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1 Introduction

Probability distributions have an undeniable impact on the quality of the procedures
used in a statistical analysis. Therefore, considerable efforts have been made concerning
the development of distributions along with relevant statistical methods. However,
many cases remain where the real data does not follow any of those models. The
famous quote by Box (Essentially, all models are wrong, but some are useful, see, for example,
Box and Draper, 1987) confirms the usefulness of new developments in distribution
modelling.

The Laplace distribution belongs to the oldest distributions in probability theory.
Its instances continue to enjoy applications in a variety of disciplines which range from
image and speech recognition through ocean engineering to finance. These days, they
often are the first choice whenever the distribution of the data reveals heavier than
Gaussian tails (Kotz et al. , 2001).

Up to this day, many studies have been published with extensions and applications
of the Laplace distribution. Extensions to a skewed model as well as to a multivariate
setting can be found, for example, in Kotz et al. (2001) and references therein. Liu and
Kozubowski (2015) have studied a class of probability distributions on the positive
line, which arise when folding the classical Laplace distribution around the origin.
Yu and Moyeed (2001) and Yu and Zhang (2005) have proposed a three-parameter
asymmetric Laplace distribution. Cordeiro and Lemonte (2011) have proposed the so-
called beta Laplace distribution as an extension of the Laplace distribution. A parametric
link between the minimisation of the sum of the absolute deviates in regression models
and the maximum likelihood theory has been considered, for example, by Koenker
and Machado (1999), Greasy and Bottai (2007) and Shi et al. (2014). Song et al. (2014)
have proposed a robust estimation procedure for mixture linear regression models by
assuming that the error term follows a Laplace distribution. Kozubowski et al. (2013)
have considered the application of the multivariate generalised Laplace distribution
for the construction of a class of moving average vector processes. Nevertheless, the
current forms of the Laplace distribution (both classical and generalised forms) have a
sharp peak in the middle, which potentially restricts their usefulness.

In the light of this issue, we present a new probability distribution in this paper that
can be derived from the symmetric Laplace distribution and can be used for modelling
and analysing real data, when a flat shape in the middle of the distribution can be
observed. In order to motivate our proposal, we consider the following example. The
OECD1 Jobs Strategy recommends that governments take measures aimed at increasing
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working-time flexibility (see OECD, 2004). A common work pattern in Iranian offices
is to begin between 7:30 and 8:00 am and end at 3:30 pm. Consequently, the daily
working time hour has a flat shape in the middle of distribution.

The paper is organised as follows: In Section 2, we provide a brief description of
the standard Laplace distribution and introduce a new modified form of it. Section 3
considers maximum likelihood estimation of the parameters of the new distribution.
We compare the fits of two models, classical and modified distribution, to three real-
world datasets in Section 4. Finally, we give a summary and conclusion in Section
5.

2 Laplace distribution

A standard form of the Laplace distribution is given by the following probability
density function:

f (x;θ, σ) =
1

2σ
e−
|x−θ|
σ , x, θ ∈ R and σ > 0. (2.1)

Apart from classical Laplace distribution, this distribution is also known as double expo-
nential distribution. It has mean θ and variance 2σ2.

The Laplace distribution resembles the normal distribution in several characteris-
tics (e. g. unimodality, symmetry), but is sharper at the peak and has fatter tails. A
random variable with a distribution that has a sharp probability density corresponds
to low entropy (Viola , 1995). Therefore, this property holds for the classical Laplace
distribution and a way to increase its entropy is to decrease its sharpness. Note that
the entropy of a random variable X can be interpreted as a representation of either
the average amount of uncertainty that exists regarding the value of X or the average
information received when X is observed.

In the light of the above discussion, we introduce a new modification of the classical
Laplace distribution, in which the middle of the distribution is flat instead of sharp. It
is worth mentioning that the uniform distribution on a given interval is the maximum
entropy distribution among all continuous distributions (Van Campenhout and Cover
, 1981). Thus, we use the uniform along with the classical Laplace distribution to create
the new distribution.
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2.1 Definition and basic properties of the modified classical Laplace distri-
bution

The modified classical Laplace distribution is a probability distribution on (−∞,+∞)
and its probability density function is given by

f (x;θ, σ) =



1
3σ exp

{
x−θ
σ

}
, x < θ,

1
3σ , θ ≤ x < θ + σ,

1
3σ exp

{
1 − x−θ

σ

}
, x ≥ θ + σ,

(2.2)

where θ ∈ R and σ > 0. Here, we use the notation CL(θ, σ) for the classical Laplace
distribution andMCL(θ, σ) for the new modified version, respectively.

Proposition 2.1. Let Z ∼ MCL(0, 1). Then

E
(
Zk
)
=

1
3

(−1)kk! +
k+1∑
ℓ=0

k!
ℓ!

 =


k+1∑
ℓ=1

k!
3ℓ! if k is odd,

k+1∑
ℓ=1

k!
3ℓ! +

2
3 k! if k is even.

(2.3)

Corollary 2.1. Let X ∼ MCL(θ, σ). Then

E
(
Xk
)
=

k∑
ℓ=0

(
k
ℓ

)
σℓE
(
Zℓ
)
θk−ℓ. (2.4)

Using Corollary 2.1, we obtain var(X) = 79
36σ

2. Note also thatMCL(θ, σ) is symmetric
around θ + σ2 , that means

f
(
θ +
σ
2
− x
)
= f
(
θ +
σ
2
+ x
)
, x ∈ R.

Consequently, the mean and median are equal to θ + σ2 . In contrast to the classical
Laplace distribution where the mode is unique, the mode of the modified classical
Laplace distribution is an interval, namely [θ, θ + σ].

The above results indicate that variance and mean for the modified classical Laplace
distribution are greater than the variance and mean of the classical Laplace distribution
under equal values for θ and σ. In addition, using Corollary 2.1, the kurtosis for the
modified Laplace distribution equals 2.48, whereas the classical Laplace has kurtosis
equal to 3.
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Proposition 2.2. Let X ∼ MCL(θ, σ). Then the quantile Qp can explicitly be written as
Qp = σqp + θ, where

qp =


log(3p), p < 1

3 ,
3p − 1, 1

3 ≤ p < 2
3 ,

1 − log
(
3(1 − p)

)
, p ≥ 2

3 .
(2.5)

Using Proposition 2, random variate generation fromMCL(θ, σ) is straightforward.
Since the cumulative distribution function ofMCL(θ, σ) has a closed form expression –
and so does its inverse – the inversion method can be applied. We describe aMCL(θ, σ)
generator based on Proposition 2.

• Generate a uniform random variate U on [0; 1];

• Compute qU by equation (2.5);

• Return y = σqU + θ as a random variate fromMCL(θ, σ).

Proposition 2.3. A standard modified classical Laplace random variable Z has the representa-
tion

Z d
= B
(
Y +

B + 1
2

)
+
(
1 − B2

)
U, (2.6)

where Y ∼ Exp(1), (that is Y has an exponential distribution with parameter 1), U is uniformly
distributed on (0, 1), B takes the values {−1, 0, 1}with probabilities 1/3, and the random variables
Y, U and B are independent.

Proof. Conditioning on B and using the independence between the random variables
B, U and Y, we find that

FZ(z) = P(Z ≤ z) =
P(Y ≥ −z) + P(U ≤ z) + P(Y + 1 ≤ z)

3

=



1
3 P(Y ≥ −z), z < 0,

1
3 +

1
3 P(U ≤ z), 0 ≤ z < 1,

2
3 +

1
3 P(Y + 1 ≤ z), z ≥ 1

=



1
3 ez, z < 0,

1
3 +

1
3 z, 0 ≤ z < 1,

1 − 1
3 e−(z−1), z ≥ 1.
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Corollary 2.2. Let Z ∼ MCL(0, 1), then

Z d
= log

(
U−B

1

)
+
(
1 − B2

)
U2 + B

B + 1
2
,

Z d
= B

(
Y1 +

B + 1
2

)
+
(
1 − B2

)
e−Y2 ,

where Ui
i.i.d∼ U(0, 1) and Yi

i.i.d∼ Exp(1), i = 1, 2, and all variables are independent from
the random variable B as defined in Proposition 1.

2.2 Comparison with the classical Laplace distribution

Figure 1 provides plots of the classical Laplace and the modified classical Laplace
densities. We can see that the modified classical Laplace distribution can be used when
the values in the centre of the distribution are uniformly distributed.

The classical Laplace distribution can be thought of as two exponential distributions
(with additional location parameters) spliced together back-to-back. Now, if the upper
exponential distribution in the standard Laplace distribution is divided into two distri-
butions – a uniform distribution and a truncated exponential distribution –, we obtain
the modified classical Laplace distribution by additionally replacing the coefficient 1/2
on either side by 1/3. It is easy to see that CL(θ, σ) andMCL(θ, σ) have the Shannon
entropies (see Shannon (1948)) log(2σe) and log

(
3σe

2
3

)
, respectively. Consequently, a

larger entropy is achieved by means of the modified distribution in comparison to the
classical Laplace distribution.

2.3 Order statistics

Let X1,X2, . . . ,Xn
i.i.d∼ MCL(0, 1), and denote by X(1) ≤ X(2) ≤ . . . ≤ X(n) the correspond-

ing order statistics. Then the following results are obtained by direct application of the
formulas for order statistics of distributions.
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Figure 1: Probability density plot for the modified Laplace distribution.

Proposition 2.4. The cumulative distribution function (c.d.f) of X(1) and X(n) are

FX(1)(t) =



1 −
(
1 − et

3

)n
, t ≤ 0,

1 −
(
1 − 1+t

3

)n
, 0 < t ≤ 1,

1 −
(

e1−t

3

)n
, t > 1,

(2.7)

and

FX(n)(t) =



(
et

3

)n
, t ≤ 0,

(
1+t

3

)n
, 0 < t ≤ 1,

(
1 − e1−t

3

)n
, t > 1.

(2.8)

Exploiting the relation FX(1)(t) = 1 − FX(n)(1 − t) from Proposition 2.4, we can find a
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limiting distribution for X(1) and X(n). Note that X(1) − log
(

3
n

)
has the following c.d.f.:

FX(1)−log(3/n)(t) =



1 −
(
1 − et

n

)n
, t + log(3/n) ≤ 0,

1 −
(
1 − 1+t+log(3/n)

3

)n
, 0 < t + log(3/n) ≤ 1,

1 −
(

e1−t

n

)n
, t + log(3/n) > 1.

(2.9)

Therefore, the limiting distribution of X(1) − log
(

3
n

)
is given by

FX(1)−log(3/n)(t) −→ 1 − e−et
, t ∈ R. (2.10)

Figure 2 shows the empirical probability density (obtained via 10000 simulations from
the distribution MCL(0, 1)) and the theoretical probability density of X(1) for sample
sizes 30, 50, 100 and 500. These plots support the suitability of the limiting distribution
as an approximation to the distribution of X(1).

3 Estimation

Let x1, . . . , xn be a sample fromMCL(θ, σ) and x(1) ≤ x(2) ≤ . . . ,≤ x(n) the corresponding
ordered sample. In order to obtain the maximum likelihood estimates of the parameters
θ and σ, we will discuss three cases in the following paragraphs:

• σ is known, but θ is unknown;

• θ is known, but σ is unknown;

• Both θ and σ are unknown.

3.1 σ is known

We derive the likelihood function by exploiting the following alternative representation
of the density function of the modified Laplace distribution from equation (2.2):

f (x;θ, σ) =
1

3σ
exp
{
− 1

2σ
[|x − θ| + |x − σ − θ| − σ]

}
; x ∈ R. (3.1)
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Figure 2: Limiting distribution of X(1) for sample sizes 30, 50, 100 and 500, obtained via
10000 simulations.

Using the representation (3.1), the likelihood function for the modified Laplace distri-
bution can be written as

L(θ) =
( 1
3σ

)n
exp

−
1

2σ


n∑

i=1

|xi − θ| +
n∑

i=1

| xi − σ︸︷︷︸
yi

−θ|

 + n
2

 . (3.2)

Since σ is known, we can write

L(θ) =
( 1
3σ

)n
exp

− 1
2σ

2n∑
i=1

|yi − θ| +
n
2

 , (3.3)

where

yi =

{
xi − σ, i = 1, . . . , n,
xi−n, i = n + 1, . . . , 2n.
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It is well known that the expression
2n∑
i=1
|yi − θ| is minimised when θ is replaced by

the median of the observations y1, . . . , y2n (see, e.g., Norton (1984)). Therefore, we have

θ̂MLE = ry(n) + (1 − r)y(n+1), (3.4)

where 0 < r < 1 is an arbitrary constant and y(1) ≤ y(2) ≤ . . . ≤ y(2n) are the ordered
values.

The estimator θ̂MLE has two properties that are presented in the following proposi-
tion.

Proposition 3.1. Let θ̂MLE be defined by equation (3.4). Then the following properties hold:

(i) min
{
x(n) − σ, x(1)

}
≤ θ̂MLE ≤ x(⌈ n+1

2 ⌉), where ⌈v⌉ stands for the smallest integer greater
or equal to v;

(ii) θ̂MLE is non-increasing with respect to σ.

Proof. Since σ > 0, we can consider two extreme cases:

• x(n) − σ ≤ x(1)

• x(i) − σ ≤ x(i) ≤ x(i+1) − σ for i = 1, . . . , n − 1.

Now, it is easy to see that θ̂MLE ∈
[
x(n) − σ, x(1)

]
in the first case and

θ̂MLE ∈


[
x( n

2 ), x( n
2+1) − σ

]
for even n,

[
x( n+1

2 ) − σ, x( n+1
2 )

]
for odd n,

in the second case. This completes the proof of (i). The proof of (ii) is clear by definition
of θ̂MLE. �

3.2 θ is known

Without loss of generality, we assume that θ = 0. Thus, the loglikelihood results to

ℓ(σ) = log L(σ) = −n log(3σ) − 1
2σ

 n∑
i=1

|xi| +
n∑

i=1

|xi − σ|
 + n

2
. (3.5)
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ℓ(σ) is continuous everywhere and differentiable except at σ = x1, . . . , xn. In case the
differentiation of ℓ(σ) exists, we have

ℓ′(σ) = −n
σ
+

n∑
i=1

|xi|
2σ2 +

n∑
i=1

|xi − σ|
2σ(xi − σ)

+

n∑
i=1

|xi − σ|
2σ2

= −n
σ
+

1
2

n∑
i=1

xi

σ2

{ |xi|
xi
+
|xi − σ|
xi − σ

}
=

1
σ

 n∑
i=1

wi(σ)xi

σ
− n

 ,
where

wi(σ) =


−1, −∞ < xi < 0,
0, 0 ≤ xi < σ,

+1, σ < xi < ∞.
Since wi(σ1) ≥ wi(σ2) for i = 1, . . . ,n when 0 < σ1 < σ2, we obtain the inequality n∑

i=1

wi(σ1)xi

σ1
− n

 >
 n∑

i=1

wi(σ2)xi

σ2
− n

 . (3.6)

Let us now consider the possible solutions for ℓ′(σ) = 0. If xi < 0 for all i, we have

wi(σ) = −1 for all i and σ̂MLE =
1
n

n∑
i=1
|xi|.

Next, assume xi > 0 for some i. In this case, let p := min{i, x(i) > 0}. In addition,

let m ≥ p − 1 be the smallest integer such that either x(m) <
n∑

i=1

wi(x(m+1))xi
n < x(m+1) or

n∑
i=1

wi(x(m+1))xi
n < x(m) holds, where x(n+1) = ∞ and x(0) = 0. We have:

(i) If x(m) <
n∑

i=1

wi(x(m+1))xi
n < x(m+1), then

ℓ′(σ)



> 0, 0 < σ <
n∑

i=1

wi(x(m+1))xi
n ,

= 0, σ =
n∑

i=1

wi(x(m+1))xi
n ,

< 0,
n∑

i=1

wi(x(m+1))xi
n < σ < x(m+1).

In addition, applying
n∑

i=1

wi(x(m+1))xi
n < σ1 < x(m+1) < σ2 to equation (3.6), we get
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 n∑
i=1

wi(σ2)xi

σ2
− n

 <
 n∑

i=1

wi(σ1)xi

σ1
− n

 < 0,

from which follows ℓ′(σ) < 0 for all σ > x(m+1). Therefore, we can extend the
previous result to

ℓ′(σ)



> 0, 0 < σ <
n∑

i=1

wi(x(m+1))xi
n ,

= 0, σ =
n∑

i=1

wi(x(m+1))xi
n ,

< 0,
n∑

i=1

wi(x(m+1))xi
n < σ < ∞,

and consequently σ̂MLE =
n∑

i=1

wi(x(m+1))xi
n .

(ii) If
n∑

i=1

wi(x(m+1))xi
n < x(m), then ℓ(σ) is increasing on (0, x(m)) and decreasing on (x(m),∞),

which implies σ̂MLE = x(m).

By applying equality

n∑
i=1

wi(x(m+1))xi

n
=

1
n

n∑
i=1

|xi| −
1
n

m∑
i=p

x(i),

the above results can be summarised in Proposition 3.2.

Proposition 3.2. Let X1, . . . ,Xn
i.i.d∼ MCL(θ, σ) under known θ. Then

σ̂MLE =


|Y|, if Yi < 0 for all i,

max

|Y| − 1
n

m∑
i=p

Y(i) , Y(m)

 , if Yi > 0 for some i,

where Yi = Xi − θ, i = 1, . . . ,n, p = min{i,Y(i) > 0} and |Y| = 1
n

n∑
i=1
|Yi|. In addition, m can

be obtained by

m = p − 1 +
n∑

j=p

|z j| + z j

2z j
,
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where zp = |Y|−Y(p) and z j = |Y|− 1
n

j−1∑
i=p

Y(i)−Y( j) for j = p+1, . . . ,n. The
m∑

i=p
Y(m) are assumed

to be equal to zero for p > m.

Proposition 3.2 results in two properties for σ̂MLE, which are provided in the following
proposition.

Proposition 3.3. Let σ̂MLE be defined as in Proposition 3.2. Then the following properties hold:

(i) |Y| − 1
n

n∑
i=p

Y(i) ≤ σ̂MLE ≤ |Y|,

(ii) σ̂MLE is non-increasing with respect to θ.

Proof. Assertion (i) is clear by definition of σ̂MLE. With respect to assertion (ii), we sup-
pose thatθ1 < θ2 are two arbitrary constants and denote by σ̂1 and σ̂2 the corresponding
MLEs for σ. Using (i), it is sufficient to show that

|x − θ1| −
1
n

n∑
i=p

(x(i) − θ1) ≥ |x − θ2|.

σ̂MLE equals the left hand side of this inequality when it is larger than x(n) − θ1, and the
right hand side for |x − θ2| < x(n) − θ2. Therefore, using inequality θ1 < θ2, we have

|x − θ1| −
1
n

n∑
i=p

(x(i) − θ1) ≥ x(n) − θ1 > x(n) − θ2 ≥ |x − θ2|,

which completes the proof of Proposition 3.3. �

3.2.1 Two illustrative examples

Example 3.1. The ordered values corresponding to a random sample of size n = 10
taken from MCL(0, 1) are -1.29, -0.81, -0.40, -0.27, 0.37, 0.56, 1.05, 1.23, 1.32, 1.46.
Applying Proposition 3.2 we obtain p = 5 and z5 = 0.506, z6 = 0.279, z7 = −0.267, z8 =
−0.552, z9 = −0.765, z10 = −1.037. Consequently, m = (5 − 1) + 2 = 6, and we have

σ̂MLE = max

|Y| − 1
10

6∑
i=5

Y(i) , Y(6)

 = max{0.876 − 0.093 , 0.56} = 0.783.
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Example 3.2. Let a sample of size n = 10 be taken from MCL(0, 1) with ordered
values -2.08, -1.36, -0.21, 0.08, 0.09, 0.85, 0.86, 1.13, 1.62, 1.76. Applying Proposition 3.2
we obtain p = 4 and z4 = 0.924, z5 = 0.906, z6 = 0.137, z7 = 0.042, z8 = −0.314, z9 =
−0.917, z10 = −1.219. Consequently, m = (4 − 1) + 4 = 7, and we have

σ̂MLE = max

|Y| − 1
10

7∑
i=4

Y(i) , Y(7)

 = max{1.004 − 0.188 , 0.86} = 0.86.

3.3 Both θ and σ are unknown

The case that both parameters θ and σ are unknown constitutes the most realistic real-
world situation in comparison to the previous two cases with at least one of the two
known. Recall that

ℓ(θ, σ) = −n log(3σ) − 1
2σ

 n∑
i=1

|xi − θ| +
n∑

i=1

|xi − σ − θ|
 + n

2
.

Using some results from previous subsections we have

dℓ(θ, σ)
dθ

=
1
σ

n∑
i=1

wi(θ, σ),

dℓ(θ, σ)
dσ

=
1
σ

 n∑
i=1

wi(θ, σ)(xi − θ)
σ

− n

 ,
where

wi(θ, σ) =


−1, xi < θ,

0, θ ≤ xi < θ + σ,

+1, xi ≥ θ + σ.

It is easy to see that wi(θ, σ) is a non-increasing function in both θ and σ. We can
conclude that dℓ(θ,σ)

dθ is a step function varying between −n
σ and n

σ in θ for a fixed σ.
Setting the derivative dℓ(θ,σ)

dσ equal to zero gives us

n∑
i=1

wi(θ, σ)(xi − θ)
σ

− n = 0.
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The left hand side of this function is continuous and differentiable everywhere as well
as decreasing with respect to σ, which guarantees the existence and uniqueness of σ̂MLE.

Now, note that dℓ(θ,σ)
dθ = −n

σ for θ > x(n), which means that ℓ(θ, σ) is decreasing with
respect to θ for θ > x(n). Thus, we can write ℓ(θ, σ) ≤ ℓ(x(n), σ) for θ > x(n). In addition,

using the previous subsection, we find that ℓ(x(n), σ) ≤ ℓ(θ̂0, σ̂0), where σ̂0 =
1
n

n∑
i=1
|xi− θ̂0|

and θ̂0 = x(n). By making use of the recursive procedureθ̂ j = ry(n) + (1 − r)y(n+1) with yi =

xi − σ̂ j−1, i = 1, . . . , n,
xi−n, i = n + 1, . . . , 2n,

σ̂ j obtained by Proposition 3.2 with θ = θ̂ j

for j = 1, 2, . . .u, where u is the smallest number with dℓ(θ̂u,σ)
dσ ≥ 0 for σ = σ̂u and

θ = θ̂u+1, we can conclude that θ̂u+1 and σ̂u are the maximum likelihood estimations of
the parameters θ and σ. Here, σ̂i and θ̂i satisfy

σ̂0 > σ̂1 > . . . > σ̂u,

θ̂1 < θ̂2 < . . . < θ̂u+1.

In order to prove these inequalities, it is enough to show σ̂0 > σ̂1. Provided the validity
of the inequality σ̂0 > σ̂1, Propositions 3.1 and 3.3 can be used to prove σ̂i > σ̂i+1 for
higher i. We intend to show min

x1,...,xn
σ̂0 > max

x1,...,xn
σ̂1. From Proposition 3.2 we can conclude

nσ̂1 ≤
n∑

i=1
|xi − θ̂1|. Furthermore, the definition of σ̂0 reveals σ̂0 ≥ min

i=1,...,n−1
(x(i+1) − x(i)) n−1

2 .

Therefore, we must show min
i=1,...,n−1

(x(i+1) − x(i)) n−1
2 >

1
n

n∑
i=1
|xi − θ̂1|. For this purpose, let

x1, . . . , xn be a sample with fixed differences x(i+1)−x(i) for i = 1, . . . , n−1. Then we have

σ̂0 =
1
n

n∑
i=1
|xi − x(n)| = min

i=1,...,n−1
(x(i+1) − x(i)) n−1

2 and

θ̂1 ∈



[
x( 3n

4 ) − σ̂0, x( n
4+1)

]
if n is a multiple of 4,

[
x([ n

4 ]+1), x([ 3n
4 ]+1) − σ̂0

]
if n is even, but is not a multiple of 4,

[
x(n−1) − σ̂0, x( n+1

2 )

]
if n is odd.
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Thus, x(1) ≤ θ̂1 ≤ x( n+1
2 ), and θ̂1 is closer to the median of x1, . . . xn than θ̂0, from which

easily follows
n∑

i=1
|xi − Median{xi}| ≤

n∑
i=1
|xi − θ̂1| ≤ nσ̂0. Finally, using the inequality

σ̂0 > σ̂1, we get θ̂1 > θ̂2 by Proposition 3.1. Using θ̂1 > θ̂2 we find σ̂1 > σ̂2 by
Proposition 3.3 and so on.

4 Empirical Study

4.1 Simulation study

We investigate the behaviour of the maximum likelihood estimators using sample
realisations of variousMCL(θ, σ). We consider the following three sets of parameters:

• θ = 5, σ = 0.5,

• θ = 10, σ = 1,

• θ = 20, σ = 2.

For all data generating processes, 1000 datasets of length N = 10, 30 and 50 are simu-
lated by means of the statistical software R. Empirical probability density plots for a
realisation of these simulations are provided in Figures 3–5.
We use the standard simulation procedure to obtain estimates of the parameters θ
and σ. In this way, a set

{
(θ̂( j), σ̂( j)), j = 1, . . . , 1000

}
of 1000 estimates for the pair (θ, σ)

results from the simulation. Then, the mean and the mean squared error (MSE) of θ̂
are estimated by the following formulas:

Mean =
1

1000

1000∑
j=1

θ̂( j), (4.1)

MSE =
1

1000

1000∑
j=1

(
θ̂( j) − θ

)2
, (4.2)

where θ̂( j) and θ are replaced by σ̂( j) and σ, respectively, when we want to estimate σ.
The results in Table 1 show that bias and MSE in estimating the parameters θ and σ
decrease with the sample size.
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Figure 3: Examples of empirical probability density plots forMCL(5, 0.5) under sam-
ples of size 10, 30 and 50.
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Figure 4: Examples of empirical probability density plots forMCL(10, 1) under samples
of size 10, 30 and 50.

Table 1: MLE properties for CL(θ, σ) andMCL(θ, σ) in simulated data.

(θ, σ) size
θ̂MLE σ̂MLE

Mean MSE Mean MSE
10 5.006 0.052 0.481 0.022

(5,0.5) 30 5.000 0.017 0.496 0.007
50 5.002 0.009 0.494 0.004
10 10.034 0.202 0.951 0.088

(10,1) 30 9.991 0.066 0.990 0.029
50 10.003 0.039 0.994 0.017
10 20.070 0.806 1.905 0.354

(20,2) 30 20.025 0.270 1.989 0.121
50 19.998 0.159 1.997 0.074
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Figure 5: Examples of empirical probability density plots forMCL(20, 2) under samples
of size 10, 30 and 50.

4.2 Real data

Three different datasets are considered to investigate the performance of the modified
Laplace distribution on real data. The first one is related to currency exchange rates,
the second concerns river flood heights and the last loss ratios in insurance companies.
Previous studies examined the possibility of using the Laplace distribution and its ex-
tensions on similar datasets. For example, for modelling the exchange rates by means
of the Laplace distribution see Kotz et al. (2001), Aryal (2006) and references therein.
In addition, Iliopoulos and Balakrishnan (2012) and Bain and Engelhard (1973) stud-
ied the flood height data. Modelling loss ratios is according to our knowledge a novel
application. It should be mentioned that our aim is not to find the best fitting distri-
bution for the data, but to demonstrate that the modified Laplace distribution is able
to provide a better fit than the classical Laplace distribution. We use the Kolmogorov-
Smirnov (K-S) test to examine the significance of our results and exploit the Jackknife
method (see, for example,Efron (1981)) to estimate the standard error of parameters
estimates forMCL(θ, σ). The standard errors of parameters estimates from CL(θ, σ)
are computed via the R packages VGAM (see, for example, Yee (2010)) and ExtDist (see
Wu et al. (2015)).

Exchange rate data

We consider the annual exchange rates between the United States Dollar (USD) and the
Czech Republic Koruna (CZK, 1990-2014), United Kingdom Pound (GBP, 1975-2014),
Swedish Krona (SEK, 1960-2014) and Danish Krone (DKK, 1960-2014). The data were
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obtained from the OECD (2014), available from the website http://stats.oecd.org.
We examine the fits ofMCL(θ, σ) and CL(θ, σ) for the logarithm of these data. Table 2
displays ML estimates and their estimated standard errors. Standard errors are low
across all parameters, indicating the high precision of the estimates. The probability
densities of MCL(θ, σ) and CL(θ, σ) using ML estimates as well as the empirical
probability density of the data are shown in Figure 6. The plots suggest that further
improvement to the classical Laplace distribution fitting can be reached by fitting the
modified Laplace distribution MCL(θ, σ). K-S test statistics and associated p-values
are reported in Table 3. They support the graphical indications of a quite reasonable fit
byMCL(θ, σ).

Table 2: Estimated distribution parameters for the exchange rates data.

Currency
MCL(θ, σ) CL(θ, σ)

θ̂MLE σ̂MLE θ̂MLE σ̂MLE

Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error
CZK 3.134 0.0560 0.199 0.0290 3.279 0.0497 0.204 0.0408
DKK 1.808 0.0188 0.124 0.0188 1.889 0.0230 0.125 0.0169
SEK 1.710 0.0591 0.193 0.0143 1.847 0.0350 0.199 0.0269
GBP -0.560 0.0168 0.093 0.0116 -0.493 0.0087 0.097 0.0153

Table 3: Kolmogorov-Smirnov results of fittingMCL(θ, σ) andCL(θ, σ) to the exchange
rates data.

Quantity
CZK DKK SEK GBP

MCL CL MCL CL MCL CL MCL CL
K-S 0.1399 0.1937 0.1045 0.1437 0.1638 0.2220 0.1074 0.1649

p-value 0.6612 0.2687 0.5852 0.2059 0.1044 0.0089 0.7057 0.2029

Flood height data

Bain and Engelhard (1973) considered 33 years (1918-1950) of flood data from two
stations on Fox River, Wisconsin. While they modelled the data using a Laplace
distribution, we investigate it fitting the modified classical Laplace distribution. Table
4 shows ML estimates and their associated standard errors for both MCL(θ, σ) and
CL(θ, σ). The resulting densities are displayed in Figure 7 together with the empirical
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Figure 6: Graphical fitting ofMCL(θ, σ) and CL(θ, σ) to the exchange rates data.

density of the data, which suggests an improved fit ofMCL(θ, σ) compared toCL(θ, σ).
For these data, the K-S statistic equals 0.1027 and 0.1598 forMCL(θ, σ) and CL(θ, σ),
respectively. Their associated p-values of 0.877 and 0.3686 indicate an improvement by
MCL(θ, σ).

Table 4: Estimated distribution parameters for flood data.

MCL(θ, σ) CL(θ, σ)

θ̂MLE σ̂MLE θ̂MLE σ̂MLE

Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error
7.923 0.9295 3.200 0.4633 10.131 0.4149 3.361 0.5851
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Figure 7: Graphical fitting ofMCL(θ, σ) and CL(θ, σ) to flood height data.

Loss ratio data

The loss ratio enables insurance companies to determine the overall profitability of the
policies they issue. It is computed by dividing the claims paid by an insurer over the
premiums earned, usually for the period of a year.

We consider the logarithm of the loss ratio for private cars in motor insurance,
based on about 200000 policies and 28721 associated claims in the period Mar 2010
to Mar 2013. It is common to include the gender of the main driver in the actuarial
ratemaking. It is also common in practice to start a new period if some changes occur
in the observable characteristics of the policies. The policy is then represented as two
different lines in the database, and observations are recorded separately for the two
periods. Therefore, we decided to divide these data by gender and year.
The maximum likelihood estimates of the parameters for the two distributionsMCL(θ, σ)
and CL(θ, σ) are reported in Table 5. It is evident from the results in Table 5 that the
standard errors are low across all parameters, indicating the high precision of the esti-
mates.
The probability densities together with the empirical probability density as displayed
in Figure 8 indicate a fairly good fit for the logarithm of the loss ratio, where the graph-
ical evaluation favoursMCL(θ, σ) over CL(θ, σ) in terms of the fit. Furthermore, the
results of the K-S test and associated p-values are reported in Table 6. The p-values
returned by the K-S test in this table indicate that the logarithm of the loss ratio for
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female policy holders might followMCL(θ, σ) when employing a significance level of
0.001. Table 6 also shows that usingMCL(θ, σ) results in a significantly improved fit
in terms of K-S test statistic and associated p-values.

Table 5: Estimated distribution parameters for the loss ratio data.

Data

MCL(θ, σ) CL(θ, σ)

θ̂MLE σ̂MLE θ̂MLE σ̂MLE

Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error
M1 0.3864 0.0244 0.7654 0.0060 0.7566 0.0120 0.8219 0.0101
M2 0.5769 0.0093 0.7026 0.0062 0.9580 0.0105 0.7615 0.0082
M3 0.5815 0.0172 0.7738 0.0081 0.9606 0.0134 0.8305 0.0104
F1 0.3998 0.0431 0.7228 0.0170 0.7651 0.0172 0.7764 0.0165
F2 0.5485 0.0679 0.6883 0.0678 0.9430 0.0147 0.7300 0.0130
F3 0.5003 0.0234 0.7320 0.0240 0.8494 0.0101 0.7867 0.0154

Table 6: Kolmogorov-Smirnov results of fittingMCL(θ, σ) andCL(θ, σ) to the loss ratio
data.

Sex Year length
MCL CL

K-S p-value K-S p-value

Male
2010-2011 6714 0.0258 0.0003 0.0424 7.1e-11
2011-2012 8629 0.0861 2.1e-16 0.0379 3.2e-11
2012-2013 6382 0.0316 5.8e-06 0.0436 4.8e-11

Female
2010-2011 2208 0.0250 0.1274 0.0429 0.0006
2011-2012 3143 0.0303 0.0062 0.0505 2.3e-07
2012-2013 1645 0.0336 0.0482 0.0456 0.0022

5 Conclusion

We have introduced a new modified Laplace distribution, which replaces the sharp
peak of its classical counterpart by a flat segment in the centre of the distribution.
The theoretical comparison with the classical Laplace distribution indicates that the
classical Laplace distribution is more informative than the modified classical Laplace
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Figure 8: Graphical fitting ofMCL(θ, σ) and CL(θ, σ) to the loss ratio data.

distribution. A practical analysis of both distributions on real data as part of our study
suggests further improvement in classical Laplace distribution fitting by means of the
newly proposed distribution.
It may be interesting to extend the results of this paper to cover asymmetry, which is
not pursued in the present paper. A suggestion for a modified Laplace distribution of
asymmetric shape is provided in the density function

fX(x;θ, µ, σ, δ) =
1

µ + σ + δ


e−
|x−θ|
δ , x ≤ θ,

1, θ < x ≤ θ + µ,
e−
|x−θ−µ|
δ , x > θ + µ.

The modified Laplace distribution MCL(θ, σ) introduced in this paper can then be
obtained as a special case of the above distribution by setting µ = δ = σ.
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