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1 Introduction

Finite mixture (FM) models are one of the most applicable and flexible models aiming
to provide a statistical tool for studying the heterogeneity in clustering and classifica-
tion analysis and pattern recognition problems. This model is a weighted sum of g
distribution functions which are known as mixture components and their number is
held fixed. Due to the usefulness of the FM models, many kinds of different FM mod-
els were introduced in the past decade via considering various mixture components.
For example, see the article by Lin et al. (2007) and Lin (2010) and monographs by
McLachlan and Basford (1988) , Frühwirth-Schnatter (2006).

Although the FM of normal distributions (FM-N) has several properties and is useful
in applied statistics, the model is not flexible enough for fat tails or discrepant data. To
avoid this deficiency, the FM of multivariate t distributions (FM-T) was proposed by
Peel and McLachlan (2000). Even though the new model has a heavy tail the FM-T
model cannot be ideal in the presence of highly asymmetric observations. To produce
a flexible model with wider ranges of skewness and kurtosis, Basso et al. (2010)
studied a class of mixture models where the component densities are scale mixtures of
the (univariate) skew-normal distributions, which include skew-normal, skew-t, skew-
contaminated normal and skew-slash distributions as special cases. Following their
work, Cabral et al. (2012) introduced the finite mixture of multivariate scale mixtures
of the skew-normal distributions and studied its properties.

Another class of skewed distributions which have heavier tails than normal is the
class of normal mean-variance mixture (NMV) distributions. Recently, various mem-
bers of this class, which is also known as a location-scale mixture distributions, have
been considered and studied in the literature (see e.g. Arslan (2010, 2015), Nematollahi
et al. (2016)). As a special case of NMV distributions, Barndorff-Nielsen (1977) in-
troduced the family of Generalized Hyperbolic (GH) distributions for modeling dune
movements. The GH family includes symmetric distributions such as normal, Stu-
dent t, Laplace, elliptically symmetric distributions and asymmetrical distributions
such as skewed t, skewed Laplace and hyperbolic distributions as special cases. Pour-
mousa et al. (2015) proposed a normal mean-variance mixture distribution based on
Birnbaum-Saunders distribution (NMVBS). They showed that all maximum likelihood
(ML) estimators of the parameters in this family have an explicit form and provide a
better fit than skew-t to the data. They also studied some properties of the family and
introduced the NMVBS-ARCH model.

In this paper, we first show that the NMVBS distribution has wider ranges of
skewness and kurtosis and then we construct its finite mixture model (FM-NMVBS).
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Some properties of the model are studied and the ML estimators of the parameters are
computed via the expectation-conditional maximization (ECM) algorithm (Meng and
Rubin , 1993). To show the asymptotic property of the ML estimators, a simulation
study is undertaken. Finally, we fit the FM-NMVBS model to a real dataset and compare
this model with the finite mixture of scale mixtures of the skew-normal distributions.

The rest of the paper is organized as follows. In Section 2, we briefly review the GH
and univariate NMVBS distributions. Section 3 describes the univariate finite mixture
of NMVBS distributions, some of its properties and ECM procedure for computing
the ML estimators of the parameters. A simulation study and a real data analysis are
reported in Section 4. With some concluding remarks in Section 5, the paper will be
closed.

2 Preliminaries

2.1 Generalized Hyperbolic distribution

A random variable X is said to have a GH distribution if its probability density function
(pdf) is

fGH(x;µ, λ, σ2, κ, χ, ψ) =C
Kκ−0.5

(√
(ψ + λ2/σ2)(χ + (x − µ)2/σ2)

)
(√

(ψ + λ2/σ2)(χ + (x − µ)2/σ2)
)0.5−κ exp{(x − µ)λ/σ2},

(2.1)

where x ∈ R,

C =
(
√
ψ/χ)κ(ψ + λ2/σ2)0.5−κ
√

2πσ2Kκ(
√
ψχ)

,

Kκ(.) denotes the modified Bessel function of the third kind, µ, λ, κ ∈ R and the param-
eters χ and ψ are defined by 

χ ≥ 0, ψ > 0 if κ > 0
χ > 0, ψ > 0 if κ = 0
ψ ≥ 0, χ > 0 if κ < 0.

It can easily be shown (McNeil et al. , 2005) that, if X follows the pdf (2.1), then
it can be obtained from an NMV model, meaning that the random variable X has the
representation of the form as

X d
= µ +Wλ +W1/2Z, (2.2)
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where d
=denotes equality in distribution, Z is a normal random variable with mean zero

and variance σ2, denoted by Z ∼ N(0, σ2), and W is an independent random variable
with generalized inverse Gaussian (GIG) distribution, introduced by Good (1953),
which has the pdf as

fGIG(w;κ, χ, ψ) = (
ψ

χ
)κ/2

wκ−1

2Kκ(
√
ψχ)

exp
{−1

2

(
w−1χ + wψ

)}
, w > 0.

The GIG distribution is widely used for modeling and analysing lifetime data. By
representation (2.2), we can readily obtain the expectation and variance of X as

E[X] =µ + λ
(χ
ψ

) 1
2 R(κ,1)(

√
χψ),

Var(X) =
(χ
ψ

) 1
2 R(κ,1)(

√
χψ)σ2 + λ2

[(χ
ψ

)
R(κ,2)(

√
χψ) −

((χ
ψ

) 1
2 R(κ,1)(

√
χψ)

)]
, (2.3)

where R(κ,a)(c) = Kκ+a(c)
/
Kκ(c).

2.2 The NMVBS distribution

Let W be a random variable taking positive real values. It follows the Birnbaum-
Saunders (BS) distribution, W ∼ BS(α, β), if its cumulative distribution function (cdf)
is

F(w;α, β) = Φ

 1
α

√w
β
−

√
β

w

 , w > 0, α > 0, β > 0, (2.4)

where Φ(.) is the cdf of the standard normal distribution and α and β are the shape
and scale parameters, respectively. The BS distribution was introduced by Birnbaum
and Saunders (1969a,b) as a failure time distribution and has received considerable
attention in the last three decades. This distribution has a positive skewness and is
related to the GIG distribution. Desmond (1986) established that the BS distribution can
be written as an equally weighted mixture of a GIG distribution and its complementary
reciprocal. It means that we can obtain the cdf (2.4) in an alternative form as

F(w;α, β) =
1
2

FGIG

(
w;

1
2
,
β

α2 ,
1
βα2

)
+

1
2

FGIG

(
w;
−1
2
,
β

α2 ,
1
βα2

)
,

where FGIG(.) represents the cdf of the GIG distribution. Considering the random
variable W in (2.2) with BS distribution, Pourmousa et al. (2015) obtained the NMVBS
distribution as explained in the next definition.



Finite Mixture Modeling via Normal Mean-Variance ... 37

skewness

α

λ

 −3.5  −3  −2.5  −2  −1.5  −1  −0.5  0  0.5  1  1.5  2  2.5  3 
 3.5 

2 4 6 8 10

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

kurtosis

α

λ

 4 

 5
 

 6 

 7
 

 8
 

 9 

 10 
 11 

 12 

 13  14 
 15 

 15 
 16 

 16 

 17 

 17 

 18 

 18 

 19 

 19 

 20 

 20 

 21 

 21 

 22 

 22 

2 4 6 8 10

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Figure 1: The contours plot of skewness and kurtosis of NMVBS distribution for various
values of α and λ.

Definition 2.1. A random variable X is said to have a univariate NMVBS distribution
if, in the representation (2.2), W ∼ BS(α, 1).

Hereafter, when X has an NMVBS distribution, we shall write X ∼NMVBS (µ, λ, σ2, α).
For β = 1, the NMVBS model is identifiable. It is simple to show that the pdf of NMVBS
is a mixture of two pdfs of GH distributions. If X ∼ NMVBS (µ, λ, σ2, α), then the pdf
of X can be obtained as

fNMVBS(x;µ, λ, σ2, α) =
1
2

fGH(x;µ, λ, σ2,
1
2
,

1
α2 ,

1
α2 ) +

1
2

fGH(x;µ, λ, σ2,−1
2
,

1
α2 ,

1
α2 ). (2.5)

The skewness and kurtosis of X are obtained as

γx =
µ3 − 3µ1µ2 + 2µ3

1

(µ2 − µ2
1)1.5

and κx =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)2

− 3,

where

µ1 = E(X) = λ(1 + 0.5α2),

µ2 = E(X2) = 1 + λ2(1 + 1.5α4) + α2(0.5 + 2λ2),

µ3 = E(X3) = λ3(1 + 7.5α6) + λ
[
3 + α2

{
α2(4.5 + 9λ2) + 6 + 4.5λ2)

}]
,

µ4 = E(X4) = λ4(1 + 52.5α8) + 3(1 + 2α2 + 1.5α4)

+ λ2
{
6 + α2(27 + 8λ2) + α4(54 + 30λ2) + α6(45 + 57.5λ2)

}
.
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Figure 1 displays the contours plots of the skewness and kurtosis of the NMVBS
distribution for various values of α and λ. It can be observed that the NMVBS distri-
bution takes wider ranges of skewness and kurtosis compared to the skew-normal and
skew-t distributions.

In the following theorem, we obtain a conditional distribution which is useful for
the parameters estimation via the proposed EM-type algorithm.

Theorem 2.1. Let X and W be the random variables with NMVBS(µ, λ, σ2, α) and BS(α, 1),
respectively. Then, for any x ∈ R, the pdf of W given X = x is the mixture of two GIG
distributions, i.e.,

fW|X=x(w|x;µ, λ, σ2, α) =p(x) fGIG(w; 0, χ(x, µ, σ2, α), ψ(λ, σ2, α))

+ (1 − p(x)) fGIG(w;−1, χ(x, µ, σ2, α), ψ(λ, σ2, α)), (2.6)

where

p(x) =
fGH(x;µ, λ, σ2, 0.5, α−2, α−2)

fGH(x;µ, λ, σ2, 0.5, α−2, α−2) + fGH(x;µ, λ, σ2,−0.5, α−2, α−2)
,

χ(x, µ, σ2, α) = {(x− µ)/σ}2 + α−2, ψ(λ, σ2, α) = (λ/σ)2 + α−2 and fGIG(., κ, χ, ψ) is the pdf of
GIG(κ, χ, ψ). Furthermore, for n = ±1,±2, ...,

E
[
Wn

∣∣∣X = x
]
=

(
χ(x, µ, σ2, α)
ψ(λ, σ2, α)

)n/2 [
p(x)R(0,n)(

√
ψ(λ, σ2, α)χ(0, µ, σ2, α)),

+ (1 − p(x))R(−1,n)(
√
ψ(λ, σ2, α)χ(x, µ, σ2, α))

]
. (2.7)

Proof. By Bayes’ rule and properties of GIG distribution, the proof of theorem is obvi-
ous. □

3 Finite Mixture of NMVBS distributions

In this section, we show the construction of FM-NMVBS model and demonstrate how
to employ the ECM-type algorithm to find ML estimation of its parameters.

A random variable X follows an FM-NMVBS distribution if its pdf is a weighted
sum of g components of NMVBS pdfs. More precisely, the pdf of the FM-NMVBS can
be written as

f (x;Θ) =
g∑

i=1

pi fNMVBS(x;θi), (3.1)
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Figure 2: Probability density function of FM-NMVBS.

where pi’s are positive mixing proportions subject to Σg
i=1pi = 1, fNMVBS(.;θi) is the

NMVBS density obtained in Equation (2.5) with θi = (µi, λi, σ2
i , αi) and Θ = (p1, ..., pg−1,

θ1, ...,θg). Figure 2 presents the curve of (3.1) for g = 2. In this figure, STD is represented
as the standard case where θ1 = θ2 = (0, 1, 1, 1) and p = 0.5.

Consider n independent random variables X1, ...,Xn, which are taken from FM-
NMVBS distribution. For data x = (x1, ..., xn), the observed Log-likelihood function of
Θ, resulting from (3.1), is

ℓ(Θ|X = x) =
n∑

j=1

log

 g∑
i=1

pi fNMVBS(x j;θi)

 .
Theoretically, the ML estimator of the parameters can be obtained by maximizing

ℓ(Θ|X = x) with respect to Θ. However, a direct maximization of this function is
complicated and requires numerical algorithms.

An accurate and efficient numerical algorithm is the Expectation-Maximization
(EM) which was introduced by Dempster et al. (1977). This is the standard tool for
ML estimation in FM models. In the EM framework, the key idea is to solve a difficult
incomplete-data problem by repeatedly solving tractable complete data problems. To
apply this approach to FM-NMVBS model, it is convenient to construct a log-likelihood
function by introducing a set of allocation zero-one variables V j = (V1 j, ...,Vgj) for
j = 1, ..., n, to describe the unknown population membership. Note that the ith element
Vi j = 1 if y j belongs to the component i, and Vi j = 0 otherwise. This implies that



40 Naderi et al.

V j independently follows a multinomial distribution with one trial and probabilities
(p1, ..., pg), denoted as V j ∼M(1; p1, ..., pg). It also follows from (2.2) that the hierarchical
formulation of (3.1) can be represented by

X j
∣∣∣(W j = w j,Vi j = 1) ∼ N(µi + w jλi,w jσ

2
i ),

W j
∣∣∣Vi j = 1 ∼ BS(αi, 1), (3.2)

V j ∼M(1, p1, p2, ..., pg).

Following the hierarchical structure (3.2), based on the observed data x, latent data
w = (w1, ...,wn) and V j = (V1, . . . ,Vn), the complete data log-likelihood function of Θ,
omitting additive constants, is as follows

ℓc(Θ) =
n∑

j=1

g∑
i=1

Vi j

[
log pi − logαi −

1
2

(log σ2
i ) −

(w j − 1)2

2α2
i w j

−
(x j − µi)2

2σ2
i w j

−
λ2

i w j

2σ2
i

+
λi(x j − µi)

σ2
i

]
. (3.3)

To compute the ML estimates of the unknown parameters involved in (3.3), we
apply ECM-type algorithm which is an extension of EM algorithm (Dempster et al. ,
1977) with the maximization (M) step of EM replaced by a sequence of computationally
simpler conditional maximization (CM) steps. For the given initial values Θ̂(0), the
ECM-type algorithm iterates between the following E-step and M-step:

• E-step: At the iteration k, we compute the so-called Q-function, defined as the
conditional expected value of complete data log-likelihood (3.3) by fixingΘ = Θ̂(k)

Q(Θ|Θ̂(k)) = E[ℓc(Θ)|X = x, Θ̂(k)]. (3.4)

The necessary conditional expectations involved in (3.4) include v̂(k)
i j = E[Vi j|X j,

Θ̂
(k)
i ], ŵ(k)

i j = E[w j|X j,Vi j = 1, Θ̂(k)
i ] and t̂(k)

i j = E[w−1
j |X j, Vi j = 1, Θ̂(k)

i ] which can be
obtained by using (2.7) in Theorem 2.1 as

v̂(k)
i j =

p̂i fNMVBS(x j; θ̂
(k)
i )

f (x j; Θ̂(k))
,

ŵ(k)
i j =

(
χi j

ψi

)1/2 [
p(x)R(0,1)(

√
ψiχi j) + (1 − p(x))R(−1,1)(

√
ψiχi j)

]
, (3.5)

t̂(k)
i j =

(
ψi

χi j

)1/2 [
p(x)R(0,1)(

√
ψiχi j) + (1 − p(x))R(1,1)(

√
ψiχi j)

]
,
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where p(x), χi j = χ(x j, µi, σ2
i , αi), ψi = ψ(λi, σ2

i , αi) and R(κ,a)(c) are defined in (2.6)
and (2.3), respectively. So, the Q-function can be written as

Q(Θ|Θ̂(k)) =
n∑

j=1

g∑
i=1

v̂(k)
i j

[
log pi − logαi −

1
2

log(σ2
i ) −

ŝ(k)
i j

2α2
i

−
(x j − µi)2

2σ2
i

t̂(k)
i j

−
ŵ(k)

i j λ
2
i

2σ2
i

+
λi(x j − µi)

σ2
i

]
, (3.6)

where ŝ(k)
i j = ŵ(k)

i j + t̂(k)
i j − 2.

• M-step: Let ni =
∑n

j=1 v̂(k)
i j , Ai =

∑n
j=1 v̂(k)

i j t̂(k)
i j , Bi =

∑n
j=1 x jv̂

(k)
i j t̂(k)

i j and Ci =
∑n

j=1 ŵ(k)
i j v̂(k)

i j .

To update parameter Θ̂(k)
i , maximize (3.6) over Θ̂. This leads to the following CM

estimators:

p̂(k+1)
i =

ni

n
, α̂(k+1)

i =

√√∑n
j=1 ŝ(k)

i j v̂(k)
i j

ni
,

λ̂(k+1)
i =

Ai
∑n

j=1 x jv̂
(k)
i j − niBi

AiCi − n2
i

,

µ̂(k+1)
i =

Bi − niλ̂
(k+1)
i

Ai
,

σ̂2(k+1)
i =

1
ni

 n∑
j=1

v̂(k)
i j t̂(k)

i j (x j − µ(k+1)
i )2 − λ̂2(k+1)

i Ci

 .
This process is iterated until a suitable convergence rule is satisfied, e.g. if ||Θ̂(k+1) −

Θ̂(k)|| is sufficiently small, or until some distance involving two successive evaluations
of the actual log-likelihood such as ||ℓ(Θ̂(k+1)) − ℓ(Θ̂(k))|| is small enough.

3.1 Notes on implementation

In the EM algorithm, its slow convergence and the dependence of the algorithm on both
the used stopping criterion and the initial values are the main drawbacks. Concerning
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the stopping criterion in order to avoid an indication of lack of progress of the algorithm
(McNicholas et al., 2010), we recommend adopting the Aitken acceleration method
(Aitken , 1927) as the stopping criterion. At iteration k, we first compute the Aitken
acceleration factor

a(k) =
ℓ(θ̂(k+1)) − ℓ(θ̂(k))

ℓ(θ̂(k)) − ℓ(θ̂(k−1))
.

Following Böhning et al. (1994), the asymptotic estimate of the log-likelihood at
iteration k + 1 is

ℓ∞(θ̂(k+1)) = ℓ(θ̂(k+1)) +
1

1 − a(k)

{
ℓ(θ̂(k+1)) − ℓ(θ̂(k))

}
.

As pointed by Lindsay (1995), the algorithm can be considered to have reached con-
vergence when |ℓ∞(θ̂(k+1)) − ℓ(θ̂(k))| < ε . In our study, the tolerance ε is considered as
10−5.

Since the mixture models may provide a multimodal log-likelihood, the method
of estimation via EM algorithm may not give global maximum solution if the starting
value (Θ̂(0)) is far from the real parameter value. So, the choice of starting points plays
an important role in the parameter estimation. We use the following simple procedure
in our study:

• Separate the sample into the g groups using the k-means cluster algorithm via R
code kmeans.

• Compute the proportion of data points belonging to the same cluster j, and use
them as an initial value of p j.

• For each group, compute the initial values µ(0)
j , λ

(0)
j , σ

2(0)
j and α(0)

j using FM-
NMVBS estimation method described above for g = 1.

It can be worthwhile to note that the log-likelihood function of FM-NMVBS is
related to the normal mixture with unequal variances via representation (3.2). Since in
this model the likelihood is unbounded for µ = x and σ→ 0, the log-likelihood of FM-
NMVBS is unbounded and corresponding global maximum likelihood estimator (MLE)
is undefined. One way to solve this problem is to put a constraint on the parameter space
such that the likelihood is bounded. Not only identification of appropriate parameter
space is difficult, but also, in many cases, different choices of the parameter space
may give different constrained global ML estimators. A practical approach to find the
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constraint parameter is to propose a profile log-likelihood to solve the unboundedness
issue of the likelihood function. More details of the profile log-likelihood method can
be found in Yao (2010).

3.2 Estimation of observed information matrix

A practical way to compute the asymptotic covariance of the ML estimates is the
information-based method (Basford et al. , 1997). Based on the Meilijson’s formula
(Meilijson , 1989), the empirical information matrix is

Ie(θ|x) =
n∑

j=1

s(x j|θ)sT(x j|θ) − 1
n

S(x|θ)ST(x|θ), (3.7)

where S(x|θ) =
∑n

j=1 s(x j|θ) and the individual score s(x j|θ) can be determined from
the result of Louis (1982) as

s(x j|θ) =
∂ f (x j|θ)
∂θ

= E
(∂ℓc(θ|x j,w j)

∂θ

∣∣∣∣x j,θ
)
.

Substituting the ML estimates (θ̂) for theta in (3.7), the empirical information matrix
reduces to

Ie(θ|X) =
n∑

j=1

ŝ jŝT
j , (3.8)

where ŝ j is an individual score vector with the elements

(ŝ j,p1 , ..., ŝ j,pg−1 , ŝ
T
j,µ1
, ..., ŝ j,µg , ŝ j,λ1 , ..., ŝ j,λg , ŝ j,σ2

1
, ..., ŝ j,σ2

g
, ŝ j,α1 , ..., ŝ j,αg),

which can be computed, for r = 1, ..., g, as

ŝ j,pr =
v̂rj

p̂r
−

v̂gj

p̂g
,

ŝ j,αr =v̂rj(
ŝrj

α̂3
r
− 1
α̂r

),

ŝ j,µr =v̂rjσ̂
−2
r

[
(x j − µ̂r)t̂rj − λ̂r

]
,

ŝ j,λr =v̂rjσ̂
−2
r

[
(x j − µ̂r) − λ̂rŵrj

]
,

ŝ j,σ2
r
=

v̂rj

2σ̂4
r

[
t̂rj(x j − µ̂r)2 + ŵrjλ̂

2
r − 2λ̂r(x j − µ̂r) − σ̂2

r

]
,
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where v̂rj, ŵrj and t̂rj are obtained by replacing Θ̂r in (3.5). Therefore, the standard error
of the ML estimator θ̂ can be obtained by calculating the square roots of the diagonal
elements of the inverse of (3.8).

4 Data analyses

4.1 Simulation study

In this subsection, we investigate bias and mean square error as two asymptotic prop-
erties of the estimates obtained using the suggested ECM algorithm. We consider two
sets of the parameter values

(
Θ = (p, µ1, λ1, σ1, α1, µ2, λ2, σ2, α2)

)
for this study as

Poorly separated : Θ = (0.4,−2,−2, 3, 1, 2, 1, 4, 0.5),

Well separated : Θ = (0.6,−3, 1, 1, 0.2, 3, 0.6, 1, 0.2).

The histogram of one sample taken from a FM-NMVBS population with above
parameters and n = 1000 is shown in Figure 3. The left panel shows a mixture of
NMVBS observations that largely overlap, meaning that the data are poorly separated.
Although we have a two-component mixture in this figure, the histogram need not to
be bimodal. On the other hand, for the well separated components, the histogram (the
right panel) is bimodal.

For each combination of parameters and sample sizes n = 100, 500, 1000, 5000, we
generate 500 samples from the FM-NMVBS model. Then, the absolute relative bias
(R.Bias) and the mean squared error (MSE) are computed over all samples. For each
parameter θ, they are defined as

R.Bias =
1

500

500∑
i=1

∣∣∣∣ θ̂i − θ
θ

∣∣∣∣, MSE =
1

500

500∑
i=1

(θ̂i − θ)2,

where θ̂i is the estimate of θi when the data constitutes the sample i.
Table 1 presents the results for the poorly and well separated cases. As a general rule,

it is evident that the bias of the estimators decreases when the sample size increases;
so does MSE. In addition, the values of MSE for µ and λ are more than 2 for the small
sample (≤ 100). It is also observed that both R.bais and MSE of the scale, shape (α)
and mixing proportion parameters in the well separated case are smaller than those
of poorly separated. The worst case of estimation happens in estimating the scale
parameter σ2 which implies that, in the poorly separated case, the required sample size
for obtaining a reasonable pattern of convergence is greater than 1000.
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Figure 3: Artificial data with two components: poorly separated (left) and well separated
(right) components.

4.2 Real data analysis

A powerful laser-based technique for scanning, outlining and sorting microscopic par-
ticles flowing in a stream of water is flow cytometry. Because of using this technique in
both clinical and research biotechnological programs for rapid single-cell investigation
of surface and intracellular markers, it is used in the literature and in a large number of
biomedical applications such as molecular and cellular biology (e.g., to measure DNA
content), hematology (e.g., to test leukemia samples) and immunology (e.g., to conduct
CD4 tests for HIV AIDS). Also, It was recently shown by Frühwirth-Schnatter and
Pyne (2010) and Ho et al. (2012) that flow cytometric data are ideally suited for multi-
modal non-Gaussian (asymmetric) finite mixture modeling. Glynn (2006) provided a
working dataset of flow cytometry in CC4-067-BM.fcs which consists of ten attributes
measured on 5,634 cells. To illustrate our univariate mixture modeling approach, we
analyze the data from the channel APC-Cy7. Considering the scale transformation
(y-a)/(b-a) suggested by Hahne et al. (2009), we preprocessed the data by setting b =
1000 and a= 0 to compare our new FM-NMVBS model with FM-N and finite mixture of
scale mixtures of skew-normal distribution models (including: skew-normal (FM-SN),
skew-t (FM-ST), skew-contaminated-normal (FM-SCN) and skew-slash (FM-SSL)).

Table 2 shows the ML estimates along with the associated standard errors for the best
fitted FM-NMVBS model with the corresponding values for the other five competing
2-component mixture models. Moreover, the values of Log-likelihood, AIC (Akaike
, 1974) and BIC (Schwarz , 1978) reported in this table show that the FM-NMVBS
provides the best fit. This result can also be seen from the histogram of the data and
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Table 1: Bias and MSE for EM estimates of simulated data.
Poor Well

Measure parameter sample size sample size
100 250 500 1000 100 250 500 1000

R.Bias p 0.0862 0.0729 0.0621 0.0357 0.0018 0.0013 0.0009 0.0006
µ1 0.0375 0.0353 0.0282 0.0088 0.2263 0.2087 0.1953 0.0852
µ2 0.2615 0.0222 0.0059 0.0020 0.1918 0.1678 0.1424 0.0962
λ1 0.2045 0.1487 0.0639 0.0099 0.6326 0.6183 0.5814 0.3259
λ2 0.4245 0.2351 0.1894 0.0865 0.9552 0.7918 0.6127 0.4298
σ1 0.2248 0.2119 0.1894 0.1561 0.1035 0.0378 0.0117 0.0085
σ2 0.5462 0.5315 0.5023 0.4238 0.1669 0.0618 0.0288 0.0139
α1 0.2389 0.2112 0.1815 0.1267 0.2809 0.1797 0.1134 0.0892
α2 0.0732 0.0471 0.0328 0.0125 0.0678 0.0325 0.0184 0.0057

MSE p 0.0074 0.0033 0.0024 0.0013 0.0022 0.0010 0.0006 0.0002
µ1 3.1369 0.4611 0.1810 0.0272 2.5060 1.2196 0.7417 0.5474
µ2 4.4479 1.3482 0.5332 0.1880 3.0943 1.4335 0.8251 0.2395
λ1 3.1597 1.4629 0.9936 0.0467 2.3681 1.1773 0.7265 0.5328
λ2 4.5796 1.3422 0.5781 0.2928 2.9486 1.3661 0.8018 0.5124
σ1 1.5540 0.8816 0.5353 0.3588 0.0322 0.0081 0.0034 0.0013
σ2 5.0129 4.6542 4.5205 3.0078 0.0692 0.0164 0.0058 0.0022
α1 0.1264 0.0703 0.0466 0.0353 0.0892 0.0634 0.0179 0.0117
α2 0.0314 0.0174 0.0098 0.0019 0.0197 0.0126 0.0066 0.0038

the estimated pdf of models, plotted in Figure 4.

5 Conclusion

In this paper, we have dealt with a new family of mixture models based on the the
NMVBS distribution, called the FM-NMVBS model, as a new distribution for flexible
model-based clustering. This family of mixture models is attractive for modeling data
as it can account for groups of data exhibiting patterns of asymmetry, multimodality
and fat tails. We have presented a convenient hierarchical representation for the FM-
NMVBS distribution and developed a simple ECM-type algorithm. The computer
program coded in R language is available from the authors upon request. Numerical
results suggest that the proposed FM-NMVBS is well suited to the experimental data
and can be more robust against fat tailed and skewed observations than the FM models
obtained by the scale mixture of skew-normal distribution competitors. The advantage
of our current approach can be extended to the multivariate case and Bayesian approach
of the FM-NMVBS model.
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Figure 4: Histogram of the APC-Cy7 data with six fitted mixture models.
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