (1 + xc)k−1

(1 + xc)k − (1 − α)
. (3.3)

Integrating both sides of (3.3) from 0 to x , we have

− ln (1 − F (x)) = ln
{

(1 + xc)k − (1 − α)
α

}
.

From which we obtain

1 − F (x) =
α (1 + xc)−k

1 − (1 − α) (1 + xc)−k
, x ≥ 0.

□

Remark 3. For k = 1, equation (3.2) reduces to the following simple equation

h′F (x) − (c − 1) x−1hF (x) =
−c2x2(c−1)

(xc + α)2 , x > 0.
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