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Abstract. In this paper, we introduce a new five-parameter distribution with increas-
ing, decreasing, bathtub-shaped failure rate called the Beta-Weibull-Logarithmic (BWL)
distribution. Using the Sterling Polynomials, various properties of the new distribu-
tion such as its probability density function, its reliability and failure rate functions,
quantiles and moments, Rényi and Shannon entropies, moments of order statistics,
Bonferroni and Lorenz curves were derived. then the maximum likelihood estimation
of BWL distribution for the parameters of BWL distribution are found. Finally the
usefulness of this distribution for real data are presented.
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1 Introduction

Let G(x, θ) be the cumulative distribution function (cdf) of an absolutely continuous
random variable following the distribution G, where θ ∈ Θ is the parameter vector. A
general class generated from the logit of a beta random variable has been introduced
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by Eugene (2002) with

F(x; a, b, θ) = IG(x,θ)(a, b) =
1

B(a, b)

∫ G(x,θ)

0
ta−1(1 − t)b−1dt, (1.1)

for a > 0, b > 0 and θ ∈ Θ, where Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function
ratio and By(a, b) =

∫ y
0 ua−1(1 − u)b−1du denotes the incomplete beta function. In fact,

if V is a random variable from the beta distribution with parameters a and b, then the
cdf of a random variable X = G−1

θ (V) coincides with the cdf (1.1). A random variable
X with the cdf (1.1) is said to have a beta-G(BG) distribution and will be denoted by
X ∼ BG(a, b, θ). Some special cases of BG distributions are given below.

(1) If G(x, θ) is the cdf of a standard uniform distribution, then the cdf given in
Equation (1.1) yields the cdf of a beta distribution with parameters a and b.

(2) If a is an integer value and b = n − a + 1, then the cdf (1.1) becomes as

F(x, a, b, θ) =
1

B(a, n − a + 1)

∫ G(x,θ)

0
ta−1(1 − t)n−adt

=

n∑
k=a

(
n
k

)(
G(x, θ)

)k
[1 − G(x, θ)]n−k ,

which is really the cdf of the a-th order statistic of a random sample of size n from
distribution G.

(3) If a = b = 1, then the cdf (1.1) reduces to F(x, θ) = G(x, θ).

(4) If a = 1, then the cdf (1.1) reduces to F(x, b, θ) = 1 − [1 − G(x, θ)]b.

(5) If b = 1, then the cdf (1.1) reduces to F(x, a, θ) = [G(x, θ)]a.

In addition,

f (x; a, b, θ) =
g(x, θ)
B(a, b)

(G(x, θ))a−1 (1 − G(x, θ))b−1 (1.2)

and

h(x; a, b, θ) =
g(x, θ) (G(x, θ))a−1 (1 − G(x, θ))b−1

B(a, b)(1 − IG(x, θ)(a, b))
, (1.3)
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respectively, where g(x, θ) is the density function corresponding to cdf G(x, θ). In this
study, we attempt to generalize the Webull-Logarithmc (WL) distribution of Ciumara
(2009) by taking G(x, θ) in Equation (1.1) to be the cdf of a WL distribution that will be
given in Equation (2.1). Ciumara (2009) compounded a Weibull distribution with a log-
arithmic distribution and derived a new lifetime distribution with more flexibility than
the Weibull distribution. In this study, we propose a new five-parameter distribution,
referred to as the Beta-Weibull-Logarithmic (BWL) distribution.

The major reasons for introducing this distribution are as follows.

1. The quality of procedures utilized in statistical analysis heavily depends on the
assumed probability model or distributions. Therefore, considerable effort has
gone in the development of large classes of standard probability distributions
along with relevant statistical methodologies. In fact, there are many continuous
univariate distributions in statistical literature, but their applications have not
produced useful results in the environmental, financial, biomedical sciences, en-
gineering and economic areas. Therefore, the extension of existing distribution is
essential for applications.

2. The WL distribution does not provide a reasonable parametric fit for modeling
phenomenon with decreasing, non-linear increasing, or non-monotone failure
rates such as the bathtub shape, which are common in firm ware reliability mod-
eling and biological studies.

3. The BWL distribution has greater tail flexibility than the WL distribution. The
most realistic hazard rate is bathtub-shaped. This occurs in most real-life systems.
Such hazard rates can be observed in the course of a disease whose mortality
reaches a peak after some finite period and then declines gradually.

4. The new proposed five-parameter distribution contains many flexible lifetime dis-
tributions as special sub-models. These models include the Weibull-Logarithmic
(WL), Exponentiated Weibull (EW), Generalized Exponential (GE), Beta-Weibull
(BW) and Beta-Exponential (BE) distributions.

The paper is organized as follows. In Section 2, the BWL distribution is defined. The
density, survival and hazard rate functions and some of their properties are also given
in this section. In Section 3, moments of the BWL distribution were derived. Rényi
and Shannon entropies of the BWL distribution are given in Section 4. The moments
of order statistics of the BWL distribution are given in Section 5. The Bonferroni and
Lorenz curves of the BWL distribution are outlined in Section 6. In Section 7, the model
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parameters are estimated by the maximum likelihood method, and the asymptotic
distribution of estimators are also discussed. In Section 8, the flexibility and potentiality
of the new distribution are demonstrated utilizing a real data set and the new model
will be compared with some sub-models by various tools. Some concluding remarks
are given in Section 9.

2 The BWL distribution

Consider the WL distribution of Ciumara (2009) with the cdf

G(x;γ, β, p) = 1 − log(1 − pe−(βx)y
)

log(1 − p)
, x > 0, (2.1)

where γ > 0, β > 0 and p ∈ (0, 1). Substituting G(x;θ) in Equation (1.1) by the cdf
(2.1) yields a new cdf as

F(x; a, b, γ, β, p) =
1

B(a, b)

∫ G(x;γ,β,p)

0
ta−1(1 − t)b−1, (2.2)

where a > 0, b > 0,γ > 0,β > 0 and p ∈ (0, 1). A random variable X with the cdf (2.2)
is said to have a BWL distribution and will be denoted by X ∼ BWL(a, b, γ, β, p). From
Equations (1.2) and (1.3), the pdf and failure functions of a BWL distribution are given,
respectively, by

f (x; a, b, γ, β, p) (2.3)

=
pγβγxγ−1e−(βx)γ

(
log

(
1 − pe−(βx)γ

))b−1

B(a, b)
(
log(1 − p)

)a+b−1

×

(
log

(
1−p

(1−pe−(βx)γ)

))a−1

(
pe−(βx)γ − 1

) , x > 0, (2.4)
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and

h(x; a, b, γ, β, p) =
pγβγxγ−1e−(βx)γ

(
log

(
1 − pe−(βx)γ

))b−1

B(a, b)
(
log(1 − p)

)a+b−1

= ×

(
log

(
1−p

(1−pe−(βx)γ)

))a−1

(
pe−(βx)γ − 1

)
I

log
(
1−pe−(βx)γ

)
log(1−p)

(b, a)
, x > 0

The survival function of BWL distribution are given by

S(x; a, b, γ, β, p) = I
log

(
1−pe−(βx)γ

)
log(1−p)

(b, a),

where x > 0. Using the series representation

(1 − z)b−1 =

∞∑
j=0

Γ(b)(−1) j

Γ(b − j) j!
z j,

the cdf of BWL distribution is given by

FBWL(x) =
1

B(a, b)

∫ G(x,γ,β,p)

0
ta−1(1 − t)b−1dx.

For the real non-integer b > 0 and |z| < 1, the FBWL(x) can be written as

FBWL(x) =
1

B(a, b)

∫ G(x,y,β,p)

0
ta−1

∞∑
k=0

(
b − 1

k

)
(−t)kdx (2.5)

=
1

bB(a, b)

∞∑
k=0

(−1)k

(a + k)B(k + 1, b − k)


log

(
1−p

1−pe−(βx)γ

)
log(1 − p)


a+k

.

It is obvious from Equation (2.3) that the BWL distribution is much more flexible
than the WL distribution. Figures 1 and 2 plot the density and failure-rate functions of
the BWL distribution for some choices of the parameter values, including some well-
known lifetime distributions. As can be seen from Figure 2, a characteristic of the BWL
distribution is that its failure rate function can be decreasing, increasing, bathtub, or
unimodal, depending on its parameter values.
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Figure 1: Plots of the density function of BWL distribution for a = b = 1, θ = 0.5, and
for different values of (γ, β).

2.1 Special distributions

Some special lifetime distributions are achieved from the BWL distribution as follows.

(1) The WL distribution is obtained when a = b = 1. If, in addition, p → 0+,The
Weibull distribution with parameters γ > 0 and β > 0 is achieved. Clearly, if
γ = 1 in this case, the exponential distribution with parameter β > 0 is obtained.

(2) If a = 1, then we obtain a new lifetime distribution belonging to the frailty
parameter family with the cdf

F(x; b, γ, β, p) = 1 −
 log

(
1 − pe−(βx)γ

)
log(1 − p)


b

, x > 0 (2.6)

If, in addition, p −→ 0+, then Equation (2.6) reduces to the cdf of a Weibull

distribution with parameters b
1
γ β > 0 and γ > 0.

(3) If b = 1, then the BWL distribution gives a new lifetime distribution with the cdf

F(x; a, γ, β, p) =

1 −
log

(
1 − pe−(βx)γ

)
log(1 − p)


a

, x > 0, (2.7)
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which belongs to the resilience parameter family. In addition, if p −→ 0+, then
Equation (2.7) reduces to an Exponentiated Weibull (EW) distribution with pa-
rameters a > 0, γ > 0 (Mudholkar , 1995) and with the pdf

fEW(x; a, γ, β) = aγβγxγ−1e−(βx)γ
(
1 − e−(βx)γ

)a−1
, x > 0.

Clearly, the EW distribution gives the Genaralized Exponential (GE) distribution
(Gupta , 1999) when γ = 1,

fGE(x; a, β) = aβe−βx
(
1 − e−βx

)a−1
, x > 0.

(4) If p → 0+, then Equation (2.3) reduces to the df of a BW distribution (Famoye ,
2005) as

fBW(x; a, b, γ, β) =
γβγ

B(a, b)
xγ−1e−b(βx)γ

(
1 − e−(βx)γ

)a−1
, x > 0. (2.8)

Furthermore, if γ = 1, then Equation (2.8) includes the cdf of a BE distribution
(Nadarajah , 2004, 2006) with

fBE(x; a, b, β) =
β

B(a, b)
e−bβx

(
1 − e−βx

)a−1
, x > 0.

2.2 Simulation and quantiles

Assume that V is a beta random variable with parameters a and b. Utilizing equation
X = G−1

θ (V), where θ = (γ, β, p), the simulation of a BWL distribution can be easily

attained by the relationship X = − 1
β

[
log

(
1−v
1−pv

)] 1
α . The q-th quantile of a BWL distribution

is obtained by solving the non-linear equation IG(m,γ,β,p)(a, b) = q, where G(m, γ, β, p) =
1−e−(βm)γ

1−pe−(βm)γ . Particularly, the median is immediately achieved by setting q = 0.5 in the
above non-linear equation, which can be numerically calculated using MAPLE or
MATLAB software.

Proposition 2.1. The limiting distribution of BWL(a, b, γ, β, p), when p −→ 0+, is

lim
p→0+

F(x) =
∫ 1−e−(βx)γ

0
ua−1(1 − u)b−1du

which is the cdf of BW distribution.
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Proof. The proof is a forward calculation and is omitted. �

Proposition 2.2. The limiting behavior of hazard function of BWL distribution is

(1) for a = b = 1 and γ = 1, lim
x→0

h(x) =


β

(p−1) log(1−θ) , 0 < p < 1,
−∞, p = 1,
0, p = 1

and limx→∞ h(x) = β
p .

(2) for a = b = 1 and γ > 1, limx→0 h(x) = 0, for each β > 0, 0 < p < 1 and limx→∞ h(x) =
∞.

(3) for a = b = 1 and 0 < γ < 1 , limx→0 h(x) = ∞, limx→∞ h(x) = 0.

Proof. As the proof contains straightforward calculations, it is omitted. �

Theorem 2.1. For each δ ∈ R and |z| < 1,

[− log(1 − z)
]δ = ∞∑

m=0

ρm(δ)zδ+m,

where ρ0(δ) = 1, and for each m ≥ 1, ρm(δ) = δψm−1(m + δ − 1), and the coefficients of ψm(.),
Sterling polynomials that satisfies their name, are as

ψn−1(w) =
(−1)n−1

(n + 1)!

[
Hn−1

n − w + 2
n + 2

Hn−2
n +

(w + 2)(w + 3)
(n + 2)(n + 3)

Hn−3
n − · · ·

+(−1)n−1 (w + 2)(w + 3) · · · (w + n)
(n + 2)(n + 3) · · · (2n)

H0
n

]
,

where Hm
n are positive integers and the following conditions apply.

H0
0 = Hn

n+1 = 1, Hm
n+1 = (2n +m − 1)Hm

n + (n −m + 1)Hm−1
n

H0
n+1 = 1 × 3 × 5 × · · · × (2n + 1).

Proof. It follows from the results by Ward (1934). �
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3 The moments of BWL distribution

Now, with the change of variables u = 1− log
(
1−pe−(βx)γ

)
log(1−p) , r-th order central moment of the

distribution is obtained as follows.

EXr =
(log p)

r
γ

βrB(a, b)

∫ 1

0

1 −
log

(
1 − (1 − p)1−u

)
log p


r
γ

ua−1(1 − u)b−1du.

According to
∣∣∣∣∣ log(1−(1−p)1−u)

log p

∣∣∣∣∣ < 1,

EXr =
(log p)

r
γ

βrB(a, b)

∫ 1

0

 ∞∑
k=0

( r
k

k

)
(−1)k 1

(log p)k

[
log

(
1 − (1 − p)1−u

)]k
 ua−1(1 − u)b−1du.

Using theorem 2.1 for
[
log

(
1 − (1 − p)1−u

)]k
,

EXr =
(log p)

r
γ

βrB(a, b)

∞∑
k=0

( r
γ

k

) ∞∑
m=0

ρm(k)
∫ 1

0
(1 − p)(k+m)(1−u)ua−1(1 − u)b−1du

Considering (1 − p)(k+m)(1−u) = e(k+m)(1−u) log(1−p) and to help Maclaurin expansion
e(k+m)(1−u) log(1−p),

EXr =
(log p)

r
γ

βrB(a, b)

∞∑
k=0

∞∑
m=0

∞∑
j=0

( r
γ

k

)
ρm(k)(k +m) j[log(1 − p)] j

j!(log p)k
B(a, b + j). (3.1)

4 Moments for Order statistics

We now derive an explicit expression for the density function of the i-th order statistic
Xi:n in a random sample of size n from the BWL distribution. According to Bidram
(2013),

fi:n(x) =
g(x)

(
G(x)

)a−1(
1 − G(x)

)b−1

B(a, b)B(i, n − i + 1)

n−i∑
j=0

(−1) j
(
n − i

j

) ∞∑
m=0

ci+ j−1,m

(
G(x)

)m
, (4.1)
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where the coefficients ci+ j−1,m follow from Equation c j,i = (ia0)−1 ∑i
m=1( jm− i+m)amc j,i−m

and c j,0 = a j
0. Hence, c j,i can be calculated from c j,1, · · · , c j,i−1 and then from a0, · · · , ai,

where am =
(1−b)m

B(a,b)(a+m)m! and ( f )k = f ( f + 1) · · · ( f + k − 1).
Combining Equations (2.3) and (4.1), the pdf of the i-th order statistic of the BWL

distribution can be easily obtained by

fi:n(x) =
∞∑

m=0

Ki,n,m fBWL(x, a, b + r, γ, β, p), (4.2)

where

Ki,n,m =
Γ(n − i + 1)Γ(m + 1)(−1)i+r

Γ(n − i − j)Γ(m − r + 1)i! j!B(i, n − i + 1)
ci+ j−1,m.

Equation (4.2) shows that the density function of the BWL order statistics can be
expressed as a linear combination of the pdf of the BWL. Moments of order statistics
play an important role in quality control testing and reliability, where a practitioner
needs to predict the failure of future items based on the times of a few early failures.
These predictors are often based on moments of order statistics. The ordinary, inverse
and factorial moments of the BWL order statistics can be calculated from a weighted
infinite linear combination of those quantities for BWL distributions. For example,
using Equation (3.1), we immediately obtain the r-th generalized moment of Xi:n as

E(Xr
i:n) =

(log p)
r
γ

βr

∞∑
m=0

∞∑
k=0

∞∑
s=0

[b + r]rρm(s)Γ
(

r
γ + 1

)
(1 − p)k+s

[a + b + r]rΓ
(

r
γ − k + 1

)
(log p)kk!

Ki,n,m,

where [ f ]r = f ( f − 1) · · · ( f − r).

5 The Bonferroni and Lorenz curves

For a random variable X with cumulative distribution function F(.) and probability
density function, the Bonferroni curve is defined as

BF(F(x) =
1

µF(x)

∫ x

0
u f (u)du.
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Therefore, for the BWL,

BF(F(x) =
1

µF(x)

∫ x

0
u f (u)du =

(log p)
1
γ

µβB(a, b)I log(1−e−(βx)γ )
log(1−p)

(a, b)

×
b−1∑
i=0

∞∑
j=0

∞∑
m=0

[(b − 1
i

)( 1
γ

j

) (
1

(m + j) log(1 − p)

)a+i ( 1
log p

) j

(−1)2i+2 j+a−1

× ρm( j)
(
γ
(
a + i, (m + j) log(1 − p)

) − γ (
a + i, (m + j) log

(
1 − pe−(βx)γ

))) ]
.

The Lorenz curve of the BWL distribution can be obtained through the expression

LF(F(x) = BF[F(x)]F(x) =
1
µ

∫ x

0
u f (u)du

=
(log p)

1
γ

µβB(a, b)

∞∑
j=0

∞∑
m=0

[(b − 1
i

)( 1
γ

j

) (
1

(m + j) log(1 − p)

)a+i ( 1
log p

) j

(−1)2i+2 j+a−1

× ρm( j)
(
γ
(
a + i, (m + j) log(1 − p)

)
γ
(
a + i, (m + j) log

(
1 − pe−(βx)γ

))) ]
,

where µ is the mean of the BWL distribution and γ(r, s) =
∫ s

0 xr−1e−xdx is the incomplete
gamma function.

5.1 Estimation and inference

In this section, the estimation of the parameters of the BWL distribution will be dis-
cussed. Let X1,X2, . . . ,Xn be a random sample with observed values x1, x2, . . . , xn from
BWL distribution with parameters a, b, γ, β and p. LetΘ = (a, b, γ, β, p)T be the parameter
vector. The total log-likelihood function is given by

ln ≡ ln(x;Θ) = n logγ + nγ log β + (γ − 1)
n∑

i=1

log(xi) +
n∑

i=1

(βx)γ

+ (a − 1)
n∑

i=1

log
[
log

(
1 − p

1 − pe−(βx)γ

)]
− (b − 1)

n∑
i=1

log
[
log

(
1 − pe−(βx)γ

)]
−

n∑
i=1

log
(
1 − pe−(βx)γ

)
− (a + b − 1)

n∑
i=1

log
(
log(1 − p)

)
+ n logΓ(a + b) − n logΓ(a) − n logΓ(b).
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The associated score function is given by Un(Θ) =
(
∂ln
∂a ,

∂ln
∂b ,

∂ln
∂γ ,

∂ln
∂β ,

∂ln
∂p

)T
, where

∂ln
∂γ

=
n
γ
+ n log β +

n∑
i=1

log xi +

n∑
i=1

(βxi)γ log(βxi)

− (a − 1)
n∑

i=1

p(βxi)γ log(βxi)e(βxi)γ(
1 − pe(βxi)γ

)
(1 − p) log

(
1−p

1−pe(βxi)
γ

)
− (b − 1)

n∑
i=1

p(βxi)γ log(βxi)e(βxi)γ

log
(
1 − pe(βxi)γ

) +

n∑
i=1

p(βxi)γ log(βxi)e(βxi)γ

pe(βxi)γ − 1
.

∂ln
∂a

=

n∑
i=1

log
[
log

(
1 − p

1 − pe(βxi)γ

)]
− n log

(
log(1 − p)

)
+ nΨ(a + b) − nΨ(a).

∂ln
∂b

=

n∑
i=1

log
[
log

(
1 − pe−(βx)γ

)]
− n log

(
log(1 − p)

) − nΨ(a + b) − nΨ(b).

∂ln
∂β

=
nγ
β
+ γ

n∑
i=1

xi(βxi)γ−1 − (b − 1)
n∑

i=1

p(βxi)γ log(βxi)e(βxi)γ(
1 − pe(βxi)γ

)
log

[(
1 − pe(βxi)γ

)]
− (a − 1)

n∑
i=1

p(βxi)γ log(βxi)e(βxi)γ(
1 − pe(βxi)γ

)
log

[(
1 − pe(βxi)γ

)]
(1 − p) log

[
1−p

(1−pe(βxi )γ)

]
+

n∑
i=1

p(βxi)γ log(βxi)e(βxi)γ

pe(βxi)γ − 1
.

∂ln
∂p

= (a − 1)
n∑

i=1

(1 + 2p)e(βxi)γ − 1(
1 − pe(βxi)γ

)
log

[(
1 − pe(βxi)γ

)]
(1 − p) log

[
1−p

(1−pe(βxi)γ )

]
− (b − 1)

n∑
i=1

e(βxi)γ(
1 − pe(βxi)γ

)
log

(
1 − pe(βxi)γ

) + n(a + b − 1)
(1 − p) log(1 − p)

.

∂ logΓ(x)
∂x = Ψ(x) which is called digamma function.
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The MLE of Θ, say Θ̂, is obtained by solving the non-linear system Un(Θ) = 0. The
solution of this non-linear system of equation does not have a closed form. For interval
estimations and hypothesis testing on the model parameters, we need the information
matrix. The 5 × 5 observed information matrix is

In(Θ) = −


Iaa Iab Iaγ Iaβ Iap
Iba Ibb Ibγ Ibβ Ibp
Iγa Iγb Iγγ Iγβ Iγp
Iβa Iβb Iβγ Iββ Iβp
Ipa Ipb Ipγ Ipβ Ipp

 ,

where Iaa =
∂2ln
∂2a , Iab =

∂2ln
∂a∂b , · · · , Ipp =

∂2ln
∂2p .

Applying the usual large sample approximation, MLE of Θ, i.e. Θ̂, can be treated

as being approximately N5

(
Θ,

(
Jn(Θ)

)−1)
, where Jn(Θ) = E

(
In(Θ)

)
. Under conditions

that are fulfilled for parameters in the interior of the parameter space but not on the

boundary, the asymptotic distribution of
√

n(Θ̂ − Θ) is N5

(
0,

(
J(Θ)

)−1)
where J(Θ) =

limn→∞ n−1In(Θ) is the unit information matrix. This asymptotic behavior remains
valid if J(Θ) is replaced by the average sample information matrix evaluated at Θ̂, say

n−1In(Θ). The estimated asymptotic multivariate normal distribution N5

(
Θ,

(
Jn(Θ̂)

)−1)
of Θ̂ can be used to construct approximate confidence intervals for the parameters
and for the hazard rate and survival functions. A 100(1 − γ)% asymptotic confidence
interval for each parameter Θr is given by

ACIr =
(
Θ̂r − Z γ

2

√
ˆIrr
, Θ̂r + Z γ

2

√
ˆIrr

)
,

where ˆIrr is the (r, r) diagonal element of
(
In(Θ̂)

)−1
for r = 1, 2, 3, 4, 5, and Z γ

2
is the

quantile 1 − γ
2 of the standard normal distribution.

6 Applications of the BWL distribution

An application of the BWL distribution using a real data set is presented in this section.
The data set (n = 63) is on the strengths of 1.5 cm glass fibers and it is obtained from
Smit (1987). Barreto-Souza (2010) applied the beta generalized exponential (BGE)
distribution to fit the data. The data are: 0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13,
1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52,
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1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66,
1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89,
2.00, 2.01, 2.24.

The TTT plot curve for this data in Figure 3 demonstrates an increasing hazard rate
function that shows the appropriateness of the BWL distribution for this data set. Then,
we fit the Beta Weibull Logarithmic (BWL) distribution defined in Equation (2.3). Its
fitness is also compared with WL, BE, BW, GE and EW distributions. Table 1 depicts the
MLE’s of the unknown parameters for these distributions, the values of the statistics
AIC (Akaike Information Criterion), the statistics AICc (Akaike Information Citerion
with correction), W (Watson statistic) and CM (Cramérvon Mises statistic) for this data.
These values reveal that the BWL distribution provides a better fit than WL, BE, BW, GE
and EW distributions for this data set. W and CM statistics were applied in order to see
which distribution fits better to this data. The W and CM test statistics are described in
details in Chen (1995). Generally, the smaller the values of W and CM, the better the
fit to the data. According to these statistics in Table 1, the BWL distribution fit to this
data set better than the others. Density plots are illustrated in Figure 4. It is clear that
the BWL model provides a better fit than the other models.

Table 1: MLEs, AIC, AICc, CM, W, K-S statistics and p-values for the strengths of 1.5
cm glass fibers.

Distribution BWL WL BE GE BW EW
γ̂ 0.0384 6.158 - - 7.748 0.5822
β̂ 0.0007 0.5934 22.75 2.613 39.73 7.273
p̂ 0.9335 0.5 - - - -
â 1 - 17.43 31.36 0.6199 0.6712
b̂ 2 - 43.15 - 43.15 -

AIC 33.2 36.2 54 70.8 37.2 35.2
AICc 34.3 36.4 54.4 71 37.9 35.6

W 14.48 15.48 15.76 16.01 15.43 15.41
CM 0.0143 0.2441 0.5677 0.7921 0.1946 0.1920
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7 Conclusion

A new five-parameter distribution called the BWL distribution was introduced. This
distribution is a generalization of the BW distribution. A characteristic of the BWL
distribution is that its failure rate function can be decreasing, increasing, bathtub-
shaped and unimodal depending on its parameter values. Various properties of the
new distribution such as its probability density function, its reliability and failure rate
functions, Rényi and Shannon entropies and moments were obtained. The maximum
likelihood estimation procedure was presented. Fitting the BWL model to a real data set
demonstrates the flexibility and capacity of the proposed distribution in data modeling.
In view of the density and failure rate function shapes, it seems that the proposed
model can be considered as a suitable candidate model in reliability analysis, biological
systems, data modeling, and related fields.
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Figure 2: Plots of hazard function of BWL distribution for different values of (γ, β, p, a, b).



108 Yaghoobzadehi et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

r/n

G
(r

/n
)

Figure 3: TTT plot curve of strengths of 1.5 cm glass fibers

x

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

BWL
W
EW
GE
BW
BE
WL

Figure 4: Fitted pdf of the BWL, WL, BE, GE, BW and EW distributions for the data set
corresponding to Table 1


