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Abstract. In this paper, we propose new residuals for gamma regression models, assuming that
both mean and shape parameters follow regression structures. The models are summarized
and fitted by applying both classic and Bayesian methods as proposed by Cepeda-Cuervo
(2001). The residuals are proposed from properties of the biparametric exponential family of
distributions. Simulated and real data sets are analyzed to determine the performance and
behavior of the proposed residuals.
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1 Introduction

The gamma distribution can be used for regression models with more flexibility than other
models, such as the exponential and Poisson, among others. Thus, gamma regression models
allow for a monotone, no constant hazard in survival models, and have the reproductive prop-
erty that the sums of independent gamma distributions are also gamma distributed. Moreover,
gamma regression models have the advantage of providing a count-data model with substan-
tially higher flexibility than the Poisson model, which involves very sparse time-series that can
be modeled by the gamma regression (Bateson , 2009). These models are used in a wide range
of empirical applications, such as the process of rate setting in the frame-work of heterogeneous
insurance portfolios (Krishnamoorthy , 2006) and in hospital admissions for rare diseases where
time series are very sparse due to infrequency of events (Winklemann , 2008).

Edilberto Cepeda-Cuervo(�)(Corresponding Author: ecepedac@unal.edu.co), Martha Corrales
(mlcorralesb@unal.edu.co), Maria-Victoria Cifuentes (mvcifuentesa@unal.edu.co), Hector Zarate
(hmzarates@unal.edu.co).



30 Cepeda-Cuervo et al.

This paper considers gamma regression models in which both the mean and the dispersion
are allowed to depend on unknown parameters and on covariates. Joint modeling of the mean
and the shape parameters in gamma regressions were proposed by Cepeda-Cuervo (2001),
under a classic method and a Bayesian approach. In the former, he proposed an alternative
iterated maximum likelihood method based on the Fisher scoring algorithm for the parameter
estimation and, in the Bayesian approach, he proposed an hybrid Metropolis Hasting algorithm
for the regression parameter estimation.

Several definitions of residuals are possible for generalized linear models (McCullagh and
Nelder , 1989). Some uses of generalized residuals include: building goodness of fit measures
to check for systematic departure from the model, checking the variance function and the link
function, examining them to identify poorly fitting observations, and plotting them to examine
effects of new covariates or nonlinear effects of the covariates included in the model. Some
of the relevant contributions related to residuals in generalized linear models are presented in
Cox and Snell (1968), Pierce and Schafer (1986) and Dobson (2010).

In this paper we propose and adjust two residuals for gamma regression models. Simulated
and real data applications are used to evaluate the benefits and interpretation of the proposed
residuals.

This paper consists of six sections. In Section 2, a re-parameterization of the gamma
distribution is presented. In Section 3, the gamma regression models are defined, and both
classic and Bayesian methods used to fit these models are summarized. Section 4 presents
the residuals obtained under the two-parameter exponential family of distributions. Section
5 contains two applications based on simulated and real data. In that section, we mention
two application cases: the first one is based on simulated gamma data which is useful to
evaluate residuals’ behavior, whereas the second application uses data from a study presented
in McCullagh and Nelder (1989) related to the duration of embryonic stage in fruit flies, and
where we calculate the gamma residuals to measure adjustment of the model proposed by the
authors. Finally, in Section 6, we present our main conclusions.

2 Re-parameterized gamma distribution

A random variable Y follows a gamma distribution if its density function is given by

f (y;λ, α) =
λ
Γ(α)

(λy)α−1e−λyI(0,∞)(y), (2.1)

where λ > 0, α > 0, Γ(.) is the gamma function and I(.) is an indicator function. Under this
parameterization, the mean and variance of Y are given by µ = E(Y) = α/λ and Var(Y) = α/λ2 =
µ2/α, respectively.

Setting λ = α/µ, Cepeda-Cuervo (2001) and Cepeda and Gamerman (2005) write the
gamma density function (2.1) in terms of the mean and shape parameters as

f (y) =
1

yΓ(α)

(
αy
µ

)α
e−αy/µI(0,∞)(y). (2.2)
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Under this re-parameterization, we use Y ∼ G(µ, α) to denote that the random variable Y
follows a gamma distribution with E(Y) = µ and α as the shape parameter. The variance of Y
is now given by Var(Y) = µ2/α.

3 Gamma regression models

Let Yi ∼ G(µi, α), i = 1, . . . ,n, be independent random variables. Then the gamma regression
model is defined as

g(µi) = x′iβ = ηi, (3.1)

where β = (β1, . . . , βp)′ is a vector of unknown regression parameters (p < n), xi = (xi1, . . . , xip)′

is the vector of p covariates, and ηi is a linear prediction. Usually xi1 = 1 for all i. So the model
has a mean intercept. The link function g(.) : (0,∞) → R should be a strictly monotonic twice
differentiable function in the classic approach and once differentiable in the Bayesian approach.

Some usual link functions in the gamma regression are log (g(µ) = log(µ)), identity (g(µ) =
µ), and inverse (g(µ) = 1/µ). In the exponential family, the canonical link for the mean is the
inverse function (McCullagh and Nelder , 1989).

An extension of the gamma regression model presented in McCullagh and Nelder (1989)
was proposed in Cepeda-Cuervo (2001), assuming that both mean and shape parameters follow
regression structures. He further assumed that Yi ∼ G(µi, αi), i = 1, . . . ,n, are independent
random variables with gamma distribution, where the mean and shape parameters follow a
regression structure given by

g(µi) = η1i = x′
i
β, (3.2)

h(αi) = η2i = z′
i
γ, (3.3)

where β = (β1, . . . , βp)′ and γ = (γ1, . . . , γk)′, p + k < n, are the vectors of regression parameters
related to the mean and dispersion, respectively, g is the mean link function, h is the shape link
function (usually the log function), η1i and η2i are the linear predictors, and xi and zi are the ith
observed values of the covariates.

3.1 Classic estimation

Cepeda-Cuervo (2001) proposed a classic approach to fit joint mean and shape gamma re-
gression models using the Fisher scoring algorithm. In that work, he showed that, under the
reparameterization of the gamma distribution given by (2.2), the likelihood function of the
gamma regression models defined by (3.2) and (3.3) is given by

L =
n∏

i=1

1
Γ(αi)

(
αi

µi

)αi

yαi−1
i exp

(
−αi

µi
yi

)
(3.4)

and the log likelihood function is given by
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l =
n∑

i=1

{
− log[Γ(αi)] + αi log

(
αiyi

µi

)
− log(yi) −

(
αi

µi

)
yi

}
. (3.5)

Thus, assuming that µi = x′iβ and αi = exp(z′iγ), the components of the score function are as

∂l
∂β j
=

n∑
i=1

−αi

µi

(
1 − yi

µi

)
xi j; j = 1, . . . p,

∂l
∂γk
=

n∑
i=1

−αi

[
d

dαi
logΓ(αi) − log

(
αiyi

µi

)
− 1 +

yi

µi

]
zik; k = 1, . . . , r.

On the other hand, the Hessian matrix is determined by

∂2l
∂βkβ j

=

n∑
i=1

αi

µ2
i

(
1 − 2yi

µi

)
xi jxik; j, k = 1, . . . p,

∂2l
∂γkβ j

=

n∑
i=1

−αi

µi

(
1 − yi

µi

)
xi jzik; k = 1, . . . , r,

∂2l
∂γkγ j

=

n∑
i=1

−αi

[
d

dαi
logΓ(αi) − log

(
αiyi

µi

)
− 1 +

yi

µi

]
zi jzik,

−
n∑

i=1

αi

αi
d2

dα2
i

logΓ(αi) − 1

 zi jzik; j, k = 1, . . . , r.

The Fisher information matrix is given by

−E
(
∂2l
∂βkβ j

)
=

n∑
i=1

αi

µ2
i

x jixki; j, k = 1, ..., p,

−E
(
∂2l
∂γkβ j

)
= 0; k = 1, ..., r; j = 1, ..., p,

−E
(
∂2l
∂βkβ j

)
=

n∑
i=1

α2
i

 d2

dα2
i

logΓ(αi) −
1
αi

 zi jzki; j, k = 1, ..., r

It can be noted that the Fisher information matrix is a block diagonal matrix, where one of
the blocks corresponds to the mean regression parameters and the other to the shape regression
parameters. Thus the parameter vectors β and γ are orthogonal, and their maximum likelihood
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estimators, β̂ and γ̂, are asymptotically independent. As a consequence of this result, Cepeda-
Cuervo (2001) proposed an iterative algorithm to obtain the maximum likelihood estimates of
the regression parameters, where, given the k-th parameter values (β(k),γ(k))′, the mean vector
of the regression parameters is updated from

β(k+1) = (X′W (k)X)−1X′W (k)Y, (3.6)

where W (k) is a matrix with diagonal elements w(k)
i = (µ2

i )(k)/α(k)
i , and, given (β(k+1),γ(k))′, the

shape regression parameters γ(k+1) are updated from the equation

γ(k+1) = (Z′W (k)Z)−1X′W (k)Y, (3.7)

where W (k) is a matrix with elements w(k)
i = 1/d(k)

i in which

di = α
−2
i

 d2

dα2
i

logΓ(αi) −
1
αi

−1

. (3.8)

Therefore, given the initial values of the parameters, an alterative iterate algorithm can be
summarized as follows.

1. Give initial values for the regression parameters β and γ.

2. Obtain β(k+1) from equation (3.6).

3. Obtain γ(k+1) from equation (3.7).

4. Return to 2 until convergence.

3.2 Bayesian estimation

In this section, we summarize the Bayesian method proposed by Cepeda-Cuervo (2001) to fit
gamma regression models, where both mean and shape parameters follow regression structures.
In this proposal, without loss of generality, independent normal prior distributions are assumed
for mean and shape regression parameters, that is,

β ∼ N(b,B),
γ ∼ N(g,G).

Let L(β, γ|Y,X,Z) be the likelihood function and p(β, γ) be the joint prior distribution. Given
that the posterior distribution π(β, γ|Y,X,Z) ∝ L(β, γ|Y,X,Z) ×
p(β, γ) and all their conditional distributions πβ(β|γ,Y,X,Z) and π(γ|β,Y,X,Z) are analytically
intractable, an alternate Metropolis Hastings algorithm is proposed to obtain samples of the
posterior parameters.

In this algorithm, samples of the conditional posterior distribution π(β|γ,Y,X,Z) are pro-
posed from the kernel transition function, which is given by
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q1(β|β̂, γ̂) = N(b∗,B∗), (3.9)

where

b∗ = B∗(B−1b + X′Σ−1Ỹ),

B∗ = (B−1 + X′Σ−1X)−1.

For identity and log mean link functions, the components of the working variables Ỹ are ỹ1i = yi
and ỹ1i = x′iβ + yi/µi − 1, respectively. Σ is a diagonal matrix with wi = Var(ỹ1i), i = 1, . . . , n, as
diagonal elements.

Samples of the posterior conditional distributionπ(γ|β,Y,X,Z) are proposed from the kernel
transition function

q2(γ|β̂, γ̂) = N(g∗,G∗), (3.10)

where

g∗ = G∗(G−1g + X′Ψ−1Ỹ),

G∗ = (G−1 + X′Ψ−1X)−1.

For log link function for the shape, the working variable is ỹ2i = z′iγ+ yi/µi − 1. Ψ is a diagonal
matrix with φi = Var(ỹ2i), i = 1, . . . ,n.

For more details about this algorithm and its applications, see Cepeda-Cuervo (2001) and
Cepeda and Gamerman (2005).

Having the kernel transition functions defined by (3.9) and (3.10), the hybrid Metropolis
Hasting algorithm is defined by the following steps.

1. Begin the chain iteration counter at j=1.

2. Set initial chain values β(0) and γ(0) for β and γ, respectively.

3. Propose a new value ϕ for β, generated from 3.9.

4. Calculate the acceptance probability, α(β( j−1),ϕ). If the movement is accepted, then
β( j) = ϕ. If not accepted, then β( j) = β( j−1).

5. Propose a new value ϕ for γ, generated from 3.10.

6. Calculate the acceptance probability α(γ( j−1),ϕ). If the movement is accepted, then
γ( j) = ϕ. If it is not accepted, then γ( j) = γ( j−1).

7. Change the counter from j to j + 1 and return to 2 until convergence is reached.

The convergence can be verified empirically in different ways (for details see Gamerman
and Lopes (2006) and Heidelberger and Welch (1981)).
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4 Gamma regression residuals

Residual analysis aims to identify outliers and/or model misspecification. It can be based on
ordinary residuals, standardized variants or deviance residuals. Residuals are measures of
agreement between the observed responses and the fitted conditional mean. Most residuals are
based on the differences between the observed responses and the fitted conditional mean. For
the gamma regression, where both mean and shape parameters follow regression structures,
we define a first standardized ordinal residual as

ri =
yi − µ̂i√
V̂ar(yi)

, (4.1)

where

V̂ar(yi) =
µ̂2

i

α̂i
. (4.2)

A second residual considered in this paper is the deviance residual, which for gamma regression
models is given by

rd
i = −2

n∑
i=1

[
log

(
yi

µ̂i

)
−

yi − µ̂i

µ̂i

]
, (4.3)

where µ̂i = g−1(x′i β̂).
In order to define gamma residuals from the two parameter exponential family we re-

parameterized the gamma density function in a natural way, as follows in equation (4.6), where
η1 = α,T1 = log(y), η2 = − αµ ,T2 = y, d0(η1, η2) = η1 log(η2) − logΓ(η1),S(y) = − log(y).

f (y) = exp
[
− logΓ(α) + α log

(
αy
µ

)
− αy
µ
− log(y)

]
(4.4)

= exp
[
α log(y) −

(α
µ

)
y + α log

(α
µ

)
− logΓ(α) − log(y)

]
(4.5)

= exp
[
η1T1(y) + η2T2(y) + η1 log(−η2) − logΓ(η1) + S(y).

]
. (4.6)

Thus, from the properties of the bi-parametric exponential family of distributions,

E(T1) = −∂d0

∂η1
= −[log(−η2) −Ψ(η1)], (4.7)

E(T2) = −∂d0

∂η2
= −η1

η2
= µ, (4.8)

where the digamma function,Ψ(η1), is defined as the derivative of the logarithm of the gamma
function

Ψ(η1) =
d logΓ(η1)

dη1
=
Γ′(η1)
Γ(η1)

. (4.9)
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Figure 1: Residuals r+ and r*

From the same properties of the biparametric exponential family, the variances of T1 and T2 are
given by

Var(T1) = −∂
2d0

∂η2
1

= Ψ′(η1), (4.10)

Var(T2) = −∂
2d0

∂η2
2

=
η1

η2
2

=
µ2

α
, (4.11)

whereΨ′(η1) denotes the derivative of the digamma function estimated on η1

From this result, two gamma residuals can be proposed. The first one from (4.7) and (4.10)
is given by

r∗i =
y∗i − µ̂∗i√
V̂ar(y∗i )

, (4.12)

where y∗i = T1(yi) = log(yi), µ∗i = E(T1(yi)) = E(y∗i ) and Var(y∗i ) = Var(T1(yi)) = Ψ′(η1). This
residual is computed as the difference between y∗ and µ̂∗,the difference between y∗ and the
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Figure 2: Normal Residuals for r+ and r*

estimates of the expected value µ∗ = E(y∗), divided by the squared root of the estimation of the
variance Var(y∗).

Now from (4.8) and (4.11), a second residual can be defined, in this case given by:

r+i =
y+i − µ̂+i√
V̂ar(y+i )

(4.13)

where y+i = T2(yi) = yi, µ+i = E(T2(yi)) = E(y+i ) and Var(y+i ) = Var(T2(yi)) = µ2
i /αi). This residual

is the same as the ordinary standardized residual, but it is obtained from the properties of the
two-parameter exponential family of distributions, as in Lehmann and Casella (1998).

5 Applications

In this section, we present two applications. The first one based on the simulated data and the
second one using data on the duration of the embryonic stage of fruit flies reported by Powsner
(1935) and McCullagh and Nelder (1989).

5.1 Simulation data set

500 values of three covariates were simulated from uniform distributions. Values of the covari-
ates X2, X3 and X4 were generated from uniform distributions U(0, 30), U(0, 15) and U(10, 20),
respectively. Values of the covariate X1 are assumed to be a vector of ones, in order to define
mean and shape models with intercept. Values of the response variables Y were generated from
a gamma distribution with mean and shape parameters given by
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µ̂i = 15 + 2x2i + 3x3i, (5.1)
α̂i = exp(0.2 + 0.1x2i + 0.3x4i). (5.2)

The fitted mean equation and the fitted shape equations, obtained by applying the Bayesian
method proposed by Cepeda-Cuervo (2001), are given as

µ̂i = 15.015 + 2.001x2i + 2.998x3i, (5.3)
α̂i = exp(0.360 + 0.104x2i + 0.290x4i). (5.4)

We consider residual checks for systematic departure from the model using some informal
graphs. From Figure 1, in the second panel, both residuals r+ and r∗ are plotted against the
varying mean of the model µ̂i. Typical systematic deviations are absent due to the fact that
there is neither curvatures in the mean nor a systematic change. According to the third panel,
where the residuals are plotted against the linear predictor X3, we conclude that there is no
appearance of a systematic trend.

The normal probability plot in Figure 2 (Q-Q plot for r+ and r∗) suggests a good fit of both
residuals r+ and r∗ to the normal distribution. As expected, the analysis of the residual under
study did not single out any observation as atypical or yield evidence of lack of fit.

Finally, the third plot is the partial residual plot for the gamma regression model, which
is used to assess the form of a predictor and is thus calculated for each predictor. If the scale
is satisfactory, the plot should be approximately linear. If not, its form suggests a suitable
alternative. According to Figure 3, the X2 variable should have curvature and X3 should be
linear.

In order to determine the performance of the proposed residual, we compared it with
the standardized ordinal residual, using simulation studies. First, we repeated the simulation
developed before in this section and found that in all of them the normal Q-Q plots had the same
shape as in Figure 2, and the Q-Q-plot of r+ and r∗ are very similar. Next, we generated outliers
that were associated with positive residuals to determine which of the standardized residuals
are the best to reveal their existence. In this case, the normal Q-Q plots had the same shape as
the one shown in Figure 5, which clearly suggests that the standardized ordinal residuals are
indeed the best ones. Finally, when we generated outliers that were associated with negative
residuals, we found that the proposed residual r∗ is the best to determine the existence of these
outliers, as can be seen in Figure 4.

5.2 Duration of the embryonic stage of fruit flies

This application is based on an example presented by McCullagh and Nelder (1989). They used
a data set collected by Powsner (1935) to measure the effect of temperature on the duration of
the development stages of the fruit fly (Drosophila melanogaster). In his experiment, there are
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Figure 3: Partial Residuals

four stages: the embryonic, egg-larval, larval and pupal. Only the first is considered here. In
this model, observed duration is the response variable, weighted due to batch size.

According to McCullagh and Nelder (1989), the systematic part of the model is considered
by rational functions of temperature as

β0 + β1T + β2/(T − δ), (5.5)

where δ represents an asymptote for the temperature function. The fit of the model takes into
account the gamma regression and that the identity link was preferred over the inverse and
log links, respectively. They adjusted this model considering that the coefficient of variation is
constant.

The residuals summarized in this article were calculated by assuming the model

µi = β0 + β1Ti + β2/Ti, (5.6)
αi = exp(γ0 + γ1Ti + γ2/Ti), (5.7)

for the fruit fly application, and the following parameter estimates (and standard devia-
tions) were observed: β̂0 = −2.2828(1, 4485), β̂1 = 0.04068(0, 0298), β̂2 = 36.7313(17, 3253),
γ̂0 = 3.3718(2, 9484), γ̂1 = −0.0529(0, 0671) and γ̂2 = −15.8543(31, 0588).

In Figure 5, it can be seen that due to the small number of observations, in some panels
(such as the fourth one), the residuals (r∗) appear to have linear dependence on µ∗, meaning
that, for this case, r+ is more dependable than r∗ in order to get a better residual. Regarding the
histograms of r+ and r∗, we can observe that they are not as accurate as the previous application,
which was expected as the first data set was generated by a gamma simulation. However, in
this case, the residuals show greater accumulation around zero, but the distribution does not
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Figure 4: Residual comparison

look symmetric like the normal distribution, possibly because of the relatively small number of
observations.

According to the QQ plot in Figure 6, the distribution of both residuals r+ and r* are close to
the normal distribution. There is no pattern when we plot the residuals against the covariates.

Finally, Figure 7 summarizes other residuals calculated from the fruit fly data. There are
three residuals. The first and second show the estimated µ against the absolute value of each
residual (r+ and r∗). The second new residual was the Pearson residual, which has irregular and
scattered behavior, a desirable property in residuals. The last calculated ones are the deviance
residuals for both r+ and r∗, which are shown in panels 5 and 6 in Figure 7.

6 Conclusion

In this paper, we proposed two new residuals for gamma regression models, for which many
link functions can be used. We chose the identity and log link for this evaluation. The new
residuals were computed by the difference of the link function responses and their fitted means
respectively using Fisher scoring and Bayesian estimation of the parameters. The results
suggested that the residuals that we call r+ are the same as commonly used ordinary residuals.
On the other hand, the new residuals r∗, which come from a Fisher scoring iterative algorithm,
were also approximated by the standard normal distribution and fulfill informal checks for
systematic departure from the model. This fact can be used to construct more reliable goodness
of fit measures and measures of explained variation for gamma regression models.
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Figure 5: Residuals for r+ and r*
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Figure 7: Different Residuals for r+ and r*




